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Abstract

In this paper, we introduce a hybrid search
for attention-based neural machine trans-
lation (NMT). A target phrase learned with
statistical MT models extends a hypoth-
esis in the NMT beam search when the
attention of the NMT model focuses on
the source words translated by this phrase.
Phrases added in this way are scored
with the NMT model, but also with SMT
features including phrase-level translation
probabilities and a target language model.
Experimental results on German—English
news domain and English—Russian e-
commerce domain translation tasks show
that using phrase-based models in NMT
search improves MT quality by up to 2.3%
BLEU absolute as compared to a strong
NMT baseline.

1 Introduction

Neural machine translation has become state-of-
the-art in recent years, reaching higher transla-
tion quality than statistical phrase-based machine
translation (PBMT) on many tasks. Human anal-
ysis (Bentivogli et al., 2016) showed that NMT
makes significantly fewer reordering errors, and
also is able to select correct word forms more of-
ten than PBMT in the case of morphologically
rich target languages. Overall, the fluency of the
MT output improves when NMT is used, and the
number of lexical choice errors is also reduced.
However, state-of-the-art NMT approaches based
on an encoder-decoder architecture with an atten-
tion mechanism as introduced by (Bahdanau et al.,
2014) exhibit weaknesses that sometimes lead to
MT errors which a phrase-based MT system does
not make. In particular, PBMT usually can better
translate rare words (e.g. singletons), as well as

memorize and use phrasal translations. NMT has
problems translating rare words because of limi-
tations on the vocabulary size, as well as the fact
that word embeddings are used to represent both
source and target words. A rare word’s embedding
can not be trained reliably.

Another handicap of NMT is a general diffi-
culty of fixing errors made by a neural MT sys-
tem. Since NMT does not explicitly use or save
word-to-word or phrase-to-phrase mappings, and
its search is a target word beam search with al-
most no constraints, it is difficult to fix errors by
an NMT system. It is important to quickly fix cer-
tain errors in real-life applications of MT systems
to avoid negative user feedback or other (e.g. le-
gal) consequences. An error identified in the out-
put of a PBMT system can be fixed by tracing
which phrase pair was used that resulted in the
error, and down-weighting or even removing the
phrase pair. Also, in PBMT it is easy to add an
“override” translation.

In this work, we combine the strengths of NMT
and PBMT approaches by introducing a novel hy-
brid search algorithm. In this algorithm, the stan-
dard NMT beam search is extended with phrase
translation hypotheses from a statistical phrase ta-
ble. The decision on when to use what phrasal
translations is taken based on the attention mech-
anism of the NMT model, which provides a soft
coverage of the source sentence words. All par-
tial phrasal translations are scored with the NMT
decoder and can be continued with a word-based
NMT translation candidate or another phrasal
translation candidate.

The proposed search algorithm uses a log-linear
model in which the NMT translation score is com-
bined with standard phrase translation scores, in-
cluding a target m-gram language model (LM)
score. Thus, a LM trained on additional monolin-
gual data can be used. The decisions on the word

1411

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1411-1420
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



order in the produced target translation are taken
based only on the states of the NMT decoder.

This paper is structured as follows. We review
related work in Section 1.1. The baseline NMT
model we use is described in Section 2, where we
also recap the log-linear model combination used
in PBMT. Section 3 presents the details of the pro-
posed hybrid search. Experimental results are pre-
sented in Section 4, followed by conclusions and
outlook in Section 5.

1.1 Related Work

In the line of research closely related to our ap-
proach, neural models are used as additional fea-
tures in vanilla phrase-based systems. Examples
include the work of (Devlin et al., 2014), (Junczys-
Dowmunt et al., 2016), etc. Such approaches have
certain limitations: first, the search space of the
model is still restricted by what can be produced
using a phrase table extracted from parallel data
based on word alignments. Second, the organiza-
tion of the search, in which only a limited target
word history (e.g. 4 last target words) is avail-
able for each partial hypothesis, makes it diffi-
cult to integrate recurrent neural network LMs and
translation models which take all previously gen-
erated target words into account. That is why, for
instance, the attention-based NMT models were
usually applied only in rescoring (Peter et al.,
2016).

In (Stahlberg et al., 2017), a two-step transla-
tion process is used, where in the first step a SMT
translation lattice is generated, and in the second
step the NMT decoder combines NMT scores with
the Bayes-risk of the translations according to the
lattice. In contrast, we explicitly use phrasal trans-
lations and language model scores in an integrated
search.

In (Arthur et al., 2016), a statistical word lex-
icon is used to influence NMT hypotheses, also
based on the attention mechanism. (Giilgehre
et al., 2015) combine target n-gram LM scores
with NMT scores to find the best translation. (He
et al., 2016) also use a target LM, but add fur-
ther SMT features such as word penalty and word
lexica to the NMT beam search. To the best
of our knowledge, no previous work extends the
beam search with phrasal translation hypotheses
of PBMT, like we propose in this paper.

In (Tang et al., 2016), the NMT decoder is
modified to switch between using externally de-

fined phrases and standard NMT word hypothe-
ses. However, only one target phrase per source
phrase is considered, and the reported improve-
ments are significant only when manually selected
phrase pairs (mostly for rare named entities) are
used.

Somewhat related to our work is the concept
of coverage-based NMT (Tu et al., 2016), where
the model architecture is changed to explicitly ac-
count for source coverage. In our work, we use
a standard NMT architecture, but track coverage
with accumulated attention weights.

2 Background

2.1 Neural MT

Neural MT proposed by (Bahdanau et al., 2014)
maximizes the conditional log-likelihood of the
target sentence F : ej,...,ey given the source
sentence F': f1,..., fs:

N
1
Hp = _N Z IOgPG(En|Fn)

n=1

where (E,, F,) refers to the n-th training sen-
tence pair in a dataset D, and /N denotes the total
number of sentence pairs in the training corpus.
When using the encoder-decoder architecture by
(Cho et al., 2014), the conditional probability can
be written as:

I
pler---erlfr--- fr) = [ pleileir - e1,c)
i=1

with p(e;le;—1---e1,¢) = g(si,ei—1,c¢), where I
is the length of the target sentence and J is the
length of source sentence, c is a fixed-length vec-
tor to encode the source sentence, s; is a hidden
state of RNN at time step 4, and g(-) is a non-
linear function to approximate the word probabil-
ity. When the attention mechanism is used, the
vector ¢ in each sentence is replaced by a time-
variant representation c; that is a weighted sum-
mary over a sequence of annotations (hy, ..., hy),
and h; contains information about the whole input
sentence, but with a strong focus on the parts sur-
rounding the j-th word (Bahdanau et al., 2014).
Then, the context vector can be defined as:

exp(rij)
Sy ewp(riy)

=1 €TP\T'ij
Therefore, «;; is normalized over all source po-

sitions j. Also, rj; = a(s;—1,h;) is the atten-
tion model used to calculate the log-likelihood of

J
Cc; = E Oél'jhj where Q5 =
J
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aligning the ¢-th target word to the j-th source
word.

2.2 Phrase-based MT

The log-linear model, as introduced in (Och and
Ney, 2002), allows decomposing the translation
probability Pr(el|f{) by using an arbitrary num-
ber of features h,,(f{,el). Bach feature is multi-
plied by a corresponding scaling factor \,,:

exp (S0 A e))

Pr(el|fj): .
e (S0 Al D)

The standard PBMT approach uses a log-linear
model in which bidirectional phrasal and lexical
scores, language model scores, distortion scores,
word penalties and phrase penalties are combined
as features.

3 Hybrid Approach

In this section we describe our proposed hybrid
NMT approach. The algorithm allows translations
to be generated partially by phrases' and partially
by words. Section 3.1 describes the models we
use to score hypotheses. The search algorithm is
presented in Section 3.2.

3.1 Log-linear Combination

We use a log-linear model combination to intro-
duce SMT models into the NMT search. Since
translations can be partially generated by phrases,
we introduce the phrase segmentation 1€ as a hid-
den variable into the models similarly to (Zens and
Ney, 2008), where K is the number of phrases
used in the translation. Note that, unlike stan-
dard PBMT, s does not need to cover the whole
source sentence, as parts of the translation can be
generated by words. Using the maximum approx-
imation, the search criterion then is

M
é{ = arg max {m%x Z )\mhm(filv 6{7 SK)} .

I
I,eq 51

m=1
~ (1)
Let fx, € be the chosen phrase pairs in the seg-
mentation s{( for k = 1,..., K. In our experi-

ments with the proposed hybrid search, we use the
following features:
1. The NMT feature hnmr.

'As in SMT, phrases can consist of only a single token.

2. The word penalty feature hwp counts the
number of target words. This feature can help
control the length of translations.

3. The source word coverage feature hswc
counts the number of source words translated
by phrases:

K
hSWC(f1J7 6{7 S{() = Z |fk|
k=1

The purpose of this feature is to control the
usage of phrases.

4. The phrase penalty feature hpp counts the
number of phrases used. Together with the
word penalty and the source word coverage
feature, the phrase penalty can control the
length of chosen phrases.

5. The n-gram language model feature hy ;.

6. The bidirectional phrase features hpy, and
hipnr. Note that these features are only ap-
plied for those parts of the translation that are
generated by phrases. The other parts get a
phrase score of zero.

The scaling factors \,, are tuned with minimum
error rate training (MERT) (Och, 2003) on n-best
lists of the development set.

3.2 Search

The algorithm is based on the beam search for
NMT, which generates translations one word per
time step in a left-to-right fashion. We modify this
search to allow hypothesizing phrases in addition
to normal word hypotheses. The phrases are sug-
gested based on the neural attention, starting from
the source position with the maximal current atten-
tion. We only suggest phrases if a source position
is focused. We check that suggested phrases do
not overlap with already translated source words
by keeping track of the sum of attention in pre-
vious time steps for each source position. Thus,
the problem of global reordering is left entirely to
the NMT model and we follow the attention when
hypothesizing phrases.

Hypotheses are scored by NMT and SMT mod-
els. The beam is divided into two parts of fixed
size: the word beam and the phrase beam. The
phrase beam is used to score target phrases which
were hypothesized from an entry in a previous
word beam. In order to score a target phrase con-
sisting of k words with the NMT model, we use
k time steps, allowing us to keep the efficiency
of batched NMT scoring. Once a target phrase
has been fully scored (and if the hypothesis has
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not been pruned), the hypothesis is returned to the
word beam. Both beams are generated and pruned
independently in each time step.

The algorithm has some hyper-parameters that
need to be set manually. First, we have the beam
size N, for phrase hypotheses and the beam size
N,, for word hypotheses. Second, Trocys 1S the
minimum attention that needs to be on a source
position to consider it for extending with a phrase
translation candidate whose source phrase starts
on that position. Third, 7y is the minimum sum
of attention of a source position over previous time
steps at which it is considered to be covered. We
do not hypothesize phrases that overlap with cov-
ered positions.

In the following, we describe the search in de-
tail. Let £’ be the source sentence. Before search,
we run the standard phrase matching algorithm on
the source sentence to retrieve the translation op-
tions E(7, j') for source positions 1 < j < j' < .J
from a given SMT phrase table. With each hypoth-
esis h, we associate the following items:

e C(h,j) is the sum of the NMT attention to
source position j involved in generating the
target words of h. This can be considered as
a soft coverage vector for h.

e (Q(h) is the partial log-linear score of h ac-
cording to Equation 1.

e FE(h) is the n-gram target word history of h.

o If h is a phrase hypothesis with target phrase
¢, of which k words already have been scored
by NMT, then P(h) := (€, k) is the phrase
state.

Also, each hypothesis is associated with its cor-
responding NMT hidden state. We initialize the
beam to consist of an empty word hypothesis.
Each step of the beam search proceeds as follows:

1. Let B = [B,,, Bp] be the previous beam with
word/phrase hypotheses, respectively. First,
we generate the attention vector vy, ; and the
distribution over target words py,(e) for each
hypothesis h € B and word e in the NMT
target vocabulary V using the NMT model
in batched scoring 2.

2. Initialize new beam [B,,, B,] = [0, 0].

3. Generate new word hypotheses: find the
maximal N, pairs (h,e) with h € B,, and
e € Vp according to the score Q(h) + Axmr -

?If a target word e is not in Vo, set pr(e) = prn(UNK)
where UNK is a special token denoting unknowns. Note that
this almost never happens when using a word segmentation
like BPE (Sennrich et al., 2016b).
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log pp,(€). For the top pairs b’ = (h, e), set

Q(R') = Q(h) + Anmr - log pr(e)
+ A - logpim(e|E(R)) + Awp

and insert 4’ into B! . Update the soft cover-
age C(W,j) = C(h,j)+ay jforl < j < J.

. Generate new phrase hypotheses: for each

previous word hypothesis h € B,,, convert
the soft attention C'(h, -) into a binary cover-
age set C, such that j € C iff. C(h,j) >
Teov- Identify the current NMT focus as

j= arg max Qpj-
1<5<, Qe > Thocus

If there is no such j with a j > Tocys, NO
phrase hypotheses are generated from h in
this step. Otherwise, for each source phrase
length I with CN{7,7+1,...,5+1—-1} =0
and each target phrase & € E(J, ] +1), create
a new hypothesis b’ = (h, é1) with the score

Q(R') = Q(h) + Anwmr - log pr(er)
+ Am - log pem(E|E(R)) + [€] - Awp (2)

Note that, in this step, the full target phrase is
scored using the language model, while only
the first target word is scored using NMT. Ini-
tialize the phrase state of h': P(h') = (¢, 1).
As in step 3, update the soft coverage. If
|é] = 1, insert ' into B),, otherwise insert
into B,,.

. Advance previous phrase hypotheses: for

each h € B,, with phrase state P(h) =
(é,k), score the (k + 1)-th target word of &
using NMT, setting b’ = (h, éx11) and

Q(R') = Q(h) + Axwmr - 1og pr(€x41).

As in step 3, update the soft coverage. Set
the new phrase state as P(h') = (é,k + 1).
If K+ 1 = |é|, we are finished scoring the
phrase and /’ is inserted into B],. Otherwise,
h' is inserted in By,

/ : / :
. Prune By, to N, entries and B), to IV, entries

according to Q(-).

. Insert all hypotheses from the pruned B;, and

B}’O where the last word is the sentence end
token into the set of finished hypotheses By.

8. B:=[B, Bl].



Data set WMT E-commerce
Language German English English Russian
Sentences 5,597,491 2,919,406
Training | Running words | 129,083,315 | 134,469,297 | 46,715,319 45,305,268

Full vocabulary 1,961,186 884,075 326,015 774,435

Dev Sentences 2169 (WMT 15) 950
Running words 56,593 \ 51,324 24,487 \ 24,087

Test Sentences 6002 (WMT 14 + 16) 1051 (item/product descriptions)
Running words | 160,469 | 144,387 29,165 | 26,476

Table 1: Corpus statistics for the WMT German—English and e-commerce English—Russian MT tasks.

If phrase scores from a phrase table are to be in-
cluded in the search, Equation 2 needs to be modi-
fied by adding Ay, log p(f|€) and Aipnr log p(€] f).

As in the pure NMT beam search, this proce-
dure is repeated until either the last word of all
hypotheses in a step is the sentence end token, or
2 - J many beam steps have been performed. Fi-
nally, the best translation is chosen as the one in
By with the highest score.

Note that the same target sequence can be gen-
erated with different phrasal segmentations. Dur-
ing search, if two hypotheses have the same full
target history in a beam, we recombine them and
discard the hypothesis with the lower score.

4 Experiments

We perform experiments comparing the transla-
tion quality of our hybrid approach to phrase-
based and pure end-to-end NMT baselines.
We present results on two tasks: an in-
house English—Russian e-commerce task (trans-
lation of real product/item descriptions from
an e-commerce site), and the WMT 2016
German—English task (news domain). The cor-
pus statistics are shown in Table 1.

For the English—Russian task, the parallel
training data consists of an in-domain part (ca.
5.5M running words) of product/item titles and de-
scriptions and other e-commerce content. The rest
is out-of-domain data (UN, subtitles, TAUS data
collections, etc.) sampled to have significant n-
gram overlap with the in-domain description data.
Item descriptions are provided by private sellers
and, like any user-generated content, may con-
tain ungrammatical sentences, spelling errors, and
other noise. Product descriptions usually originate
from product catalogs and are more “clean”, but
on the other hand, are difficult to translate because
of rare domain-specific terminology. Both types

of text contain itemizations, measurement units,
and other structures which are usually not found in
normal sentences. We tune the system on a devel-
opment set that is a mix of product and item de-
scriptions, and evaluate on separate product/item
description test sets. For development and test
sets, two reference translations are used.

The German—English system is trained on par-
allel corpora provided for the constrained WMT
2017 evaluation (Europarl, Common Crawl, and
others). We use the WMT 2015 evaluation data as
development set, and the evaluation is performed
on two sets from the WMT evaluations in 2014
and 2016. Only a single human reference transla-
tion is provided.

For the phrase-based baselines, we use an in-
house phrase-decoder (Matusov and Koprii, 2010)
which is similar to the Moses decoder (Koehn
et al.,, 2007). We use standard SMT features,
including word-level and phrase-level translation
probabilities, the distortion model, 5-gram LMs,
and a 7-gram joint translation and reordering
model reimplemented based on the work of (Guta
et al.,, 2015). The language model for the e-
commerce task is trained on additional mono-
lingual Russian item description data containing
28.2M words. For the WMT task, we use the En-
glish News Crawl data containing 3.8B words for
additional language model data. The tuning is per-
formed using MERT (Och, 2003) to increase the
BLEU score on the development set. To stabilize
the optimization on the English—Russian task, we
detach Russian morphological suffixes from the
word stems both in hypotheses and references us-
ing a context-independent “poor man’s” morpho-
logical analysis. We prefix each suffix with a spe-
cial symbol and treat them as separate tokens.

We have implemented our NMT model in
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Item descriptions Product descriptions
System description Beam size | BLEU [%] | TER [%] | BLEU [%] | TER [%]
Phrase-based - 21.3 61.6 22.7 56.6
+ 1000-best rescoring with NMT - 23.1 60.1 25.8 54.7
NMT 12 26.4 56.4 28.4 52.0
NMT 128 26.3 56.6 28.5 51.9
Full hybrid approach 128 26.7 56.1 29.9 51.2
+ extra LM data 128 274 55.4 30.8 50.5
NMT + WP + LM (with extra data) 128 26.2 57.3 29.0 51.8

Table 2: Overview of translation results on the e-commerce English—Russian task.

Python using the TensorFlow? deep learning li-
brary. We use the embedding size of 620, RNN
size of 1000 and GRU cells. The model is trained
with maximum likelihood loss for 15 epochs us-
ing Adam optimizer (Kingma and Ba, 2014) on
complete data in batches of 100 sentences. The
learning rate is initialized to 0.0002, decaying by
0.9 each epoch. For regularization we use L2 loss
with weight 10~7 and dropout following Gal and
Ghahramani (2016). We set the dropout probabil-
ity for input and recurrent connections of the RNN
to 0.2 and word embedding dropout probability to
0.1. On the English—Russian task, the model is
then fine-tuned on in-domain data for 10 epochs.
The vocabulary is limited using byte pair encoding
(BPE) (Sennrich et al., 2016b) with 40K splits sep-
arately for each language. To speed up training we
use approximate loss as described in (Jean et al.,
2015). For pure NMT experiments, we employ
length normalization (Wu et al., 2016), as other-
wise short translations would be favored.

For the hybrid approach, we use the same
trained end-to-end model as in the NMT base-
line. We use all the phrase-based model features
plus the NMT score and run MERT as described
in Section 3.1. Language models are trained on
the level of BPE tokens. We consider at most 100
translation options for each source phrase. If not
specified otherwise, we use a beam size of 96 for
phrase hypotheses and a beam size of 32 for word
hypotheses, resulting in a combined beam size
of 128. Furthermore, we set the focus threshold
Trocus = 0.3 and the coverage threshold 7¢oy = 0.7
by default. We also perform experiments where
these hyper-parameters are varied.

Shttp://tensorflow.org

4.1 E-commerce English—Russian

The results on the e-commerce English—Russian
task are summarized in Table 2.

NMT vs. phrase-based SMT

The pure NMT system exhibits large improve-
ments over the phrase-based baseline*. These im-
provements are also significantly larger than when
we use the NMT model to rescore PBMT 1000-
best lists. NMT results are not improved when the
beam size is increased from 12 to 128.

Hybrid search vs. pure NMT search

For the hybrid approach, we train a phrase-table
on the in-domain data and split the source and tar-
get phrases with BPE afterwards for compatibility
with the NMT vocabulary. With the hybrid ap-
proach, when using a LM trained only on the target
side of bilingual data, we get an improvement of
0.3% BLEU on item descriptions and 1.4% BLEU
on product descriptions over the pure NMT sys-
tem. When we use the LM trained on extra mono-
lingual data, we get total improvements of 1.0%
BLEU and 2.3% BLEU with the hybrid approach.
In contrast, when we add this language model and
a word penalty on top of the pure NMT system
and tune scaling factors with MERT, we get small
improvements (last row of Table 2) only on prod-
uct descriptions. This shows that the hybrid ap-
proach can exploit the LM better than a purely
word-based NMT approach. We have also per-
formed experiments utilizing the additional mono-
lingual data for synthetic training data for NMT
as in (Sennrich et al., 2016a), but did not get im-
provements.

To analyze the improvements of the hybrid sys-
tem, we perform experiments in which we either

“The significance of these improvements was also con-
firmed by an in-house human evaluation with 3 judges.
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Item descriptions Product descriptions
System description BLEU [%] | TER [%] | BLEU [%] | TER [%]
Full hybrid approach 27.4 55.4 30.8 50.5
Without LM 26.5 55.9 29.2 51.0
Without source word coverage feature 26.7 56.1 294 51.2
Without phrase scores 27.2 559 30.6 50.6
Maximal source phrase length 1 26.7 56.4 29.1 51.6
Minimal source phrase length 2 27.0 55.9 30.0 51.1

Table 3: Translation results of the hybrid approach on the e-commerce English—Russian task with
different SMT model combinations. The first row shows results with all models enabled. In the following

rows, we either remove or limit exactly one model compared to the full system.

disable or limit some of the SMT models. The Beam size | Item descr. | Product descr.
results are shown in Table 3. Without the lan- N, | Ny, | BLEU | TER | BLEU | TER
guage model, the hybrid approach has almost no (%] | [%] | [%] | [%]
improvements over the NMT baseline. This in- 116 | 12 | 26.7 | 559 | 29.8 | 51.1
dicates that the language model is crucial in se- 9 | 32 274 | 554 | 308 | 505
lecting appropriate phrase candidates. Similarly, 64 | 64 | 268 | 556 | 30.1 | 50.7
when we disable the source word coverage feature, 32 | 32 27.1 | 55.8 | 30.7 | 50.5

the translation quality is degraded, suggesting that
this feature helps choose between phrase hypothe-
ses and word hypotheses during the search. Next,
we do not use phrase-level scores. Here, we ob-
serve only a small degradation of translation qual-
ity. Finally, we limit the source length of phrases
used in the search, allowing only one-word source
phrases in one experiment and only source phrases
with two or more words in another experiment. In
both cases, the translation quality decreases. Thus,
both one-word phrases and longer phrases are nec-
essary to obtain the best results.

Tuning the beam size

Next, we study the effect of different beam sizes
on translation quality. The results are shown in
Table 4. Note that we retune the system for each
choice. With a total beam size of 128, we get the

Table 4: Effect of the beam size (word beam size
N, + phrase beam size N,) for the hybrid ap-
proach on the e-commerce English—Russian task.

Tuning the attention focus/coverage thresholds

Table 5 shows results with different values for the
coverage threshold 7.,y. Again, we retune the sys-
tem for each choice. Setting the coverage thresh-
old to 1.0 or even disabling the coverage check (by
setting T.oy = 00) has little effect on the transla-
tion scores on this task. This can be explained by
the fact that translation from English to Russian is
mostly monotonic. We also tried varying the fo-
cus threshold 7focys between 0.0 and 0.3 but did
not notice any significant effect on this task.

best results by using a phrase beam size of 96 and ltem descr. | Product descr.

a word beam size of 32. When we use a phrase Trocus | Teov | BLEU | TER | BLEU | TER
beam size of 116 or 64 instead, the translation 03 07 2[?)31 5[;%31 3[?2; S[ZO]S
quality worsens. In another experiment, we de- 0' 3 1' 0 27‘ ) |5 5' 4l 3 O' 3 s O‘ 3
crease the total beam size to 64. The translation ) ) ) ) ’ )
quality degrades only slightly, which means that 0.3 sl 275 | 354 ] 304 | 509
we can still expect MT quality improvements with  Taple 5:  Effect of the threshold parameters

hybrid search even if we optimize the system for
speed. To further test this, we reduce the beam
sizes to IV, = 12 and N, = 4 after tuning with
Ny = 32 and N, = 96. We get BLEU scores of
27.1% on item descriptions and 30.1% on product
descriptions, losing 0.3% and 0.7% BLEU respec-
tively compared to the full beam size.

on the hybrid approach on the e-commerce
English—Russian task.

Analysis

To understand the behavior of the hybrid search,
we count the number of source words that are

1417



newstest2014 newstest2016
System description Beam size | BLEU [%] | TER [%] | BLEU [%] | TER [%]
Phrase-based - 22.9 594 26.9 54.1
+ News Crawl LM data - 25.4 59.0 29.2 53.8
NMT 12 26.9 53.0 32.3 47.6
NMT 64 27.0 53.0 322 47.6
Hybrid approach 64 27.8 53.2 324 48.2
+ tuning Trocus, Teov 64 28.0 53.0 333 47.4
+ News Crawl LM data 64 29.7 52.2 353 46.7

Table 6: Overview of translation results on the WMT German—English task.

translated by phrases in the product descriptions
test set. Of the 9320 source words, 7109 (76.3%)
are covered by phrase hypotheses. 78.3% of the
source phrases are unigrams, 19.5% are bigrams
and 2.2% are trigrams or longer. Among the many
one-word phrases used, almost all (99.2%) are also
within the top 3 predictions of word-based NMT,
and 90.3% are equal to the top NMT prediction.

Further human analysis by a native Russian
speaker of the pure NMT vs. hybrid search trans-
lations shows that hybrid search is often able to
correct the following known NMT handicaps:

e incorrect translation of rare words (among
other reasons, due to incorrect sub-word unit
translation in which rare words are aggres-
sively segmented).

e repetition of same or similar words as a result
of multiple attention to the same source word,
as well as untranslated words that received no
attention.

e incorrect or partially correct word-by-word
translation when a phrasal (non-literal) trans-
lation should be used instead.

In all of these cases, the usage of phrasal trans-
lations is able to better enforce the coverage, and
this, in turn, leads to improved lexical choice. The
fact that not many long phrase pairs are selected
indicates, in our opinion, that the search and mod-
eling problem in NMT is far from being solved:
with the right, diverse model scores, the proposed
hybrid search is able to select and extend better hy-
potheses with words, most of which already had a
high NMT probability. Yet they are not always
selected in the pure NMT beam search, among
other reasons, due to competition from words erro-
neously placed near them in the embedding space.

4.2 WMT 2016 German— English

The results on the WMT German—English task
are shown in Table 6. The initial phrase-based
baseline uses the 5-gram language model esti-
mated on the target side of bilingual data. By
adding the News Crawl LM data, we gain 2.5%
and 2.3% BLEU on the test sets, but PBMT still is
behind NMT.

For the hybrid approach, we use a beam size
of 64 and a maximal number of beam steps of
1.5 - J (instead of 2 - .J) to speed up experiments.
We use separate word penalty features, one for
word-based hypotheses and one for phrase-based
hypotheses to allow for more control of transla-
tion lengths. With the hybrid approach, using the
5-gram language model estimated on the target
side of bilingual data, and phrase scores, we get
small improvements in BLEU over the NMT base-
line. However, the TER increases. We experiment
with different thresholds, setting Tgocys = 0.1 and
Teov = 1.0. With this hybrid system, we get im-
provements of 1.0% and 1.1% BLEU over pure
NMT. Finally, we add the News Crawl LM data
on top. This significantly improves the results
by 1.7% and 2.0% BLEU. In total, we gain 2.7%
and 3.1% BLEU over pure NMT. These results re-
inforce the fact that, similar to PBMT, language
model quality is important for the proposed hybrid
search. In contrast, we have also tried applying
only the LM (including News Crawl data) with a
word penalty on top of NMT, but did not get con-
sistent improvements.

Figure 1 shows an example for the phrase pairs
chosen by the hybrid system on top of the NMT
attention. The hybrid approach correctly trans-
lates the German idiom “nach und nach” as “grad-
ually”, while the pure NMT system incorrectly
translates it word-by-word as “after and after”.
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Figure 1: Example alignment from the hybrid
search, with the source sentence on the bottom and
the translation on the left. The blue rectangles sig-
nify phrase pairs on top of the NMT attention. The
pure NMT translation is “the system is tested af-
ter and after testing and improved by testing pro-
grams.”

5 Conclusion

In this work, we proposed a novel hybrid search
that extends NMT with phrase-based models. The
NMT beam search was modified to insert phrasal
translations based on the current and accumulated
attention weights of the NMT decoder RNN. The
NMT model score was used in a log-linear model
with standard phrase-based scores as well as an
n-gram language model. We described the algo-
rithm in detail, in which we keep separate beams
for NMT word hypotheses and hypotheses with
an incomplete phrasal translation, as well as in-
troduce parameters which control the source sen-
tence coverage. Numerous experiments on two
large vocabulary translation tasks showed that the
hybrid search improves BLEU scores significantly
as compared to a strong NMT baseline that already
outperforms phrase-based SMT by a large margin.

In the future, we plan to focus on integration of
phrasal components into NMT training, including
better coverage constraints, as well as methods for
context-dependent translation override within our
hybrid search algorithm.
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