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Abstract

We investigate techniques for super-
vised domain adaptation for neural ma-
chine translation where an existing model
trained on a large out-of-domain dataset is
adapted to a small in-domain dataset.

In this scenario, overfitting is a major
challenge. We investigate a number of
techniques to reduce overfitting and im-
prove transfer learning, including regular-
ization techniques such as dropout and L2-
regularization towards an out-of-domain
prior. In addition, we introduce tuneout,
a novel regularization technique inspired
by dropout. We apply these techniques,
alone and in combination, to neural ma-
chine translation, obtaining improvements
on IWSLT datasets for English→German
and English→Russian. We also inves-
tigate the amounts of in-domain train-
ing data needed for domain adaptation in
NMT, and find a logarithmic relationship
between the amount of training data and
gain in BLEU score.

1 Introduction

Neural machine translation (Bahdanau et al.,
2015; Sutskever et al., 2014) has established itself
as the new state of the art at recent shared transla-
tion tasks (Bojar et al., 2016; Cettolo et al., 2016).
In order to achieve good generalization accuracy,
neural machine translation, like most other large
machine learning systems, requires large amounts
of training examples sampled from a distribution
as close as possible to the distribution of the inputs
seen during execution. However, in many applica-
tions, only a small amount of parallel text is avail-
able for the specific application domain, and it is

therefore desirable to leverage larger out-domain
datasets.

Owing to the incremental nature of stochastic
gradient-based training algorithms, a simple yet
effective approach to transfer learning for neural
networks is fine-tuning (Hinton and Salakhutdi-
nov, 2006; Mesnil et al., 2012; Yosinski et al.,
2014): to continue training an existing model
which was trained on out-of-domain data with in-
domain training data. This strategy was also found
to be very effective for neural machine transla-
tion (Luong and Manning, 2015; Sennrich et al.,
2016b).

Since the amount of in-domain data is typically
small, overfitting is a concern. A common solution
is early stopping on a small held-out in-domain
validation dataset, but this reduces the amount of
in-domain data available for training.

In this paper, we show that we can make fine-
tuning strategies for neural machine translation
more robust by using several regularization tech-
niques. We consider fine-tuning with varying
amounts of in-domain training data, showing that
improvements are logarithmic in the amount of in-
domain data.

We investigate techniques where domain adap-
tation starts from a pre-trained out-domain model,
and only needs to process the in-domain cor-
pus. Since we do not need to process the
large out-domain corpus during adaptation, this
is suitable for scenarios where adaptation must
be performed quickly or where the original out-
domain corpus is not available. Other works
consider techniques that jointly train on the out-
domain and in-domain corpora, distinguishing
them using specific input features (Daume III,
2007; Finkel and Manning, 2009; Wuebker et al.,
2015). These techniques are largely orthogonal to
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ours1 and can be used in combination. In fact,
Chu et al. (2017) successfully apply fine-tuning in
combination with joint training.

2 Regularization Techniques for
Transfer Learning

Overfitting to the small amount of in-domain train-
ing data that may be available is a major challenge
in transfer learning for domain adaptation. We in-
vestigate the effect of different regularization tech-
niques to reduce overfitting, and improve the qual-
ity of transfer learning.

2.1 Dropout
The first variant that we consider is fine-tuning
with dropout. Dropout (Srivastava et al., 2014)
is a stochastic regularization technique for neural
networks. In particular, we consider "Bayesian"
dropout for recurrent neural networks (Gal and
Ghahramani, 2016).

In this technique, during training, the columns
of the weight matrices of the neural network are
randomly set to zero, independently for each ex-
ample and each epoch, but with the caveat that
when the same weight matrix appears multiple
times in the unrolled computational graph of a
given example, the same columns are zeroed.

For an arbitrary layer that takes an input vector
h and computes the pre-activation vector v (ignor-
ing the bias parameter),

vi,j = W ·MW,i,j · hi,j (1)

where MW,i,j = 1
pdiag(Bernoulli⊗n(p)) is the

dropout mask for matrix W and training exam-
ple i seen in epoch j. This mask is a diago-
nal matrix whose entries are drawn from inde-
pendent Bernoulli random variables with proba-
bility p and then scaled by 1/p. Gal and Ghahra-
mani (2016) have shown that this corresponds to
approximate variational Bayesian inference over
the weight matrices considered as model-wise ran-
dom variables, where the individual weights have
a Gaussian prior with zero mean and small diag-
onal covariance. During execution we simply set
the dropout masks to identity matrices, as in the
standard approximation scheme.

Since dropout is not a specific transfer learn-
ing technique per se, we can apply it during fine-
tuning, irrespective of whether or not the orig-
1 although in the special case of linear models, they are related

to MAP-L2 fine-tuning.

inal out-of-domain model was also trained with
dropout.

2.2 MAP-L2
L2-norm regularization is widely used for ma-
chine learning and statistical models. For lin-
ear models, it corresponds to imposing a diago-
nal Gaussian prior with zero mean on the weights.
Chelba and Acero (2006) extended this technique
to transfer learning by penalizing the weights of
the in-domain model by their L2-distance from the
weights of the previously trained out-of-domain
model.

For each parameter matrix W , the penalty term
is

LW = λ ·
∥∥∥W − Ŵ∥∥∥2

2
(2)

where W is the in-domain parameter matrix to be
learned and Ŵ is the corresponding fixed out-of-
domain parameter matrix. Bias parameters may
be regularized as well. For linear models, this cor-
responds to maximum a posteriori inference w.r.t.
a diagonal Gaussian prior with mean equal to the
out-of-domain parameters and 1/λ variance.

To our knowledge this method has not been ap-
plied to neural networks, except for a recent work
by Kirkpatrick et al. (2017) which investigates a
variant of it for continual learning (learning a new
task while preserving performance on previously
learned task) rather than domain adaptation. In
this work we investigate L2-distance from out-of-
domain penalization (MAP-L2) as a domain adap-
tation technique for neural machine translation.

2.3 Tuneout
We also propose a novel transfer learning tech-
nique which we call tuneout. Like Bayesian
dropout, we randomly drop columns of the weight
matrices during training, but instead of setting
them to zero, we set them to the corresponding
columns of the out-of-domain parameter matrices.

This can be alternatively seen as learning ma-
trices of parameter differences between in-domain
and out-of-domain models with standard dropout,
starting from a zero initialization at the beginning
of fine-tuning. Therefore, equation 2 becomes

vi,j = (Ŵ + ∆W ·M∆W,i,j) · hi,j (3)

where Ŵ is the fixed out-of-domain parameter
matrix and ∆W is the parameter difference matrix
to be learned and M∆W,i,j is a Bayesian dropout
mask.
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3 Evaluation

We evaluate transfer learning on test sets from
the IWSLT shared translation task (Cettolo et al.,
2012).

3.1 Data and Methods

Test sets consist of transcripts of TED talks and
their translations; small amounts of in-domain
training data are also provided. For English-to-
German we use IWSLT 2015 training data, while
for English-to-Russian we use IWSLT 2014 train-
ing data. For the out-of-domain systems, we use
training data from the WMT shared translation
task,2 which is considered permissible for IWSLT
tasks, including back-translations of monolingual
training data (Sennrich et al., 2016b), i.e., auto-
matic translations of data available only in target
language “back” into the source language.3.

We train out-of-domain systems following tools
and hyperparameters reported by Sennrich et al.
(2016a), using Nematus (Sennrich et al., 2017) as
the neural machine translation toolkit. We dif-
fer from their setup only in that we use Adam
(Kingma and Ba, 2015) for optimization. Our
baseline fine-tuning models use the same hyper-
parameters, except that the learning rate is 4 times
smaller and the validation frequency for early
stopping 4 times higher. Early stopping serves an
important function as the only form of regulariza-
tion in the baseline fine-tuning model. We also
use this configuration for the in-domain only base-
lines.

After some exploratory experiments for
English-to-German, we set dropout retention
probabilities to 0.9 for word-dropout and 0.8 for
all the other parameter matrices. Tuneout reten-
tion probabilities are set to 0.6 (word-dropout)
and 0.2 (other parameters). For MAP-L2 regu-
larization, we found that a penalty of 10−3 per
mini-batch performs best. For English-to-Russian,
retention probabilities of 0.95 (word-dropout)
0.89 (other parameters) for both dropout and
tuneout performed best.

The out-of-domain training data consists of
about 7.92M sentence pairs for English-to-
German and 4.06M sentence pairs for English-to-
Russian. In-domain training data is about 206k
sentence pairs for English-to-German and 181k
sentence pairs for English-to-Russian. Training
2 http://www.statmt.org/wmt16/
3 http://data.statmt.org/rsennrich/wmt16_backtranslations/
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Figure 1: English→German validation BLEU over
training mini-batches.

data is tokenized, truecased and segmented into
subword units using byte-pair encoding (BPE)
(Sennrich et al., 2016c).

For replicability and ease of adoption, we in-
clude our implementation of dropout and MAP-L2
in the master branch of Nematus. Tuneout regu-
larization is available in a separate code branch of
Nematus.4

3.2 Results

We report the translation quality in terms of NIST-
BLEU scores of our models in Table 1 for English-
to-German and Table 2 for English-to-Russian.
Statistical significance on the concatenated test
sets scores is determined via bootstrap resampling
(Koehn, 2004).

Dropout and MAP-L2 improve translation qual-
ity when fine-tuning both separately and in com-
bination. When the two methods are used in com-
bination, the improvements are significant at 5%
for both language pairs, while in isolation dropout
is non-significant and MAP-L2 is only significant
for English-to-Russian. Tuneout does not yield
improvements for English-to-German, in fact it
is significantly worse, but yields a small, non-
significant improvement for English-to-Russian.

In order to obtain a better picture of the train-
ing dynamics, we plot training curves5 for sev-
eral of our English-to-German models in Figure 1.

4 https://github.com/EdinburghNLP/nematus/tree/
tuneout-branch

5 These BLEU scores are computed using Moses
multi-bleu.perl which gives slightly different
results than NIST mteval-v13a.pl that is used for
Table 1.
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Table 1: English-to-German translation BLEU scores
valid test

System tst2010 tst2011 tst2012 tst2013 avg

Out-of-domain only 27.19 29.65 25.78 27.85 27.76
In-domain only 25.95 27.84 23.68 25.83 25.78
Fine-tuning 30.53 32.62 28.86 32.11 31.20
Fine-tuning + dropout 30.63 33.06 28.90 32.02 31.33
Fine-tuning + MAP-L2 30.81 32.87 28.99 31.88 31.25
Fine-tuning + tuneout 30.49 32.07 28.66 31.60 30.78†
Fine-tuning + dropout + MAP-L2 30.80 33.19 29.13 32.13 31.48†
†: different from the fine-tuning baseline at 5% significance.

Table 2: English-to-Russian translation BLEU scores
valid test

System dev2010 tst2011 tst2012 tst2013 avg

Out-of-domain only 15.74 17.48 15.15 17.81 16.81
Fine-tuning 17.47 19.67 17.17 19.18 18.67
Fine-tuning + dropout 17.68 19.96 17.11 19.32 18.80
Fine-tuning + MAP-L2 17.77 19.91 17.34 19.49 18.91†
Fine-tuning + tuneout 17.51 19.72 17.27 19.35 18.78
Fine-tuning + dropout + MAP-L2 17.74 19.68 17.83 19.78 19.10†
†: different from the fine-tuning baseline at 5% significance.

Baseline fine-tuning starts to noticeably overfit be-
tween the second and third epoch (1 epoch ≈ 104

mini-batches), while dropout, MAP-L2 and tune-
out seem to converge without displaying notice-
able overfitting.

In our experiments, all forms of regularization,
including early stopping, have shown to be suc-
cessful at mitigating the effect of overfitting. Still,
our results suggest that there is value in not relying
only on early stopping:

• our results suggest that multiple regularizers
outperform a single one.

• if the amount of in-domain data is very small,
we may want to use all of it for fine-tuning,
and not hold out any for early stopping.

To evaluate different fine-tuning streategies on
varying amounts of in-domain data, we tested fine-
tuning with random samples of in-domain data,
ranging from 10 sentence pairs to the full data
set of 206k sentence pairs. Fine-tuning with low
amounts of training data is of special interest for
online adaptation scenarios where a system is fed
back post-edited translation.6 Results are shown
6 We expect even bigger gains in that scenario because we

would not train on a random sample, but on translations that
are conceivably from the same document.
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Figure 2: English→German test BLEU with fine-
tuning on different in-domain data set size. Base-
line trained on WMT data.
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in Figure 2.
The results show an approximately logarithmic

relation between the size of the in-domain train-
ing set and BLEU. We consider three baseline ap-
proaches: fine-tuning for a fixed number of epochs
(1 or 5), or early stopping. All three baseline ap-
proaches have their disadvantages. Fine-tuning for
1 epoch shows underfitting on small amounts of
data (less than 1,000 sentence pairs); fine-tuning
for 5 epochs overfits on 500-200,000 sentence
pairs. Early stopping is generally a good strategy,
but it requires an in-domain held-out dataset.

On the same amount of data, regularization
(dropout+MAP-L2) leads to performance that is
better (or no worse) than the baseline with only
early stopping. Fine-tuning with regularization is
also more stable, and if we have no access to a
in-domain valdiation set for early stopping, can be
run for a fixed number of epochs with little or no
accuracy loss.

4 Conclusion

We investigated fine-tuning for domain adapta-
tion in neural machine translation with different
amounts of in-domain training data, and strategies
to avoid overfitting. We found that our baseline
that relies only on early stopping has a strong per-
formance, but fine-tuning with recurrent dropout
and with MAP-L2 regularization yield additional
small improvements of the order of 0.3 BLEU
points for both English-to-German and English-to-
Russian, while the improvements in terms of final
translation accuracy of tuneout appear to be less
consistent.

Furthermore, we found that regularization tech-
niques that we considered make training more ro-
bust to overfitting, which is particularly helpful in
scenarios where only small amounts of in-domain
data is available, making early-stopping impracti-
cal as it relies on a sufficiently large in-domain val-
idation set. Given the results of our experiments,
we recommend using both dropout and MAP-L2
regularization for fine-tuning tasks, since they are
easy to implement, efficient, and yield improve-
ments while stabilizing training. We also present
a learning curve that shows a logarithmic relation-
ship between the amount of in-domain training
data and the quality of the adapted system.

Our techniques are not specific to neural ma-
chine translation, and we propose that they could
be also tried for other neural network architectures

and other tasks.
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