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Abstract

The input to a neural sequence-to-
sequence model is often determined by
an up-stream system, e.g. a word seg-
menter, part of speech tagger, or speech
recognizer. These up-stream models are
potentially error-prone. Representing in-
puts through word lattices allows mak-
ing this uncertainty explicit by captur-
ing alternative sequences and their poste-
rior probabilities in a compact form. In
this work, we extend the TreeLSTM (Tai
et al., 2015) into a LatticeLSTM that is
able to consume word lattices, and can be
used as encoder in an attentional encoder-
decoder model. We integrate lattice poste-
rior scores into this architecture by extend-
ing the TreeLSTM’s child-sum and forget
gates and introducing a bias term into the
attention mechanism. We experiment with
speech translation lattices and report con-
sistent improvements over baselines that
translate either the 1-best hypothesis or the
lattice without posterior scores.

1 Introduction

In many natural language processing tasks, we
will require a down-stream system to consume
the input of an up-stream system, such as word
segmenters, part of speech taggers, or automatic
speech recognizers. Among these, one of the most
prototypical and widely used examples is speech
translation, where a down-stream translation sys-
tem must consume the output of an up-stream au-
tomatic speech recognition (ASR) system.
Previous research on traditional phrase-based
or tree-based statistical machine translation have
used word lattices (e.g. Figure 1) as an effective
tool to pass on uncertainties from a previous step

Figure 1: A lattice with 3 possible paths and pos-
terior scores. Translating the whole lattice poten-
tially allows for recovering from errors in its 1-
best hypothesis.

(Ney, 1999; Casacuberta et al., 2004). Several
works have shown quality improvements by trans-
lating lattices, compared to translating only the
single best upstream output. Examples include
translating lattice representations of ASR output
(Saleem et al., 2004; Zhang et al., 2005; Matusov
et al., 2008), multiple word segmentations, and
morphological alternatives (Dyer et al., 2008).

Recently, neural sequence-to-sequence
(seq2seq) models (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015) have often been preferred over the
traditional methods for their strong empirical
results and appealing end-to-end modeling. These
models force us to rethink approaches to handling
lattices, because their recurrent design no longer
allows for efficient lattice decoding using dynamic
programming as was used in the earlier works.

As a remedy, Su et al. (2017) proposed replac-
ing the sequential encoder by a lattice encoder to
obtain a lattice-to-sequence (lat2seq) model. This
is achieved by extending the encoder’s Gated Re-
current Units (GRUs) (Cho et al., 2014) to be
conditioned on multiple predecessor paths. The
authors demonstrate improvements in Chinese-
to-English translation by translating lattices that
combine the output of multiple word segmenters,
rather than a single segmented sequence.
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However, this model does not address one as-
pect of lattices that we argue is critical to obtaining
good translation results: their ability to encode the
certainty or uncertainty of the paths through the
use of posterior scores. Specifically, we postulate
that these scores are essential for tasks that require
handling lattices with a considerable amount of er-
roneous content, such as those produced by ASR
systems. In this paper, we propose a lattice-to-
sequence model that accounts for this uncertainty.
Specifically, our contributions are as follows:

e We employ the popular child-sum TreeLSTM
(Tai et al., 2015) to derive a lattice encoder
that replaces the sequential encoder in an atten-
tional encoder-decoder model. We show empir-
ically that this approach yields only minor im-
provements compared to a baseline fine-tuned
on sequential ASR outputs. This finding stands
in contrast to the positive results by Su et al.
(2017), and by Ladhak et al. (2016) on a lattice
classification task, and suggests higher learning
complexity of our speech translation task.

e We hypothesize that lattice scores are crucial
in aiding training and inference, and propose
several techniques for integrating lattice scores
into the model: (1) We compute weighted child-
sums,! where hidden units in the lattice en-
coder are conditioned on their predecessor hid-
den units such that predecessors with low prob-
ability are less influential on the current hid-
den state. (2) We bias the TreeLSTM’s forget
gates for each incoming connection toward be-
ing more forgetful for predecessors with low
probability, such that their cell states become
relatively less influential. (3) We bias the at-
tention mechanism to put more focus on source
embeddings belonging to nodes with high lat-
tice scores. We demonstrate empirically that the
third proposed technique is particularly effec-
tive and produces strong gains over the baseline.
According to our knowledge, this is the first at-
tempt of integrating lattice scores already at the
training stage of a machine translation model.

e We exploit the fact that our lattice encoder is a
strict generalization of a sequential encoder by
pre-training on sequential data, obtaining faster
and better training convergence on large corpora
of parallel sequential data.

IThis is reminiscent of the weighted pooling strategy by
Ladhak et al. (2016) for spoken utterance classification.

We conduct experiments on the Fisher and Call-
home Spanish-English Speech Translation Cor-
pus (Post et al., 2013) and report improvements of
1.4 BLEU points on Fisher and 0.8 BLEU points
on Callhome, compared to a strong baseline op-
timized for translating 1-best ASR outputs. We
find that the proposed integration of lattice scores
is crucial for achieving these improvements.

2 Background

Our work extends the seminal work on attentional
encoder-decoder models (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015) which we survey in this section.

Given an input sequence = (x1,Z2,...,TN),
the goal is to generate an appropriate output se-
quence y = (y1,%2,...,ynm). The conditional
probability p(y | «) is estimated using parame-
ters trained on a parallel corpus, e.g. of sentences
in the source and target language in a translation
task. This probability is factorized as the prod-
uct of conditional probabilities of each token to
be generated: p(y | =) = [, p(y: | Yoy, ).
The training objective is to estimate parameters 6
that maximize the log-likelihood of the sentence
pairs in a given parallel training set D: J(0) =
> (wy)ep logp(y | x;0).

2.1 Encoder

In our baseline model, the encoder is a bi-
directional recurrent neural network (RNN), fol-
lowing (Bahdanau et al., 2015). Here, the source
sentence is processed in both the forward and
backward directions with two separate RNNs. For
every input x;, two hidden states are generated as

— —
h; = LSTM (Efa(z;), hi1) (1)

— —
h; = LSTM (Epwa(zi), hit1), (2)

where Eg,, and Ejp,, are source embedding
lookup tables. We opt for long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
recurrent units because of their high performance
and in order to later take advantage of the Tree-
LSTM extension (Tai et al., 2015). We stack mul-
tiple LSTM layers and concatenate the final layer
into the final source hidden state h; = ﬁl | Fi,
where layer indices are omitted for simplicity.

2.2 Attention

We use an attention mechanism (Luong et al.,
2015) to summarize the encoder outputs into a
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fixed-size representation. At each decoding time
step j, a context vector c; is computed as a
weighted average of the source hidden states:
c; = ZZ]\L 1 @;;h;. The normalized attentional
weights «;; measure the relative importance of the
source words for the current decoding step and are
computed as a softmax with normalization factor
Z summing over i:

1
Qij = — exp (s(sj—1,h;)) (3)
s(+) is a feed-forward neural network with a single
layer that estimates the importance of source hid-
den state h; for producing the next target symbol
1> conditioned on the previous decoder state s; 1.

2.3 Decoder

The decoder creates output symbols one by one,
conditioned on the encoder states via the atten-
tion mechanism. It contains another LSTM, ini-
tialized using the final encoder hidden state: sg =
hy. The decoding at step j assumes a special
start-of-sequence symbol gy and is computed as
sj = LSTM (Epg(yj—1),sj-1), and then §; =
tanh(Wp[s;; cj] + byg) The conditional proba-
bility that the j-th target word is generated is:
p(yj | y<j,:l:) = softmax(Wy,S; + by,). Here,
E,y, is the target embedding lookup table, W, and
Wy, are weight matrices, and by, and by, are bias
vectors.

During decoding beam search is used to find an
output sequence with high conditional probability.

3 Attentional Lattice-to-Sequence Model

The seq2seq model described above assumes se-
quential inputs and is therefore limited to taking a
single output of an up-stream model as input. In-
stead, we wish to consume lattices to carry over
uncertainties from an up-stream model.

3.1 Lattices

Lattices (e.g. Figure 1) represent multiple ambigu-
ous or competing sequences in a compact form.
They are a more efficient alternative to enumerat-
ing all hypotheses as an n-best list, as they allow
for avoiding redundant computation over subse-
quences shared between multiple hypotheses. Lat-
tices can either be produced directly, e.g. by an
ASR dumping its pruned search space (Post et al.,
2013), or can be obtained by merging several n-
best sequences (Dyer et al., 2008; Su et al., 2017).

A word lattice G = (V| E) is a directed, con-
nected, and acyclic graph with nodes V' and edges
E. VCN is a node set, and (k,i)€E denotes an
edge connecting node & to node i. C(i) denotes
the set of predecessor nodes for node i. We as-
sume that all nodes follow a topological ordering,
such that k<i V k€C(7). Each node i is assigned
a word label w(i). > Every lattice contains ex-
actly one start-of-sequence node with only outgo-
ing edges, and exactly one end-of-sequence node
with only incoming edges.

3.2 Lattices and the TreeLSTM

One thing to notice here is that lattice nodes can
have multiple predecessor states. In contrast, hid-
den states in LSTMs and other sequential RNNs
are conditioned on only one predecessor state
(Bj in left column of Table 1), rendering stan-
dard RNNs unsuitable for the modeling of lattices.
Luckily Tai et al. (2015)’s TreeLSTM, which was
designed to compose encodings in trees, is also
straightforward to apply to lattices; the TreeLSTM
composes multiple child states into a parent state,
which can also be applied to lattices to compose
multiple predecessor states into a successor state.
Table 1, middle column, shows the TreeLSTM
in its child-sum variant that supports an arbitrary
number of predecessors. Conditioning on multi-
ple predecessor hidden states is achieved by sim-
ply taking their sum as h;. Cell states from multi-
ple predecessor are each passed through their own
forget gates fj; and then summed.

Encoding a lattice results in one hidden state for
each lattice node. Our lat2seq framework uses this
network as encoder, computing the attention over
all lattice nodes.® In other words we replace (1) by
the following:

N —
h; = LatticeLSTM (x;, { b}, | k€C(i)}) (4)

Similarly, we encode the lattice in backward di-
rection and replace (2) accordingly. Figure 2 il-
lustrates the result. The computational complex-
ity of the encoder is O(|V'| + |E]), i.e. linear in
the number of nodes plus number of edges in the
graph. The complexity of the attention mechanism
is O(|V|M), where M is the output sequence

1t is perhaps more common to think of each edge repre-
senting a word, but we will motivate why we instead assign
word labels to nodes in §3.3.

3This is similar in spirit to Eriguchi et al. (2016) who used
the TreeLSTM in an attentional tree-to-sequence model.
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Sequential LSTM

TreeLSTM

Proposed LatticeLSTM

recurrence h;=h,

fli = Zke()(i) hy

S

- w h
hi = Yhect) z,, 2 O

forgetgt. | fi=0 (VVfXZ + Uffli + bf)

fik = O’(V[/}Xi—F

fir. = O’(VVfXZ’ + Ufhk+

(6)
[ln wb/f?ka — Zﬁk] + bf)

Ufhk + bf)

input gt. =0 (W,-,,xi + Unh; + b,-n) as sequential as sequential
output gt. oi=0 (VV(,x,- + U,h; + b,,) as sequential as sequential
update u; = tanh (Wuxi + U.h; + bu) as sequential as sequential
cell c,=i;0u;+f;®ci_1 ¢ =liouit as TreeLSTM
> kec(i) fik © ck
hidden h; = 0; ® tanh(c;) as sequential as sequential
attention ajj o< exp (s(+)) a;joxexp [s (+) +Sg Inwy, ] (7)

Table 1: Formulas for sequential and TreeLSTM encoders according to Tai et al. (2015), the proposed
LatticeLSTM encoder, and conventional vs. proposed integration into the attention mechanism (bottom
row). Inputs x; are word embeddings or hidden states of a lower layer. W. and U. denote parameter
matrices, b. bias terms, other terms are described in the text.

Attentional
Decoder  J&-__

<s> ah hay  que qué qué  bueno bueno  </s>
Figure 2: Network structure of a bidirectional lat-
tice encoder with one layer.

length. |V'| depends on both the expected input
sentence length and the lattice density.

3.3 Node-labeled Lattices

At this point we take a step back to motivate our
choice of assigning word labels to lattice nodes,
which is in contrast to the prior work by Ladhak
et al. (2016) and Su et al. (2017) who assign word
labels to edges. Recurrent states in edge-labeled
lattice encoders are conditioned not only on mul-
tiple predecessor states, but must also aggregate
words from multiple incoming edges. This implies
that hidden units may represent more than one
word in the lattice. Moreover, in the edge-labeled
case hidden units that are in the same position in
forward and backward encoders represent differ-
ent words, but are nevertheless concatenated and

attended to jointly. For these reasons we find our
approach of encoding word-labeled lattices more
intuitively appealing when used as input to an at-
tentional decoder, although empirical justification
is beyond the scope of this paper. We also note that
it is easy to convert an edge-labeled lattice into a
node-labeled lattice using the line-graph algorithm
(Hemminger and Beineke, 1978), which we utilize
in this work.

4 Integration of Lattice Scores

This section describes the key technical contribu-
tion of our work: integration of lattice scores en-
coding input uncertainty into the lat2seq frame-
work. These lattice scores assign different proba-
bilities to competing paths, and are often provided
by up-stream statistical models. For example, an
ASR may attach posterior probabilities that cap-
ture acoustic evidence and linguistic plausibility
of words in the lattice. In this section, we de-
scribe our method, first explaining how we nor-
malize scores to a format that is easily usable in
our method, then presenting our methods for in-
corporating these scores into our encoder calcula-
tions.

4.1 Lattice Score Normalization

Lattice scores that are obtained from upstream sys-
tems (such as ASR) are typically given in forward-
normalized fashion, interpreted as the probability
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Lattice with forward-normalized,

Figure 3:
marginal, and backward-normalized scores.

of a node given its predecessor. Here, outgoing
edges sum up to one, as illustrated in Figure 1.
However, in some of our methods it will be nec-
essary that scores be normalized in the backward
direction, so that the weights from incoming con-
nections sum up to one, or globally normalized,
so that the probability of the node is the marginal
probability of all the paths containing that node.
Let wy ;, Wi i, wp,; denote forward-normalized,
marginal, and backward-normalized scores for
node ¢ respectively, illustrated in Figure 3. Given
wy ;, We can compute marginal probabilities recur-
sively as wy, ; = ZkeC(i) Wy k-wy ; by using the
forward algorithm (Rabiner, 1989). Then, we can

. . w. ;
normalize backward using wy ; = ﬁ
’ kec! (i) Wm,

where C’(i) denotes the successors of node 7. All
3 forms are employed in the sections below.

Furthermore, when integrating these scores into
the lat2seq framework, it is desirable to main-
tain flexibility over how strongly they should im-
pact the model. For this purpose, we introduce
a peakiness coefficient S. Given a lattice score
wp,; in backward direction, we compute w,ﬁ ) Zi.
Zi= zkeC(z’) wp, is a re-normalization term to
ensure that incoming connections still sum up
to one. In the forward direction, we compute
w]?:i /Z; and normalize analogously over outgo-
ing connections. Setting S=0 amounts to ig-
noring the scores by flattening their distribution,
while letting S—oo puts emphasis solely on the
strongest nodes. S can be optimized jointly with
the other model parameters via back-propagation
during model training.

4.2 Integration Approaches

We suggest three methods to integrate these scores
into our lat2seq model, with equations shown in
the right column of Table 1. These methods can
optionally be combined, and we conduct an abla-
tion study to assess the effectivity of each method
in isolation (§5.3).

The first method consists of computing a

weighted child-sum (WCS), using lattice scores
as weights when composing the hidden state h;.
This is based on the intuition that predecessor hid-
den states with high lattice weights should have
a higher influence on their successor than states
with low weights. The precise formulas for WCS
are shown in (5).

The second method biases the forget gate fj;
for each predecessor cell state such that prede-
cessors with high lattice score are more likely to
pass through the forget gate (BFG). The intuition
for this is similar to WCS; the composed cell state
is more highly influenced by cell states from pre-
decessors with high lattice score. BFG is imple-
mented by introducing a bias term inside the sig-
moid as in (6).

In the cases of both WCS and BFG, all hid-
den units have their own independent peakiness.
Thus S, and Sy are vectors, applied element-
wise after broadcasting the lattice score. The re-
normalization terms Zj, ;, and Zy, are also vectors
and are applied element-wise. We use backward-
normalized scores wy; for the forward-directed
encoder, and forward-normalized scores wy ; for
the backward-directed encoder.

In the third and final method, we bias the atten-
tional weights (BATT) to put more focus on lattice
nodes with high lattice scores. This can potentially
mitigate the problem of having multiple contra-
dicting lattice nodes that may confuse the atten-
tional decoder. BATT is computed by introducing
a bias term to the attention as in (7). Attentional
weights are scalars, so here the peakiness S, is
also a scalar. We drop the normalization term, re-
lying instead on the softmax normalization. Both
BFG and BATT use the logarithm of lattice scores
so that values will still be in the probability do-
main after the softmax or sigmoid is computed.

4.3 Pre-training

Finally, note that our lattice encoder is a strict
generalization of a sequential encoder. To re-
duce the computational burden, we exploit this
fact and perform a two-step training process where
the model is first pre-trained on sequential data,
then fine-tuned on lattice data.* The pre-training,
like standard training for neural machine trans-
lation (NMT), allows for efficient training using
mini-batches, and also allows for training on stan-
dard text corpora for which we might not have lat-

*For the sequential data, we set all confidence scores to 1.
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tices available. The fine-tuning is then performed
on parallel data with lattices on the source side.
This is much slower’ than the pre-training because
the network structure changes from sentence to
sentence, preventing us from using efficient mini-
batched calculations. However, fine-tuning for
only a small number of iterations is generally suf-
ficient, as the model is already relatively accurate
in the first place. In practice we found it impor-
tant to use minibatches when fine-tuning, accumu-
lating gradients over several examples before per-
forming parameter updates. This provided negli-
gible speedups but greatly improved optimization
stability.

At test time, the model is able to translate both
sequential and lattice inputs and can therefore be
used even in cases where no lattices are available,
at potentially diminished accuracy.

5 Experiments

5.1 Setting

We conduct experiments on the Fisher and Call-
home Spanish-English Speech Translation Cor-
pus (Post et al., 2013), a corpus of Spanish tele-
phone conversations that includes automatic tran-
scripts and lattices. The Fisher portion consists of
telephone conversations between strangers, while
the Callhome portion contains telephone conver-
sations between relatives or friends. The training
data size is 138,819 sentences (Fisher/Train), and
15,000 sentences (Callhome/Train). Held-out test-
ing data is shown in Table 2. ASR word error
rates (WER) are relatively high, due to the spon-
taneous speaking style and challenging acoustics.
Lattices contain on average 3.4 (Fisher/Train) or
4.5 (Callhome/Train) times more words than the
corresponding reference transcripts.

For preprocessing, we tokenized and lower-
cased source and target sides. We removed punc-
tuation from the reference transcripts on the source
side for consistency with the automatic transcripts
and lattices. All models are pre-trained and fine-
tuned on Fisher/Train unless otherwise noted. Our
source-side vocabulary contains all words from
the automatic transcripts for Fisher/Train, replac-
ing singletons by an unknown word token, total-

SOur implementation processed sequential inputs about
75 times faster than lattice inputs during training, and overall
fine-tuning convergence was 15 times faster. Decoding was
only 1.2 times slower when using lattice inputs. Note that re-
cently proposed approaches for autobatching (Neubig et al.,
2017b) may considerably speed up lattice training.

1-best oracle 4 sent.

WER WER
Fisher/Dev 41.3 19.3 3,979
Fisher/Dev2 40.0 194 3,961
Fisher/Test 36.5 16.1 3,641
Callhome/Devtest  64.7 36.4 3,966
Callhome/Evltest ~ 65.3 37.9 1,829

Table 2: Development data statistics. Average sen-
tence length is between 11.8 and 13.1.

ing 14,648 words. Similarly, on the target side we
used all words from the reference translations of
Fisher/Train, replacing singletons by the unknown
word, yielding 10,800 words in total.

Our implementation is based on lamtram (Neu-
big, 2015) and the DyNet (Neubig et al., 2017a)
toolkit. We use the implemented attentional model
with default parameters: a layer size of 256 per
encoder direction and 512 for the decoder. Word
embedding size was also set to 512. We used two
encoder layers and two decoder layers for better
baseline performance. For the sequential base-
lines, the LSTM variant in the left column of Ta-
ble 1 was employed. We initialized the forget gate
biases to 1 as recommended by Jozefowicz et al.
(2015).

We used Adam (Kingma and Ba, 2014) for
training, with an empirically determined initial
learning rate of 0.001 for pre-training and 0.0001
for fine-tuning. We halve the learning rate when
the dev perplexity (on Fisher/Dev) gets worse.
Pre-training and fine-tuning on 1-best sequences is
performed until convergence, and training on lat-
tices is performed for 2 epochs to keep experimen-
tal effort manageable. On Fisher/Train, this took
3-4 days on a fast CPU.® Minibatch size was 1000
target words for pre-training, and 20 sentences for
lattice training. Unless otherwise noted, we em-
ployed all three proposed lattice score integration
approaches, and optimized peakiness coefficients
jointly during training. We repeat training 3 times
with different random seeds for parameter initial-
ization and data shuffling, and report averaged re-
sults. We set the decoding beam size to 5.

For comparison, we tried training on lattices from
scratch, which took 9 days (6 epochs) to converge at a dev
perplexity that was 10% worse than with the pre-training plus
fine-tuning strategy. We also confirmed BLEU scores to be
much inferior without pretraining.
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5.2 Main Results

We compare 4 systems: Performing pre-training
on the sequential reference transcripts only (R),
fine-tuning on 1-best transcripts (R+1), fine-tuning
on lattices without scores (R+L), and fine-tuning
on lattices including lattice scores (R+L+S). At
test time, we try references, lattice oracles,” 1-best
transcripts, and lattices as inputs to all 4 systems.
The former 2 experiments give upper bounds on
achievable translation accuracy, while the latter 2
correspond to a realistic setting. Table 3 shows the
results on Fisher/Dev2 and Fisher/Test.

Before even considering lattices, we can see that
1-best fine-tuning boosted BLEU scores quite im-
pressively (1-best/R vs. 1-best/R+1), with gains
of 1.3 and 0.7 BLEU points. This stands in con-
trast to Post et al. (2013) who find the 1-best tran-
scripts not to be helpful for training a hierarchical
machine translation system. Possible explanations
are learning from repeating error patterns, and im-
proved robustness to erroneous inputs. On top of
these gains, our proposed set-up (lattice/R+L+S)
improve BLEU scores by another 1.4. Removing
the lattice scores (lattice/R+L) diminishes the re-
sults and performs worse than the 1-best baseline
(1-best/R+1), indicating that the proposed lattice
score integration is crucial for good performance.
This demonstrates a clear advantage of our pro-
posed method over that of Su et al. (2017).

As can be seen in the table, models fine-
tuned on lattices show reasonable performance for
both lattice and sequential inputs (1-best/R+L, lat-
tice/R+L, 1-best/R+L+S, lattice/R+L+S). This is
not surprising, given that the lattice training data
includes lattices of varying density, including lat-
tices with very few paths or even only one path.
On the other hand, without fine-tuning on lattices,
using lattices as input performs poorly (lattice/R
and lattice/R+1). A closer look revealed that trans-
lations were often too long, potentially because
implicitly learned mechanisms for length control
were not ready to handle lattice inputs.

Table 3 reports perplexities for Fisher/Dev2.
Unlike the corresponding BLEU scores, the lattice
encoder appears stronger than the 1-best baseline
in terms of perplexity even without lattice scores
(lattice/R+L vs. 1-best/R+1). To understand this
better, we computed the average entropy of the
decoder softmax, a measure of how much con-
fusion there is in the decoder predictions, inde-

"The path through the lattice with the best WER.

pendent of whether it selects the correct answer
or not. Over the first 100 sentences, this value
was 2.24 for 1-best/R+1, 2.39 for lattice/R+L, and
2.15 for lattice/R+L+S. This indicates that the de-
coder is more confused for lattices without scores,
while integrating lattice scores removes this prob-
lem. These numbers also suggest that it may be
possible to obtain further gains using methods that
stabilize the decoder.

5.3 Ablation Experiments

Next, we conduct an ablation study to assess the
impact of the three proposed extensions for inte-
grating lattice scores (§4.2). We train models with
different peakiness coefficients S, either ignoring
lattices scores by fixing S=0, using lattice scores
as-is by fixing S=1, or optimizing S during train-
ing. Table 4 shows the results. Overall, joint train-
ing of S gives similar results as fixing S=1, but
both clearly outperform fixing S=0. Removing
confidences (setting S=0) in one place at a time
reveals that the attention mechanism is clearly the
most important point of integration, while gains
from the integration into child-sum and forget gate
are smaller and not always consistent.

We also analyzed what peakiness values were
actually learned. We found that all 3 models that
we trained for the averaging purposes converged
to S,=0.62. S; and S; had per-vector means
between 0.92 and 1.0, at standard deviations be-
tween 0.02 and 0.04. We conclude that while the
peakiness coefficients were not particularly help-
ful in our experiments, stable convergence behav-
ior makes them safe to use, and they might be
helpful on other data sets that may contain lattice
scores of higher or lower reliability.

5.4 Callhome Experiments

In this experiment, we test a situation in which we
have a reasonable amount of sequential data avail-
able for pre-training, but only a limited amount
of lattice training data for the fine-tuning step.
This may be a more realistic situation, because
speech translation corpora are scarce. To inves-
tigate in this scenario, we again pre-train our mod-
els on Fisher/Train, but then fine-tune them on the
9 times smaller Callhome/Train portion of the cor-
pus. We fine-tune for 10 epochs, all other settings
are as before. We use Callhome/Evltest for testing.
Table 5 shows the results. The trends are consis-
tent to §5.2: The proposed model (lattice/R+L+S)
outperforms the 1-best baseline (1-best/R+1) by
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test-time Trained on Trained on

inputs R R+1 R+L R+L+S R R+l R+L R+L+S

reference 53.9(7.1) 53.8 (6.5) 53.7 (6.8) 54.0(6.7) | 52.2 51.8 522 52.7

oracle 449 (13.4) 45.6(9.5) 452(10.6) 452 (10.6) | 444 446 44.6 44.8

1-best 35.8(24.7) 37.1(13.7) 36.2(16.4) 36.2(16.3) | 359 36.6 36.2 36.4

lattice 259 (23.4) 25.8(15.7) 36.9(13.0) 38.5(12.6) | 26.2 258 36.1 38.0
Fisher/Dev?2 Fisher/Test

Table 3: BLEU scores (4 references) and perplexities (in brackets). Models are pre-trained only (R),
fine-tuned on either 1-best outputs (R+1), lattices without scores (R+L), or lattices with scores (R+L+S).
Statistically significant improvement (paired bootstrap resampling, p < 0.05) over 1-best/R+1 is in bold.

BATT WCS BFG Fisher Fisher
S, S, Sy /Dev2 [Test
0 0 0 36.9 36.1
1 1 1 38.2 37.4
* * * 38.5 38.0
0 1 1 37.2 36.2
1 0 1 37.9 37.5
1 1 0 38.2 37.8
0 * * 37.0 36.3
* 0 * 38.3 37.9
* * 0 38.1 37.5
1-best/R+1 37.2 36.6

Table 4: BLEU scores (4 references) for differ-
ently configured peakiness coefficients S, Sy, Sy.
0/1 means fixing to that value, * indicates opti-
mization during training. Statistically significant
improvement over 1-best/R+1 is in bold.

0.8 BLEU points, which in turn beats the pre-
trained system (1-best/R) by 1.5 BLEU points. In-
cluding the lattice scores is clearly beneficial, al-
though lattices without scores also improve over
1-best inputs in this experiment.

5.5 Impact of Lattice Quality

Next, we analyze the impact of using lattices and
lattice scores as the ASR WER changes. We con-
catenate all test data from Table 2 and divide the
result into bins according to the 1-best WER. We
sample 1000 sentences from each bin, and com-
pare BLEU scores between several models.

The results are shown in Figure 4. For very
good WERs, lattices do not improve over 1-best
inputs, which is unsurprising. In all other cases,
lattices are helpful. Lattice scores are most bene-

test-time Trained on

inputs R R+l R+L R+L+S
reference 24.7 243 24.8 24.4
oracle 15.8 16.8 16.3 159
1-best 11.8 133 124 12.0
lattice 9.3 7.1  13.7 14.1

Table 5: BLEU scores on Callhome/Evltest
(1 reference). All models are pre-trained on
Fisher/Train references (R), and potentially fine-
tuned on Callhome/Train. The best result using
1-best or lattice inputs is in bold. Statistically sig-
nificant improvement over 1-best/R+1 is in bold.

ficial for moderate WERSs, and not beneficial for
very high WERs. We speculate that for high
WERSs, the lattice scores tend to be less reliable
than for lower WERs.

6 Conclusion

We investigated translating uncertain inputs from
an error-prone up-stream component using a neu-

>80 1-best/R+1

¥ Jattice/R+L

H Jattice/R+L+C

[ B D
[=) (=] (=]
B (= [eis]
(=] (=] (=]

(=
[
(=]

1-best WER [%)]

(=]

5 10 15 20 25 30
BLEU score (1 reference)

Figure 4: BLEU score over varying 1-best WERs.
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ral lattice-to-sequence model.  Our proposed
model takes word lattices as input and is able to
take advantage of lattice scores. In our experi-
ments in a speech translation task we find con-
sistent improvements over translating 1-best tran-
scriptions and that consideration of lattice scores,
especially in the attention mechanism, is crucial
for obtaining these improvements.

Promising avenues for future work are investi-
gating consensus networks (Mangu et al., 2000)
for potential gains in terms of speed or quality as
compared to lattice inputs, explicitly dealing with
rare or unknown words in the lattice, and facilitat-
ing GPU training via autobatching (Neubig et al.,
2017b).
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