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Abstract

Machine translation is a natural candidate
problem for reinforcement learning from
human feedback: users provide quick,
dirty ratings on candidate translations to
guide a system to improve. Yet, current
neural machine translation training fo-
cuses on expensive human-generated ref-
erence translations. We describe a re-
inforcement learning algorithm that im-
proves neural machine translation sys-
tems from simulated human feedback.
Our algorithm combines the advantage
actor-critic algorithm (Mnih et al., 2016)
with the attention-based neural encoder-
decoder architecture (Luong et al., 2015).
This algorithm (a) is well-designed for
problems with a large action space and
delayed rewards, (b) effectively optimizes
traditional corpus-level machine transla-
tion metrics, and (c) is robust to skewed,
high-variance, granular feedback modeled
after actual human behaviors.

1 Introduction

Bandit structured prediction is the task of learning
to solve complex joint prediction problems (like
parsing or machine translation) under a very lim-
ited feedback model: a system must produce a sin-
gle structured output (e.g., translation) and then
the world reveals a score that measures how good
or bad that output is, but provides neither a “cor-
rect” output nor feedback on any other possible
output (Chang et al., 2015; Sokolov et al., 2015).
Because of the extreme sparsity of this feedback, a
common experimental setup is that one pre-trains
a good-but-not-great “reference” system based on
whatever labeled data is available, and then seeks
to improve it over time using this bandit feedback.

A common motivation for this problem setting is
cost. In the case of translation, bilingual “ex-
perts” can read a source sentence and a possible
translation, and can much more quickly provide
a rating of that translation than they can produce
a full translation on their own. Furthermore, one
can often collect even less expensive ratings from
“non-experts” who may or may not be bilingual
(Hu et al., 2014). Breaking this reliance on ex-
pensive data could unlock previously ignored lan-
guages and speed development of broad-coverage
machine translation systems.

All work on bandit structured prediction we
know makes an important simplifying assumption:
the score provided by the world is exactly the score
the system must optimize (§2). In the case of pars-
ing, the score is attachment score; in the case of
machine translation, the score is (sentence-level)
BLEU. While this simplifying assumption has
been incredibly useful in building algorithms, it is
highly unrealistic. Any time we want to optimize a
system by collecting user feedback, we must take
into account:

1. The metric we care about (e.g., expert
ratings) may not correlate perfectly with
the measure that the reference system was
trained on (e.g., BLEU or log likelihood);

2. Human judgments might be more granu-
lar than traditional continuous metrics (e.g.,
thumbs up vs. thumbs down);

3. Human feedback have high variance (e.g.,
different raters might give different responses
given the same system output);

4. Human feedback might be substantially
skewed (e.g., a rater may think all system out-
puts are poor).

Our first contribution is a strategy to simulate ex-
pert and non-expert ratings to evaluate the robust-
ness of bandit structured prediction algorithms in
general, in a more realistic environment (§4). We
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construct a family of perturbations to capture three
attributes: granularity, variance, and skew. We
apply these perturbations on automatically gener-
ated scores to simulate noisy human ratings. To
make our simulated ratings as realistic as possible,
we study recent human evaluation data (Graham
et al., 2017) and fit models to match the noise pro-
files in actual human ratings (§4.2).

Our second contribution is a reinforcement
learning solution to bandit structured prediction
and a study of its robustness to these simulated
human ratings (§ 3).1 We combine an encoder-
decoder architecture of machine translation (Lu-
ong et al., 2015) with the advantage actor-critic al-
gorithm (Mnih et al., 2016), yielding an approach
that is simple to implement but works on low-
resource bandit machine translation. Even with
substantially restricted granularity, with high vari-
ance feedback, or with skewed rewards, this com-
bination improves pre-trained models (§6). In par-
ticular, under realistic settings of our noise param-
eters, the algorithm’s online reward and final held-
out accuracies do not significantly degrade from a
noise-free setting.

2 Bandit Machine Translation

The bandit structured prediction problem (Chang
et al., 2015; Sokolov et al., 2015) is an extension
of the contextual bandits problem (Kakade et al.,
2008; Langford and Zhang, 2008) to structured
prediction. Bandit structured prediction operates
over time i = 1 . . .K as:

1. World reveals context x(i)

2. Algorithm predicts structured output ŷ(i)

3. World reveals reward R
(
ŷ(i),x(i)

)
We consider the problem of learning to trans-

late from human ratings in a bandit structured
prediction framework. In each round, a transla-
tion model receives a source sentence x(i), pro-
duces a translation ŷ(i), and receives a rating
R
(
ŷ(i),x(i)

)
from a human that reflects the qual-

ity of the translation. We seek an algorithm that
achieves high reward over K rounds (high cumu-
lative reward). The challenge is that even though
the model knows how good the translation is, it
knows neither where its mistakes are nor what
the “correct” translation looks like. It must bal-
ance exploration (finding new good predictions)

1Our code is at https://github.com/
khanhptnk/bandit-nmt (in PyTorch).

Figure 1: A translation rating interface provided
by Facebook. Users see a sentence followed by its
machined-generated translation and can give rat-
ings from one to five stars.

with exploitation (producing predictions it already
knows are good). This is especially difficult in a
task like machine translation, where, for a twenty
token sentence with a vocabulary size of 50k, there
are approximately 1094 possible outputs, of which
the algorithm gets to test exactly one.

Despite these challenges, learning from non-
expert ratings is desirable. In real-world scenar-
ios, non-expert ratings are easy to collect but other
stronger forms of feedback are prohibitively ex-
pensive. Platforms that offer translations can get
quick feedback “for free” from their users to im-
prove their systems (Figure 1). Even in a setting in
which annotators are paid, it is much less expen-
sive to ask a bilingual speaker to provide a rating
of a proposed translation than it is to pay a profes-
sional translator to produce one from scratch.

3 Effective Algorithm for Bandit MT

This section describes the neural machine trans-
lation architecture of our system (§3.1). We for-
mulate bandit neural machine translation as a re-
inforcement learning problem (§3.2) and discuss
why standard actor-critic algorithms struggle with
this problem (§3.3). Finally, we describe a more
effective training approach based on the advantage
actor-critic algorithm (§3.4).

3.1 Neural machine translation
Our neural machine translation (NMT) model is
a neural encoder-decoder that directly computes
the probability of translating a target sentence y =
(y1, · · · , ym) from source sentence x:

Pθ(y | x) =
m∏
t=1

Pθ(yt | y<t,x) (1)

where Pθ(yt | y<t,x) is the probability of out-
putting the next word yt at time step t given a
translation prefix y<t and a source sentence x.

1465



We use an encoder-decoder NMT architecture
with global attention (Luong et al., 2015), where
both the encoder and decoder are recurrent neu-
ral networks (RNN) (see Appendix A for a more
detailed description). These models are normally
trained by supervised learning, but as reference
translations are not available in our setting, we
use reinforcement learning methods, which only
require numerical feedback to function.

3.2 Bandit NMT as Reinforcement Learning
NMT generating process can be viewed as a
Markov decision process on a continuous state
space. The states are the hidden vectors hdect gen-
erated by the decoder. The action space is the tar-
get language’s vocabulary.

To generate a translation from a source sentence
x, an NMT model starts at an initial state hdec0 :
a representation of x computed by the encoder.
At time step t, the model decides the next ac-
tion to take by defining a stochastic policy Pθ(yt |
y<t,x), which is directly parametrized by the pa-
rameters θ of the model. This policy takes the cur-
rent state hdect−1 as input and produces a probabil-
ity distribution over all actions (target vocabulary
words). The next action ŷt is chosen by taking
arg max or sampling from this distribution. The
model computes the next state hdect by updating
the current state hdect−1 by the action taken ŷt.

The objective of bandit NMT is to find a policy
that maximizes the expected reward of translations
sampled from the model’s policy:

max
θ
Lpg(θ) = max

θ
E x∼Dtr
ŷ∼Pθ(·|x)

[
R(ŷ,x)

]
(2)

where Dtr is the training set and R is the reward
function (the rater).2 We optimize this objective
function with policy gradient methods. For a fixed
x, the gradient of the objective in Eq 2 is:

∇θLpg(θ) = Eŷ∼Pθ(·) [R(ŷ)∇θ logPθ(ŷ)] (3)

=
m∑
t=1

E ŷt∼
Pθ(·|ŷ<t)

[
Q(ŷ<t, ŷt)∇θ logPθ(ŷt | ŷ<t)

]
where Q(ŷ<t, ŷt) is the expected future reward of
ŷt given the current prefix ŷ<t, then continuing
sampling from Pθ to complete the translation:

Q(ŷ<t, ŷt) = Eŷ′∼Pθ(·|x)

[
R̃(ŷ′,x)

]
(4)

with R̃(ŷ′,x) ≡ R(ŷ′,x)1
{
ŷ′<t = ŷ<t, ŷ

′
t = ŷt

}
2Our raters are stochastic, but for simplicity we denote the

reward as a function; it should be expected reward.

1{·} is the indicator function, which returns 1 if
the logic inside the bracket is true and returns 0
otherwise.

The gradient in Eq 3 requires rating all possible
translations, which is not feasible in bandit NMT.
Naı̈ve Monte Carlo reinforcement learning meth-
ods such as REINFORCE (Williams, 1992) esti-
mates Q values by sample means but yields very
high variance when the action space is large, lead-
ing to training instability.

3.3 Why are actor-critic algorithms not
effective for bandit NMT?

Reinforcement learning methods that rely on func-
tion approximation are preferred when tackling
bandit structured prediction with a large action
space because they can capture similarities be-
tween structures and generalize to unseen regions
of the structure space. The actor-critic algo-
rithm (Konda and Tsitsiklis) uses function approx-
imation to directly model the Q function, called
the critic model. In our early attempts on ban-
dit NMT, we adapted the actor-critic algorithm
for NMT in Bahdanau et al. (2017), which em-
ploys the algorithm in a supervised learning set-
ting. Specifically, while an encoder-decoder critic
modelQω as a substitute for the trueQ function in
Eq 3 enables taking the full expectation (because
the critic model can be queried with any state-
action pair), we are unable to obtain reasonable
results with this approach.

Nevertheless, insights into why this approach
fails on our problem explains the effectiveness of
the approach discussed in the next section. There
are two properties in Bahdanau et al. (2017) that
our problem lacks but are key elements for a suc-
cessful actor-critic. The first is access to refer-
ence translations: while the critic model is able
to observe reference translations during training in
their setting, bandit NMT assumes those are never
available. The second is per-step rewards: while
the reward function in their setting is known and
can be exploited to compute immediate rewards
after taking each action, in bandit NMT, the actor-
critic algorithm struggles with credit assignment
because it only receives reward when a translation
is completed. Bahdanau et al. (2017) report that
the algorithm degrades if rewards are delayed un-
til the end, consistent with our observations.

With an enormous action space of bandit NMT,
approximating gradients with the Q critic model
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induces biases and potentially drives the model to
wrong optima. Values of rarely taken actions are
often overestimated without an explicit constraint
between Q values of actions (e.g., a sum-to-one
constraint). Bahdanau et al. (2017) add an ad-hoc
regularization term to the loss function to mitigate
this issue and further stablizes the algorithm with
a delay update scheme, but at the same time intro-
duces extra tuning hyper-parameters.

3.4 Advantage Actor-Critic for Bandit NMT
We follow the approach of advantage actor-
critic (Mnih et al., 2016, A2C) and combine it
with the neural encoder-decoder architecture. The
resulting algorithm—which we call NED-A2C—
approximates the gradient in Eq 3 by a single
sample ŷ ∼ P (· | x̂) and centers the reward
R(ŷ) using the state-specific expected future re-
ward V (ŷ<t) to reduce variance:

∇θLpg(θ) ≈
m∑
t=1

R̄t(ŷ)∇θ logPθ(ŷt | ŷ<t)

(5)

with R̄t(ŷ) ≡ R(ŷ)− V (ŷ<t)
V (ŷ<t) ≡ Eŷ′

t∼P (·|ŷ<t)

[
Q(ŷ<t, ŷ

′
t)
]

We train a separate attention-based encoder-
decoder model Vω to estimate V values. This
model encodes a source sentence x and decodes a
sampled translation ŷ. At time step t, it computes
Vω(ŷ<t,x) = w>hcrtt , where hcrtt is the current
decoder’s hidden vector andw is a learned weight
vector. The critic model minimizes the MSE be-
tween its estimates and the true values:

Lcrt(ω) = E x∼Dtr
ŷ∼Pθ(·|x)

[
m∑
t=1

Lt(ŷ,x)

]
(6)

with Lt(ŷ,x) ≡ [Vω(ŷ<t,x)−R(ŷ,x)]2 .

We use a gradient approximation to update ω for
a fixed x and ŷ ∼ P (· | x̂):

∇ωLcrt(ω) ≈
m∑
t=1

[Vω(ŷ<t)−R(ŷ)]∇ωVω(ŷ<t)

(7)
NED-A2C is better suited for problems with a

large action space and has other advantages over
actor-critic. For large action spaces, approximat-
ing gradients using the V critic model induces
lower biases than using the Q critic model. As
implied by its definition, the V model is robust to

biases incurred by rarely taken actions since re-
wards of those actions are weighted by very small
probabilities in the expectation. In addition, the
V model has a much smaller number of param-
eters and thus is more sample-efficient and more
stable to train than the Q model. These attractive
properties were not studied in A2C’s original pa-
per (Mnih et al., 2016).

Algorithm 1 The NED-A2C algorithm for bandit
NMT.

1: for i = 1 · · ·K do
2: receive a source sentence x(i)

3: sample a translation: ŷ(i) ∼ Pθ(· | x(i))

4: receive reward R(ŷ(i),x(i))
5: update the NMT model using Eq 5.
6: update the critic model using Eq 7.
7: end for

Algorithm 1 summarizes NED-A2C for bandit
NMT. For each x, we draw a single sample ŷ from
the NMT model, which is used for both estimat-
ing gradients of the NMT model and the critic
model. We run this algorithm with mini-batches
of x and aggregate gradients over all x in a mini-
batch for each update. Although our focus is on
bandit NMT, this algorithm naturally works with
any bandit structured prediction problem.

4 Modeling Imperfect Ratings

Our goal is to establish the feasibility of using real
human feedback to optimize a machine translation
system, in a setting where one can collect expert
feedback as well as a setting in which one only
collects non-expert feedback. In all cases, we con-
sider the expert feedback to be the “gold standard”
that we wish to optimize. To establish the fea-
sibility of driving learning from human feedback
without doing a full, costly user study, we begin
with a simulation study. The key aspects (Fig-
ure 2) of human feedback we capture are: (a) mis-
match between training objective and feedback-
maximizing objective, (b) human ratings typically
are binned (§ 4.1), (c) individual human ratings
have high variance (§4.2), and (d) non-expert rat-
ings can be skewed with respect to expert ratings
(§4.3).

In our simulated study, we begin by model-
ing gold standard human ratings using add-one-
smoothed sentence-level BLEU (Chen and Cherry,
2014).3 Our evaluation criteria, therefore, is av-
erage sentence-BLEU over the run of our algo-

3“Smoothing 2” in Chen and Cherry (2014).
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Figure 2: Examples of how our perturbation func-
tions change the “true” feedback distribution (left)
to ones that better capture features found in human
feedback (right).

rithm. However, in any realistic scenario, human
feedback will vary from its average, and so the
reward that our algorithm receives will be a per-
turbed variant of sentence-BLEU. In particular, if
the sentence-BLEU score is s ∈ [0, 1], the algo-
rithm will only observe s′ ∼ pert(s), where pert
is a perturbation distribution. Because our ref-
erence machine translation system is pre-trained
using log-likelihood, there is already an (a) mis-
match between training objective and feedback, so
we focus on (b-d) below.

4.1 Humans Provide Granular Feedback
When collecting human feedback, it is often more
effective to collect discrete binned scores. A clas-
sic example is the Likert scale for human agree-
ment (Likert, 1932) or star ratings for product re-
views. Insisting that human judges provide con-
tinuous values (or feedback at too fine a granular-
ity) can demotivate raters without improving rat-
ing quality (Preston and Colman, 2000).

To model granular feedback, we use a simple
rounding procedure. Given an integer parameter g
for degree of granularity, we define:

pertgran(s; g) =
1
g

round(gs) (8)

This perturbation function divides the range of
possible outputs into g + 1 bins. For ex-
ample, for g = 5, we obtain bins [0, 0.1),

[0.1, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 0.9) and
[0.9, 1.0]. Since most sentence-BLEU scores are
much closer to zero than to one, many of the larger
bins are frequently vacant.

4.2 Experts Have High Variance
Human feedback has high variance around its ex-
pected value. A natural goal for a variance model
of human annotators is to simulate—as closely
as possible—how human raters actually perform.
We use human evaluation data recently collected
as part of the WMT shared task (Graham et al.,
2017). The data consist of 7200 sentences mul-
tiply annotated by giving non-expert annotators
on Amazon Mechanical Turk a reference sentence
and a single system translation, and asking the
raters to judge the adequacy of the translation.4

From these data, we treat the average human
rating as the ground truth and consider how in-
dividual human ratings vary around that mean.
To visualize these results with kernel density es-
timates (standard normal kernels) of the standard
deviation. Figure 3 shows the mean rating (x-axis)
and the deviation of the human ratings (y-axis) at
each mean.5As expected, the standard deviation is
small at the extremes and large in the middle (this
is a bounded interval), with a fairly large range in
the middle: a translation whose average score is
50 can get human evaluation scores anywhere be-
tween 20 and 80 with high probability. We use a
linear approximation to define our variance-based
perturbation function as a Gaussian distribution,
which is parameterized by a scale λ that grows or
shrinks the variances (when λ = 1 this exactly
matches the variance in the plot).

pertvar(s;λ) = Nor
(
s, λσ(s)2

)
(9)

σ(s) =

{
0.64s− 0.02 if s < 50
−0.67s+ 67.0 otherwise

4.3 Non-Experts are Skewed from Experts
The preceding two noise models assume that the
reward closely models the value we want to op-
timize (has the same mean). This may not be
the case with non-expert ratings. Non-expert

4Typical machine translation evaluations evaluate pairs
and ask annotators to choose which is better.

5A current limitation of this model is that the simu-
lated noise is i.i.d. conditioned on the rating (homoscedas-
tic noise). While this is a stronger and more realistic model
than assuming no noise, real noise is likely heteroscedastic:
dependent on the input.
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Figure 3: Average rating (x-axis) versus a kernel
density estimate of the variance of human ratings
around that mean, with linear fits. Human scores
vary more around middling judgments than ex-
treme judgments.

De-En Zh-En

Supervised training 186K 190K
Bandit training 167K 165K
Development 7.7K 7.9K
Test 9.1K 7.4K

Table 1: Sentence counts in data sets.

raters are skewed both for reinforcement learn-
ing (Thomaz et al., 2006; Thomaz and Breazeal,
2008; Loftin et al., 2014) and recommender sys-
tems (Herlocker et al., 2000; Adomavicius and
Zhang, 2012), but are typically bimodal: some are
harsh (typically provide very low scores, even for
“okay” outputs) and some are motivational (pro-
viding high scores for “okay” outputs).

We can model both harsh and motivations raters
with a simple deterministic skew perturbation
function, parametrized by a scalar ρ ∈ [0,∞):

pertskew(s; ρ) = sρ (10)

For ρ > 1, the rater is harsh; for ρ < 1, the rater is
motivational.

5 Experimental Setup

We choose two language pairs from differ-
ent language families with different typological
properties: German-to-English and (De-En) and
Chinese-to-English (Zh-En). We use parallel tran-
scriptions of TED talks for these pairs of lan-
guages from the machine translation track of the
IWSLT 2014 and 2015 (Cettolo et al., 2014, 2015,
2012). For each language pair, we split its data
into four sets for supervised training, bandit train-
ing, development and testing (Table 1). For En-
glish and German, we tokenize and clean sen-

tences using Moses (Koehn et al., 2007). For Chi-
nese, we use the Stanford Chinese word segmenter
(Chang et al., 2008) to segment sentences and tok-
enize. We remove all sentences with length greater
than 50, resulting in an average sentence length of
18. We use IWSLT 2015 data for supervised train-
ing and development, IWSLT 2014 data for ban-
dit training and previous years’ development and
evaluation data for testing.

5.1 Evaluation Framework
For each task, we first use the supervised train-
ing set to pre-train a reference NMT model us-
ing supervised learning. On the same training set,
we also pre-train the critic model with translations
sampled from the pre-trained NMT model. Next,
we enter a bandit learning mode where our mod-
els only observe the source sentences of the bandit
training set. Unless specified differently, we train
the NMT models with NED-A2C for one pass over
the bandit training set. If a perturbation function
is applied to Per-Sentence BLEU scores, it is only
applied in this stage, not in the pre-training stage.

We measure the improvement ∆S of an eval-
uation metric S due to bandit training: ∆S =
SA2C − Sref , where Sref is the metric computed
on the reference models and SA2C is the metric
computed on models trained with NED-A2C. Our
primary interest is Per-Sentence BLEU: average
sentence-level BLEU of translations that are sam-
pled and scored during the bandit learning pass.
This metric represents average expert ratings,
which we want to optimize for in real-world sce-
narios. We also measure Heldout BLEU: corpus-
level BLEU on an unseen test set, where transla-
tions are greedily decoded by the NMT models.
This shows how much our method improves trans-
lation quality, since corpus-level BLEU correlates
better with human judgments than sentence-level
BLEU.

Because of randomness due to both the random
sampling in the model for “exploration” as well as
the randomness in the reward function, we repeat
each experiment five times and report the mean re-
sults with 95% confidence intervals.

5.2 Model configuration
Both the NMT model and the critic model
are encoder-decoder models with global atten-
tion (Luong et al., 2015). The encoder and the
decoder are unidirectional single-layer LSTMs.
They have the same word embedding size and
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LSTM hidden size of 500. The source and tar-
get vocabulary sizes are both 50K. We do not use
dropout in our experiments. We train our mod-
els by the Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.999 and a batch size of 64.
For Adam’s α hyperparameter, we use 10−3 dur-
ing pre-training and 10−4 during bandit learning
(for both the NMT model and the critic model).
During pre-training, starting from the fifth pass,
we decay α by a factor of 0.5 when perplexity on
the development set increases. The NMT model
reaches its highest corpus-level BLEU on the de-
velopment set after ten passes through the super-
vised training data, while the critic model’s train-
ing error stabilizes after five passes. The train-
ing speed is 18s/batch for supervised pre-training
and 41s/batch for training with the NED-A2C al-
gorithm.

6 Results and Analysis

In this section, we describe the results of our ex-
periments, broken into the following questions:
how NED-A2C improves reference models (§6.1);
the effect the three perturbation functions have on
the algorithm (§ 6.2); and whether the algorithm
improves a corpus-level metric that corresponds
well with human judgments (§6.3).

6.1 Effectiveness of NED-A2C under
Un-perturbed Bandit Feedback

We evaluate our method in an ideal setting where
un-perturbed Per-Sentence BLEU simulates rat-
ings during both training and evaluation (Table 2).

Single round of feedback. In this setting, our
models only observe each source sentence once
and before producing its translation. On both De-
En and Zh-En, NED-A2C improves Per-Sentence
BLEU of reference models after only a single pass
(+2.82 and +1.08 respectively).

Poor initialization. Policy gradient algorithms
have difficulty improving from poor initializa-
tions, especially on problems with a large ac-
tion space, because they use model-based explo-
ration, which is ineffective when most actions
have equal probabilities (Bahdanau et al., 2017;
Ranzato et al., 2016). To see whether NED-A2C
has this problem, we repeat the experiment with
the same setup but with reference models pre-
trained for only a single pass. Surprisingly, NED-
A2C is highly effective at improving these poorly
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Figure 4: Learning curves of models trained with
NED-A2C for five epochs.

trained models (+7.07 on De-En and +3.60 on Zh-
En in Per-Sentence BLEU).

Comparisons with supervised learning. To
further demonstrate the effectiveness of NED-
A2C, we compare it with training the reference
models with supervised learning for a single pass
on the bandit training set. Surprisingly, observ-
ing ground-truth translations barely improves the
models in Per-Sentence BLEU when they are fully
trained (less than +0.4 on both tasks). A possi-
ble explanation is that the models have already
reached full capacity and do not benefit from more
examples.6 NED-A2C further enhances the mod-
els because it eliminates the mismatch between
the supervised training objective and the evalua-
tion objective. On weakly trained reference mod-
els, NED-A2C also significantly outperforms su-
pervised learning (∆Per-Sentence BLEU of NED-
A2C is over three times as large as those of super-
vised learning).

Multiple rounds of feedback. We examine if
NED-A2C can improve the models even further
with multiple rounds of feedback.7 With super-
vised learning, the models can memorize the ref-
erence translations but, in this case, the mod-
els have to be able to exploit and explore effec-
tively. We train the models with NED-A2C for five

6This result may vary if the domains of the supervised
learning set and the bandit training set are dissimilar. Our
training data are all TED talks.

7The ability to receive feedback on the same example
multiple times might not fit all use cases though.
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De-En Zh-En
Reference ∆sup ∆A2C Reference ∆sup ∆A2C

Fully pre-trained reference model

Per-Sentence BLEU 38.26 ± 0.02 0.07 ± 0.05 2.82 ± 0.03 32.79 ± 0.01 0.36 ± 0.05 1.08 ± 0.03
Heldout BLEU 24.94 ± 0.00 1.48 ± 0.00 1.82 ± 0.08 13.73 ± 0.00 1.18 ± 0.00 0.86 ± 0.11

Weakly pre-trained reference model

Per-Sentence BLEU 19.15 ± 0.01 2.94 ± 0.02 7.07 ± 0.06 14.77 ± 0.01 1.11 ± 0.02 3.60 ± 0.04
Heldout BLEU 19.63 ± 0.00 3.94 ± 0.00 1.61 ± 0.17 9.34 ± 0.00 2.31 ± 0.00 0.92 ± 0.13

Table 2: Translation scores and improvements based on a single round of un-perturbed bandit feedback.
Per-Sentence BLEU and Heldout BLEU are not comparable: the former is sentence-BLEU, the latter is
corpus-BLEU.

passes and observe a much more significant ∆Per-
Sentence BLEU than training for a single pass in
both pairs of language (+6.73 on De-En and +4.56
on Zh-En) (Figure 4).

6.2 Effect of Perturbed Bandit Feedback

We apply perturbation functions defined in § 4.1
to Per-Sentence BLEU scores and use the per-
turbed scores as rewards during bandit training
(Figure 5).

Granular Rewards. We discretize raw Per-
Sentence BLEU scores using pertgran(s; g) (§4.1).
We vary g from one to ten (number of bins varies
from two to eleven). Compared to continuous re-
wards, for both pairs of languages, ∆Per-Sentence
BLEU is not affected with g at least five (at
least six bins). As granularity decreases, ∆Per-
Sentence BLEU monotonically degrades. How-
ever, even when g = 1 (scores are either 0 or 1),
the models still improve by at least a point.

High-variance Rewards. We simulate
noisy rewards using the model of human
rating variance pertvar(s;λ) (§ 4.2) with
λ ∈ {0.1, 0.2, 0.5, 1, 2, 5}. Our models can
withstand an amount of about 20% the variance in
our human eval data without dropping in ∆Per-
Sentence BLEU. When the amount of variance
attains 100%, matching the amount of variance in
the human data, ∆Per-Sentence BLEU go down
by about 30% for both pairs of languages. As
more variance is injected, the models degrade
quickly but still improve from the pre-trained
models. Variance is the most detrimental type
of perturbation to NED-A2C among the three
aspects of human ratings we model.

Skewed Rewards. We model skewed
raters using pertskew(s; ρ) (§ 4.3) with
ρ ∈ {0.25, 0.5, 0.67, 1, 1.5, 2, 4}. NED-A2C
is robust to skewed scores. ∆Per-Sentence BLEU

is at least 90% of unskewed scores for most skew
values. Only when the scores are extremely harsh
(ρ = 4) does ∆Per-Sentence BLEU degrade sig-
nificantly (most dramatically by 35% on Zh-En).
At that degree of skew, a score of 0.3 is suppressed
to be less than 0.08, giving little signal for the
models to learn from. On the other spectrum, the
models are less sensitive to motivating scores as
Per-Sentence BLEU is unaffected on Zh-En and
only decreases by 7% on De-En.

6.3 Held-out Translation Quality
Our method also improves pre-trained models in
Heldout BLEU, a metric that correlates with trans-
lation quality better than Per-Sentence BLEU (Ta-
ble 2). When scores are perturbed by our rating
model, we observe similar patterns as with Per-
Sentence BLEU: the models are robust to most
perturbations except when scores are very coarse,
or very harsh, or have very high variance (Fig-
ure 5, second row). Supervised learning improves
Heldout BLEU better, possibly because maximiz-
ing log-likelihood of reference translations cor-
relates more strongly with maximizing Heldout
BLEU of predicted translations than maximizing
Per-Sentence BLEU of predicted translations.

7 Related Work and Discussion

Ratings provided by humans can be used as effec-
tive learning signals for machines. Reinforcement
learning has become the de facto standard for in-
corporating this feedback across diverse tasks such
as robot voice control (Tenorio-Gonzalez et al.,
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Figure 5: Performance gains of NMT models trained with NED-A2C in Per-Sentence BLEU (top row)
and in Heldout BLEU (bottom row) under various degrees of granularity, variance, and skew of scores.
Performance gains of models trained with un-perturbed scores are within the shaded regions.

2010), myoelectric control (Pilarski et al., 2011),
and virtual assistants (Isbell et al., 2001). Re-
cently, this learning framework has been com-
bined with recurrent neural networks to solve ma-
chine translation (Bahdanau et al., 2017), dialogue
generation (Li et al., 2016), neural architecture
search (Zoph and Le, 2017), and device place-
ment (Mirhoseini et al., 2017). Other approaches
to more general structured prediction under ban-
dit feedback (Chang et al., 2015; Sokolov et al.,
2016a,b) show the broader efficacy of this frame-
work. Ranzato et al. (2016) describe MIXER for
training neural encoder-decoder models, which is
a reinforcement learning approach closely related
to ours but requires a policy-mixing strategy and
only uses a linear critic model. Among work
on bandit MT, ours is closest to Kreutzer et al.
(2017), which also tackle this problem using neu-
ral encoder-decoder models, but we (a) take ad-
vantage of a state-of-the-art reinforcement learn-
ing method; (b) devise a strategy to simulate noisy
rewards; and (c) demonstrate the robustness of our
method on noisy simulated rewards.

Our results show that bandit feedback can be
an effective feedback mechanism for neural ma-
chine translation systems. This is despite that er-
rors in human annotations hurt machine learning
models in many NLP tasks (Snow et al., 2008). An
obvious question is whether we could extend our
framework to model individual annotator prefer-
ences (Passonneau and Carpenter, 2014) or learn
personalized models (Mirkin et al., 2015; Rabi-
novich et al., 2017), and handle heteroscedastic
noise (Park, 1966; Kersting et al., 2007; Antos

et al., 2010). Another direction is to apply active
learning techniques to reduce the sample complex-
ity required to improve the systems or to extend
to richer action spaces for problems like simulta-
neous translation, which requires prediction (Gris-
som II et al., 2014) and reordering (He et al., 2015)
among other strategies to both minimize delay and
effectively translate a sentence (He et al., 2016).
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