
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1364–1373
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Here’s My Point: Joint Pointer Architecture for Argument Mining

Peter Potash, Alexey Romanov, Anna Rumshisky
Department of Computer Science

University of Massachusetts Lowell
{ppotash,aromanov,arum}@cs.uml.edu

Abstract

In order to determine argument structure
in text, one must understand how indi-
vidual components of the overall argu-
ment are linked. This work presents the
first neural network-based approach to link
extraction in argument mining. Specif-
ically, we propose a novel architecture
that applies Pointer Network sequence-to-
sequence attention modeling to structural
prediction in discourse parsing tasks. We
then develop a joint model that extends
this architecture to simultaneously address
the link extraction task and the classifica-
tion of argument components. The pro-
posed joint model achieves state-of-the-art
results on two separate evaluation corpora,
showing far superior performance than the
previously proposed corpus-specific and
heavily feature-engineered models. Fur-
thermore, our results demonstrate that
jointly optimizing for both tasks is crucial
for high performance.

1 Introduction

An important goal in argument mining is to un-
derstand the structure in argumentative text (Pers-
ing and Ng, 2016; Peldszus and Stede, 2015; Stab
and Gurevych, 2016; Nguyen and Litman, 2016).
One fundamental assumption when working with
argumentative text is the presence of Arguments
Components (ACs). The types of ACs are gener-
ally characterized as a claim or a premise (Govier,
2013), with premises acting as support (or possi-
bly attack) units for claims (though some corpora
have further AC types, such as major claim (Stab
and Gurevych, 2016, 2014b)).

The task of processing argument structure en-
capsulates four distinct subtasks (our work fo-

cuses on subtasks 2 and 3): (1) Given a sequence
of tokens that represents an entire argumentative
text, determine the token subsequences that con-
stitute non-intersecting ACs; (2) Given an AC,
determine the type of AC (claim, premise, etc.);
(3) Given a set/list of ACs, determine which ACs
have directed links that encapsulate overall argu-
ment structure; (4) Given two linked ACs, deter-
mine whether the link is a supporting or attack-
ing relation. This can be labeled as a ‘micro’ ap-
proach to argument mining (Stab and Gurevych,
2016). In contrast, there have been a number of
efforts to identify argument structure at a higher
level (Boltuzic and Šnajder, 2014; Ghosh et al.,
2014; Cabrio and Villata, 2012), as well as slightly
re-ordering the pipeline with respect to AC types
(Rinott et al., 2015)).

There are two key assumptions our work makes
going forward. First, we assume subtask 1 has
been completed, i.e. ACs have already been iden-
tified. Second, we follow previous work that as-
sumes a tree structure for the linking of ACs (Palau
and Moens, 2009; Cohen, 1987; Peldszus and
Stede, 2015; Stab and Gurevych, 2016). Specifi-
cally, a given AC can only have a single outgoing
link, but can have numerous incoming links. Fur-
thermore, there is a ‘head’ component that has no
outgoing link (the top of the tree). Depending on
the corpus (see Section 4), an argument structure
can be either a single tree or a forest, consisting of
multiple trees. Figure 1 shows an example that we
will use throughout the paper to concretely explain
how our approach works. First, the left side of
the figure presents the raw text of a paragraph in a
persuasive essay (Stab and Gurevych, 2016), with
the ACs contained in square brackets. Squiggly vs
straight underlining differentiates between claims
and premises, respectively. The ACs have been an-
notated as to how they are linked, and the right side
of the figure reflects this structure. The argument
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First, [
:::::::
cloning

:::::
will

:::
be

::::::::::
beneficial

::::
for

:::::
many

:::::::
people

::::
who

::::
are

:::
in

:::::
need

:::
of

:::::
organ

:::::::::
transplants]AC1. In addition, [it shortens
the healing process]AC2. Usually, [it is
very rare to find an appropriate organ
donor]AC3 and [by using cloning in order
to raise required organs the waiting time
can be shortened tremendously]AC4.

AC1
Claim

AC2
Premise

AC4
Premise

AC3
Premise

Figure 1: An example of argument structure with four ACs. The left side shows raw text that has been
annotated for the presence of ACs. Squiggly or straight underlining means an AC is a claim or premise,
respectively. The ACs in the text have also been annotated for links to other ACs, which is shown in the
right figure. ACs 3 and 4 are premises that link to another premise, AC2. Finally, AC2 links to a claim,
AC1. AC1 therefore acts as the central argumentative component.

structure with four ACs forms a tree, where AC2
has two incoming links, and AC1 acts as the head,
with no outgoing links. We also specify the type
of AC, with the head AC marked as a claim and
the remaining ACs marked as premises. Lastly, we
note that the order of argument components can be
a strong indicator of how components should re-
late. Linking to the first argument component can
provide a competitive baseline heuristic (Peldszus
and Stede, 2015; Stab and Gurevych, 2016).

Given the above considerations, we propose that
sequence-to-sequence attention modeling, in the
spirit of a Pointer Network (PN) (Vinyals et al.,
2015b), can be effective for predicting argument
structure. To the best of our knowledge, a clean,
elegant implementation of a PN-based model has
yet to be introduced for discourse parsing tasks.
A PN is a sequence-to-sequence model (Sutskever
et al., 2014) that outputs a distribution over the en-
coding indices at each decoding timestep. More
generally, it is a recurrent model with attention
(Bahdanau et al., 2014), and we claim that as such,
it is promising for link extraction because it inher-
ently possesses three important characteristics: (1)
it is able to model the sequential nature of ACs, (2)
it constrains ACs to have a single outgoing link,
thus partly enforcing the tree structure, and (3)
the hidden representations learned by the model
can be used for jointly predicting multiple sub-
tasks. Furthermore, we believe the sequence-to-
sequence aspect of the model provides two distinct
benefits: (1) it allows for two separate representa-
tions of a single AC (one for the source and one for
the target of the link), and (2) the decoder network-
could learn to predict correct sequences of linked

indices, which is a second recurrence over ACs.
Note that we also test the sequence-to-sequence
architecture against a simplified model that only
uses hidden states from an encoding network to
make predictions (see Section 5).

The main technical contribution of our work is a
joint model that simultaneously predicts links be-
tween ACs and determines their type. Our joint
model uses the hidden representation of ACs pro-
duced during the encoding step (see Section 3.4).
While PNs were originally proposed to allow a
variable length decoding sequence, our model dif-
fers in that it decodes for the same number of
timesteps as there are inputs. This is a key insight
that allows for a sequence-to-sequence model to
be used for structural prediction. Aside from the
partial assumption of tree structure in the argu-
mentative text, our models do not make any ad-
ditional assumptions about the AC types or con-
nectivity, unlike the work of Peldszus (2014).
Lastly, in respect to the broad task of parsing, our
model is flexible because it can easily handle non-
projective, multi-root dependencies. We evaluate
our models on the corpora of Stab and Gurevych
(2016) and Peldszus (2014), and compare our re-
sults with the results of the aformentioned au-
thors. Our results show that (1) joint model-
ing is imperative for competitive performance on
the link extraction task, (2) the presence of the
second recurrence improves performance over a
non-sequence-to-sequence model, and (3) the joint
model can outperform models with heavy feature-
engineering and corpus-specific constraints.
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2 Related Work

Palau and Moens (2009) is an early work in argu-
ment mining, using a hand-crafted Context-Free
Grammar to determine the structure of ACs in a
corpus of legal texts. Lawrence et al. (2014) lever-
age a topic modeling-based AC similarity to un-
cover tree-structured arguments in philosophical
texts. Recent work offers data-driven approaches
to the task of predicting links between ACs. Stab
and Gurevych (2014b) approach the task as a bi-
nary classification problem. The authors train an
SVM with various semantic and structural fea-
tures. Peldszus and Stede have also used classifi-
cation models for predicting the presence of links
(2015). The first neural network-based model for
argumentation mining was proposed by Laha and
Raykar (2016), who use two recurrent networks in
end-to-end fashion to classify AC types.

Various authors have also proposed to jointly
model link extraction with other subtasks from the
argument mining pipeline, using either an Inte-
ger Linear Programming (ILP) framework (Pers-
ing and Ng, 2016; Stab and Gurevych, 2016) or
directly feeding previous subtask predictions into
a tree-based parser. The former joint approaches
are evaluated on an annotated corpus of persuasive
essays (Stab and Gurevych, 2014a, 2016), and the
latter on a corpus of microtexts (Peldszus, 2014).
The ILP framework is effective in enforcing a tree
structure between ACs when predictions are made
from otherwise naive base classifiers.

Recurrent neural networks have previously been
proposed to model tree/graph structures in a linear
manner. Vinyals et al. (2015c) use a sequence-to-
sequence model for the task of syntactic parsing.
Bowman et al. (2015) experiment on an artificial
entailment dataset that is specifically engineered
to capture recursive logic (Bowman et al., 2014).
Standard recurrent neural networks can take in
complete sentence sequences and perform com-
petitively with a recursive neural network. Multi-
task learning for sequence-to-sequence has also
been proposed (Luong et al., 2015), though none
of the models used a PN for prediction.

In the field of discourse parsing, the work of Li
et al. (2016) is the only work, to our knowledge,
that incorporates attention into the network archi-
tecture. However, the attention is only used in the
process of creating representations of the text it-
self. Attention is not used to predict the overall
discourse structure. In fact, the model still relies

on a binary classifier to determine if textual com-
ponents should have a link. Arguably the most
similar approach to ours is in the field of depen-
dency parsing (Cheng et al., 2016). The authors
propose a model that performs ‘queries’ between
word representations in order to determine a dis-
tribution over potential headwords.

3 Proposed Approach

In this section, we describe our approach to using a
sequence-to-sequence model with attention for ar-
gument mining, specifically, identifying AC types
and extracting the links between them. We begin
by giving a brief overview of these models.

3.1 Pointer Network
A PN is a sequence-to-sequence model (Sutskever
et al., 2014) with attention (Bahdanau et al., 2014)
that was proposed to handle decoding sequences
over the encoding inputs, and can be extended to
arbitrary sets (Vinyals et al., 2015a). The origi-
nal motivation for a pointer network was to allow
networks to learn solutions to algorithmic prob-
lems, such as the traveling salesperson and convex
hull problems, where the solution is a sequence
over input points. The PN model is trained on in-
put/output sequence pairs (E,D), where E is the
source and D is the target (our choice of E,D is
meant to represent the encoding, decoding steps
of the sequence-to-sequence model). Given model
parameters Θ, we apply the chain rule to deter-
mine the probability of a single training example:

p(D|E; Θ) =
m(E)∏
i=1

p(Di|D1, ..., Di−1, E; Θ)

(1)
where the function m signifies that the number of
decoding timesteps is a function of each individual
training example. We will discuss shortly why we
need to modify the original definition of m for our
application. By taking the log-likelihood of Equa-
tion 1, we arrive at the optimization objective:

Θ∗ = arg max
Θ

∑
E,D

log p(D|E; Θ) (2)

which is the sum over all training example pairs.
The PN uses Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) for
sequential modeling, which produces a hidden
layer h at each encoding/decoding timestep. In
practice, the PN has two separate LSTMs, one for
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Component 1 Component 2 Component 3 Component 4

LSTM
D1

LSTM
D2

LSTM
D3

LSTM
D4

LSTM
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LSTM
E2

LSTM
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LSTM
E4

Figure 2: Applying a Pointer Network to the example paragraph in Figure 1 with LSTMs unrolled over
time. Note that D1 points to itself to denote that it has not outgoing link and is therefore the head of a
tree.

encoding and one for decoding. Thus, we refer to
encoding hidden layers as e, and decoding hidden
layers as d.

The PN uses a form of content-based at-
tention (Bahdanau et al., 2014) to allow the
model to produce a distribution over input ele-
ments. This can also be thought of as a dis-
tribution over input indices, wherein a decoding
step ‘points’ to the input. Formally, given encod-
ing hidden states (e1, ..., en), the model calculates
p(Di|D1, ..., Di−1, E) as follows:

ui
j = vT tanh(W1ej +W2di) (3)

p(Di|D1, ..., Dj−1, E) = softmax(ui) (4)

where matrices W1, W2 and vector v are param-
eters of the model (along with the LSTM param-
eters used for encoding and decoding). In Equa-
tion 3, prior to taking the dot product with v, the
resulting transformation can be thought of as cre-
ating a joint hidden representation of inputs i and
j. Vector ui in equation 4 is of length n, and in-
dex j corresponds to input element j. Therefore,
by taking the softmax of ui, we are able to create
a distribution over the input.

3.2 Link Extraction as Sequence Modeling
A given piece of text has a set of ACs, which occur
in a specific order in the text: (C1, ..., Cn). There-
fore, at encoding timestep i, the model is fed a
representation of Ci. Since the representation is
large and sparse (see Section 3.3 for details on how
we represent ACs), we add a fully-connected layer
before the LSTM input. Given a representation Ri

for AC Ci, the LSTM input Ai is calculated as:

Ai = σ(WrepRi + brep) (5)

where Wrep, brep in turn become model parame-
ters, and σ is the sigmoid function1. Similarly, the

1We also experimented with relu and elu activations, but
found sigmoid to yield the best performance.

decoding network applies a fully-connected layer
with sigmoid activation to its inputs, see Figure 3.
At encoding step i, the encoding LSTM produces
hidden layer ei, which can be thought of as a hid-
den representation of AC Ci.

In order to make sequence-to-sequence model-
ing applicable to the problem of link extraction,
we explicitly set the number of decoding timesteps
to be equal to the number of input components.
Using notation from Equation 1, the decoding se-
quence length for an encoding sequence E is sim-
ply m(E) = |{C1, ..., Cn}|, which is trivially
equal to n. By constructing the decoding sequence
in this manner, we can associate decoding timestep
i with AC Ci.

From Equation 4, decoding timestep i will out-
put a distribution over input indices. The result of
this distribution will indicate to which AC compo-
nent Ci links. Recall there is a possibility that an
AC has no outgoing link, such as if it’s the root of
the tree. In this case, we state that if AC Ci does
not have an outgoing link, decoding step Di will
output index i. Conversely, if Di outputs index j,
such that j is not equal to i, this implies thatCi has
an outgoing link to Cj . For the argument structure
in Figure 1, the corresponding decoding sequence
is (1, 1, 2, 2). The topology of this decoding se-
quence is illustrated in Figure 2. Observe how C1

points to itself since it has no outgoing link.
Finally, we note that we have a Bidirectional

LSTM (Graves and Schmidhuber, 2005) as the en-
coder, unlike the model proposed by Vinyals et al.
(2015b). Thus, ei is the concatenation of forward
and backward hidden states −→e i and←−e n−i+1, pro-
duced by two separate LSTMs. The decoder re-
mains a standard forward LSTM.

3.3 Representing Argument Components

At each timestep of the encoder, the network takes
in a representation of an AC. Each AC is itself
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Bi-LSTM
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Bidirectional LSTM Encoder

Component 1 Component 2 Component 3 Component 4
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LSTM
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Bi-LSTM
E4

FC3 FC3 FC3

Figure 3: Architecture of the joint model applied to the example in Figure 1. Note that D1 points to itself
to denote that it has not outgoing link and is therefore the head of a tree.

a sequence of tokens, similar to the Question-
Answering dataset from Weston et al. (2015). We
follow the work of Stab and Gurevych (2016) and
focus on three different types of features to repre-
sent our ACs: (1) Bag-of-Words of the AC; (2)
Embedding representation based on GloVe em-
beddings (Pennington et al., 2014), which uses av-
erage, max, and min pooling across the token em-
beddings; (3) Structural features: Whether or not
the AC is the first AC in a paragraph, and whether
the AC is in an opening, body, or closing para-
graph. See Section 6 for an ablation study of the
proposed features.

3.4 Joint Neural Model

Up to this point, we focused on the task of extract-
ing links between ACs. However, recent work has
shown that joint models that simultaneously try to
complete multiple aspects of the subtask pipeline
outperform models that focus on a single sub-
task (Persing and Ng, 2016; Stab and Gurevych,
2014b; Peldszus and Stede, 2015). Therefore, we
will modify the single-task architecture so that
it would allow us to perform AC classification
(Kwon et al., 2007; Rooney et al., 2012) together
with link prediction. Knowledge of an individual
subtask’s predictions can aid in other subtasks. For
example, claims do not have an outgoing link, so
knowing the type of AC can aid in the link predic-
tion task. This can be seen as a way of regulariz-
ing the hidden representations from the encoding
component (Che et al., 2015).

At each timestep, predicting AC type is a
straightforward classification task: given AC Ci,
we need to predict whether it is a claim, premise,

or possibly major claim. More generally, this is
another sequence modeling problem: given input
sequence E, we want to predict a sequence of
argument types T . For encoding timestep i, the
model creates hidden representation ei. This can
be thought of as a representation of AC Ci. There-
fore, our joint model will simply pass this repre-
sentation through a fully-connected layer as fol-
lows:

zi = Wclsei + bcls (6)

where Wcls, bcls become elements of the model
parameters, Θ. The dimensionality of Wcls, bcls is
determined by the number of classes. Lastly, we
use softmax to form a distribution over the possi-
ble classes.

Consequently, the probability of predicting the
component type at timestep i is defined as:

p(Ti|Ei; Θ) = softmax(zi) (7)

Finally, combining this new prediction task with
Equation 2, we arrive at the new training objective:

Θ∗ = arg max
Θ

α
∑
E,D

log p(D|E; Θ)

+(1− α)
∑
E

log p(T |E; Θ)
(8)

which simply sums the costs of the individual pre-
diction tasks, and the second summation is the cost
for the new task of predicting AC type. α ∈ [0, 1]
is a hyperparameter that specifies how we weight
the two prediction tasks in our cost function. The
architecture of the joint model, applied to our on-
going example, is illustrated in Figure 3.
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4 Experimental Design

As we have mentioned, our work assumes that
ACs have already been identified. The order of
ACs corresponds directly to the order in which the
ACs appear in the text. We test the effectiveness
of our proposed model on a dataset of persuasive
essays (PEC) (Stab and Gurevych, 2016), as well
as a dataset of microtexts (MTC) (Peldszus, 2014).
The feature space for the PEC has roughly 3,000
dimensions, and the MTC feature space has be-
tween 2,500 and 3,000 dimensions, depending on
the data split. The PEC contains a total of 402 es-
says, with a frozen set of 80 essays held out for
testing. There are three AC types in this corpus:
major claim, claim, and premise. In this corpus,
individual structures can be either trees or forests.
Also, in this corpus, each essay has multiple para-
graphs, and argument structure is only uncovered
within a given paragraph. The MTC contains 112
short texts. Unlike the PEC, each text in this cor-
pus is itself a complete example, as well as a single
tree. Since the dataset is small, the authors have
created 10 sets of 5-fold cross-validation, report-
ing the the average across all splits for final model
evaluation. This corpus contains only two types of
ACs: claim and premise. Note that link prediction
is directed, i.e., predicting a link between the pair
Ci, Cj(i 6= j) is different than Cj , Ci.

We implement our models in TensorFlow
(Abadi et al., 2015). We use the following pa-
rameters: hidden input dimension size 512, hidden
layer size 256 for the bidirectional LSTMs, hidden
layer size 512 for the LSTM decoder, α equal to
0.5, and dropout (Srivastava et al., 2014) of 0.9.
We believe the need for such high dropout is due
to the small amounts of training data (Zarrella and
Marsh, 2016), particularly in the MTC. All models
are trained with Adam optimizer (Kingma and Ba,
2014) with a batch size of 16. For a given training
set, we randomly select 10% to become the valida-
tion set. Training occurs for 4,000 epochs. Once
training is completed, we select the model with the
highest validation accuracy (on the link prediction
task) and evaluate it on the held-out test set. At
test time, we take a greedy approach and select the
index of the probability distribution (whether link
or type prediction) with the highest value.

5 Results

The results of our experiments are presented in Ta-
bles 1 and 2. For each corpus, we present f1 scores

for the AC type classification experiment, with a
macro-averaged score of the individual class f1
scores. We also present the f1 scores for predict-
ing the presence/absence of links between ACs,
as well as the associated macro-average between
these two values.

We implement and compare four types of neural
models: 1) The previously described joint model
from Section 3.4 (called Joint Model in the ta-
bles); 2) The same as 1), but without the fully-
connected input layers (called Joint Model No FC
Input in the table); 3) The same as 1), but the
model only predicts the link task, and is therefore
not optimized for type prediction (called Single-
Task Model in the table); 4) A non-sequence-to-
sequence model that uses the hidden layers pro-
duced by the BLSTM encoder with the same type
of attention as the joint model (called Joint Model
No Seq2Seq in the table). That is, di in Equation
3 is replaced by ei.

In both corpora we compare against the follow-
ing previously proposed models: Base Classifier
(Stab and Gurevych, 2016) is a feature-rich, task-
specific (AC type or link extraction) SVM clas-
sifier. Neither of these classifiers enforce struc-
tural or global constraints. Conversely, the ILP
Joint Model (Stab and Gurevych, 2016) provides
constraints by sharing prediction information be-
tween the base classifiers. For example, the model
attempts to enforce a tree structure among ACs
within a given paragraph, as well as using incom-
ing link predictions to better predict the type class
claim. For the MTC only, we also have the fol-
lowing comparative models: Simple (Peldszus and
Stede, 2015) is a feature-rich logistic regression
classifier. Best EG (Peldszus and Stede, 2015) cre-
ates an Evidence Graph (EG) from the predictions
of a set of base classifiers. The EG models the po-
tential argument structure, and offers a global opti-
mization objective that the base classifiers attempt
to optimize by adjusting their individual weights.
Lastly, MP+p (Peldszus and Stede, 2015) com-
bines predictions from base classifiers with a Min-
imum Spanning Tree Parser (MSTParser).

6 Discussion

First, we point out that the joint model achieves
state-of-the-art on 10 of the 13 metrics in Tables
1 and 2, including the highest results in all met-
rics on the PEC, as well as link prediction on the
MTC. The performance on the MTC is very en-
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Type prediction Link prediction
Model Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
Base Classifier .794 .891 .611 .879 .717 .508 .917
ILP Joint Model .826 .891 .682 .903 .751 .585 .918
Single-Task Model - - - - .709 .511 .906
Joint Model No Seq2Seq .810 .830 .688 .912 .754 .589 .919
Joint Model No FC Input .791 .826 .642 .906 .708 .514 .901
Joint Model .849 .894 .732 .921 .767 .608 .925

Table 1: Results on the Persuasive Essay corpus. All models we tested are joint models, except for
the Single-Task Model model, which only predicts links. All model have a fully-connected input layer,
except for the row titled ‘Joint Model No FC Input’. See Section 5 for a full description of the models.

Type prediction Link prediction
Model Macro f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
Simple .817 - - .663 .478 .848
Best EG .869 - - .693 .502 .884
MP+p .831 - - .720 .546 .894
Base Classifier .830 .712 .937 .650 .446 .841
ILP Joint Model .857 .770 .943 .683 .486 .881
Joint Model .813 .692 .934 .740 .577 .903

Table 2: Results on the Microtext corpus.

couraging for several reasons. First, the fact that
the model can perform so well with only a hun-
dred training examples is rather remarkable. Sec-
ond, although we motivate the use of an attention
model due to the fact that it partially enforces a
tree structure, other models we compare against
explicitly contain further constraints (for example,
only premises can have outgoing links). More-
over, the MP+p model directly enforces the sin-
gle tree constraint unique to the microtext cor-
pus (the PEC allows forests). Even though the
joint model does not have the tree constraint di-
rectly encoded, it able to learn the structure ef-
fectively from the training examples so that it can
outperform the Mp+p model for link prediction.
As for the other neural models, the joint model
with no seq2seq performs competitively with the
ILP joint model on the PEC, but trails the per-
formance of the joint model. We believe this is
because the joint model is able to create two dif-
ferent representations for each AC, one each in
the encoding/decoding state, which benefits per-
formance in the two tasks. We also believe that
the joint model benefits from a second recurrence
over the ACs, modeling the tree/forest structure in
a linear manner. Conversely, the joint model with
no seq2seq must encode information relating to
type as well as link prediction in a single hidden

representation. On one hand, the joint model no
seq2seq outperforms the ILP model on link pre-
diction, yet it is not able to match the ILP joint
model’s performance on type prediction, primar-
ily due to the poor performance on predicting the
major claim class. Another interesting outcome is
the importance of the fully-connected layer before
the LSTM input. This extra layer seems to be cru-
cial for improving performance on this task. The
results dictate that even a simple fully-connected
layer with sigmoid activation can provide a use-
ful dimensionality reduction step. Finally, and ar-
guably most importantly, the single-task model,
only optimized for link prediction, suffers a large
drop in performance, conveying that the dual op-
timization of the joint model is vital for high per-
formance in the link prediction task. We believe
this is because the joint optimization creates more
expressive representations of the ACs, which cap-
ture the natural relation between AC type and AC
linking.

Table 3 shows the results of an ablation study
for AC feature representation. Regarding link pre-
diction, BOW features are clearly the most impor-
tant, as their absence results in the highest drop in
performance. Conversely, the presence of struc-
tural features provides the smallest boost in per-
formance, as the model is still able to record state-
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Type prediction Link prediction
Model Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1
No structural .808 .824 .694 .907 .760 .598 .922
No BOW .796 .833 .652 .902 .728 .543 .912
No Embeddings .827 .874 .695 .911 .750 .581 .918
Only Avg Emb* .832 .873 .717 .917 .751 .583 .918
Only Max Emb* .843 .874 .732 .923 .766 .608 .924
Only Min Emb* .838 .878 .719 .918 .763 .602 .924
All features .849 .894 .732 .921 .767 .608 .925

Table 3: Feature ablation study. * indicates that both BOW and Structural are present, as well as the
stated embedding type.

Type prediction Link prediction
Bin Macro f1 MC f1 Cl f1 Pr f1 Macro f1 Link f1 No Link f1

1 ≤ len < 4 .863 .902 .798 .889 .918 .866 .969
4 ≤ len < 8 .680 .444 .675 .920 .749 .586 .912
8 ≤ len < 12 .862* .000* .762 .961 .742 .542 .941

Table 4: Results of binning test data by length of AC sequence. * indicates that this bin does not contain
any major claim labels, and this average only applies to claim and premise classes. However, we do not
disable the model from predicting this class: the model was able to avoid predicting this class on its own.

of-the-art results compared to the ILP Joint Model.
This shows that the Joint Model is able to capture
structural cues through sequence modeling and se-
mantics. When considering type prediction, both
BOW and structural features are important, and it
is the embedding features that provide the least
benefit. The ablation results also provide an in-
teresting insight into the effectiveness of different
pooling strategies for using individual token em-
beddings to create a multi-word embedding. The
popular method of averaging embeddings (which
is used by Stab and Gurevych (2016) in their sys-
tem) is in fact the worst method, although its per-
formance is still competitive with the previous
state-of-the-art. Conversely, max pooling results
are on par with the joint model results in Table 1.

Table 4 shows results on the PEC test set with
the test examples binned by sequence length.
First, it is not surprising to see that the model per-
forms best when the sequences are the shortest (for
link prediction; type prediction actually sees the
worst performance in the middle bin). As the se-
quence length increases, the accuracy on link pre-
diction drops. This is possibly due to the fact that
as the length increases, a given AC has more possi-
bilities as to which other AC it can link to, making
the task more difficult. Conversely, there is actu-
ally a rise in no link prediction accuracy from the
second to third row. This is likely due to the fact

that since the model predicts at most one outgoing
link, it indirectly predicts no link for the remain-
ing ACs in the sequence. Since the chance prob-
ability is low for having a link between a given
AC in a long sequence, the no link performance
is actually better in longer sequences. The results
of the length-based binning could also potentially
give insight into the poor performance on the type
prediction task in the MTC. Since the arguments in
the MTC average 5 ACs, they would be in the sec-
ond bin (row 2) of Table 4. The claim and premise
f1 scores for this bin are similar to those from the
same system’s performance on the MTC.

7 Conclusion

In this paper we have proposed how to use a
joint sequence-to-sequence model with attention
(Vinyals et al., 2015b) to both extract links be-
tween ACs and classify AC type. We evaluate our
models on two corpora: a corpus of persuasive
essays (Stab and Gurevych, 2016), and a corpus
of microtexts (Peldszus, 2014). The Joint Model
records state-of-the-art results on the persuasive
essay corpus, as well as achieving state-of-the-art
results for link prediction on the microtext corpus.
The results show that jointly modeling the two pre-
diction tasks is critical for high performance. Fu-
ture work can attempt to learn the AC representa-
tions themselves, such as in Kumar et al. (2015).
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Lastly, future work can integrate subtasks 1 and
4 into the model. The representations produced
by Equation 3 could potentially be used to predict
link type, i.e. supporting or attacking (the fourth
subtask in the pipeline). In addition, a segment-
ing technique, such as the one proposed by Weston
et al. (2014), can accomplish subtask 1.
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