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Abstract

This paper looks at the task of pre-
dicting word association strengths across
three datasets; WordNet Evocation (Boyd-
Graber et al., 2006), University of South-
ern Florida Free Association norms (Nel-
son et al., 2004), and Edinburgh Associa-
tive Thesaurus (Kiss et al., 1973). We
achieve results of r = 0.357 and ρ =
0.379, r = 0.344 and ρ = 0.300, an
ρ = 0.292 and ρ = 0.363, respectively.
We find Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) co-
sine similarities, as well as vector offsets,
to be the highest performing features. Fur-
thermore, we examine the usefulness of
Gaussian embeddings (Vilnis and McCal-
lum, 2014) for predicting word association
strength, the first work to do so.

1 Introduction

Word embeddings such as Word2Vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014)
have received increasing attention in the world
of natural language processing and computational
linguistics. Under such embeddings, the seman-
tic relatedness of two words is generally taken to
be the cosine similarity of their word vectors. Al-
though this approach performs well for variety of
applications, it is not without its limitations. First,
it defines “relatedness” quite narrowly as the ex-
tent to which the two words appear in similar con-
texts. Second, it fails to capture how humans in-
ternally represent words (De Deyne et al., 2016b).

Word associations offer a more flexible view
of semantic relatedness by leveraging “lexical
knowledge acquired through world experience”
(Nelson et al., 2004). While word embeddings
capture distributional relationships, word associ-

ations are able to capture more nuanced relation-
ships “which are based on human perception and
experiences [and] are not reflected in common lan-
guage usage.” (Ma, 2013) For example, “yellow”
is so closely associated with “banana” that many
people would only specify a banana’s colour if it
is not yellow. This is backed up by De Deyne et al.
(2016b) which found word associations performed
better than word embeddings across a variety of
semantic relatedness tasks.

Furthermore, word associations, unlike cosine
similarities, are asymmetric; when presented with
the word “beer”, many people think of the word
“glass” but when presented with the word “glass”,
few people think of the word “beer” (Ma, 2013).
This directionality allows for more fine-grained
exploration of semantic links, with applications in
word similarity (Jabeen et al., 2013) and computa-
tional humour (Cattle and Ma, 2016).

Although several word association datasets ex-
ist, such as the Edinburgh Associative Thesaurus
(EAT, Kiss et al., 1973), the University of South
Florida Free Association Norms (USF, Nelson
et al., 2004), or WordNet Evocation (Evocation,
Boyd-Graber et al., 2006), their reliance on human
annotations mean they all suffer from coverage is-
sues relating to limited vocabularies or sparse con-
nectivity (Cattle and Ma, 2016; De Deyne et al.,
2016b). Although these issues would be some-
what alleviated by the creation of larger datasets,
collecting human judgments for all possible word
pairs is impractical. Therefore, the ability to pre-
dict association strengths between arbitrary word
pairs represents the best solution to these coverage
issues (Boyd-Graber et al., 2006).

Although the prediction of Evocation ratings
has attracted some attention (Boyd-Graber et al.,
2006; Hayashi, 2016), to the best of our knowl-
edge this is the first work to focus on the prediction
of USF or EAT strengths. As described in Sec-
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tion 2, USF and EAT have several advantages over
Evocation, such as the ability to work with am-
biguous words instead of WordNet synsets. Fol-
lowing Hayashi (2016)’s work on Evocation pre-
diction, we frame word association prediction as
a supervised regression task and introduce several
new and modified features, including the first use
of Gaussian embeddings (Vilnis and McCallum,
2014) to better capture the asymmetric nature of
word associations.

2 Previous Work

Word association has been used in psychologi-
cal and psycholinguistic experiments for well over
100 years (Boyd-Graber et al., 2006; De Deyne
and Storms, 2008). Word association datasets such
as USF or EAT have typically framed word asso-
ciation as “a task that requires participants to pro-
duce the first word to come to mind that is related
in a specified way to a presented cue” (Nelson
et al., 2000). These datasets use forward strengths,
the proportion of participants who produce a spe-
cific response, to “index the relative accessibility
of related words in memory [for a given cue]”
(Nelson et al., 2004).

This cue/response framework has several draw-
backs. First, since forward strengths are relative,
comparing strengths across different cue words is
difficult. Second, both cues and responses are
ambiguous, with each participant’s responses be-
ing greatly influenced by how they chose to inter-
pret a given cue. For example, someone respond-
ing to the cue “brother” with “monk” is consid-
ering a different sense of “brother” than someone
who responds “sister” (Ma, 2013). As such, for-
ward strengths are biased toward responses which
presume more readily apparent cue word senses.
Third, limiting participants to a single response
can lead to weaker associations being underre-
ported or omitted entirely.

Evocation solves the ambiguity issue by fo-
cusing on associations between WordNet synsets.
Boyd-Graber et al. (2006) presented participants
with randomly selected synset pairs and asked
them to score how much the first synset evoked
(i.e. brought to mind) the second. Unlike forward
strengths, these Evocation ratings are absolute,
meaning they can be directly compared across dif-
ferent cues. While randomly selecting synset pairs
ensured that weaker associations would not be un-
derreported, it did have the disadvantage that 67%

of pairs were unanimously rated as having no con-
nection (Boyd-Graber et al., 2006).

Despite attempts to address this spareness issue
by expanding Evocation with data gathered from
Amazon Mechanical Turk1 (Nikolova et al., 2009)
or word-sense disambiguated USF cue/response
pairs (Ma, 2013), obtaining human judgments
for all possible synset pairs is impractical. As
such, the prediction of Evocation ratings presents
the most promising solution to this coverage is-
sue. Boyd-Graber et al. (2006) detailed a sim-
ple Evocation estimator which used a combina-
tion of WordNet structure-based features, Word-
Net definition-based features, and corpus-based
word co-occurrence features. However, this ap-
proach is somewhat limited in that it frames Evo-
cation prediction as a classification task, consider-
ing only five Evocation levels.

The main drawback of Evocation prediction as
a classification task is that it is too coarse-grained
to deal with very weak associations, such as those
in remote triads (De Deyne et al., 2016a), or very
slight variations in association strength, such as
those useful for computational humour (Cattle and
Ma, 2016). To this end, Hayashi (2016) framed
Evocation prediction as a supervised regression
task. They employed a combination of WordNet
structure-based features, word embedding-based
features, and lexical features and found that vector
offsets, i.e. the mathematical difference between
vectors, were a strong indicator of Evocation rat-
ings.

While Evocation’s use of unambiguous synsets
is useful for many applications, it is not without its
own drawbacks. First, it requires texts to be word
sense disambiguated; a non-trivial task. Second,
since humans do not conceptualize words as a dis-
crete set of independent word senses, Evocation is
unable to capture natural associations owing to ho-
mography, homophony, or polysemy (Ma, 2013).
As such, despite their drawbacks, word associa-
tions may provide a more flexible, more holistic
view of mental semantics.

By allowing participants to record more than
one response, De Deyne and Storms (2008), and
their derivative works De Deyne et al. (2013) and
De Deyne et al. (2016b), were able to better rep-
resent weaker associations. However, this intro-
duced its own set of problems as great care had
to be taken to avoid chaining, i.e. responding to a

1https://mturk.com/
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previous response instead of the cue, and retrieval
inhibition. De Deyne and Storms (2008) frames
word association collection as a continuous task,
meaning not only that the vocabulary is ever grow-
ing but also that changes in associations over time
can be observed and tracked. But despite the steps
taken to improve the size and quality of their asso-
ciation dataset, practicality dictates that coverage
issues cannot be completely eliminated.

3 System Definition

Our word association prediction system extends
the method in Hayashi (2016) with several mod-
ifications to make it better suited to the USF and
EAT datasets.

First, we modify Hayashi (2016)’s lexVector.
Hayashi (2016) represent each word’s part-of-
speech (POS) using a one-hot encoded five dimen-
sional vector (one of each POS in WordNet). Sim-
ilarly, they represent each word’s lexical category
using a one-hot encoded 45 dimensional vector
(one for each WordNet lexicographer file). This
results in a 100 dimensional vector representing
the POS and lexical categories of both the cue
and the response. Since words in USF and EAT
can be associated with multiple synsets and we
want to be able to capture associations related to
polysemy, instead using a one-hot encoding we
employ count vectors specifying the number of
synsets from each POS/lexical category each word
belongs to.

Second, instead of computing Wu-Palmer sim-
ilarity (WUP, Wu and Palmer, 1994) between
a single synset pair, we compute it for all cue
synset/response synset pairs and record the maxi-
mum and average values. Following Boyd-Graber
et al. (2006) and Ma (2013), we also explored the
use of path and Leacock-Chodorow (Leacock and
Chodorow, 1998) similarities but found they did
not add any advantage over WUP alone. We take
a similar approach for adapting load and between-
ness centralities (Barthelemy, 2004) as well as Au-
toExtend (AutoEx, Rothe and Schütze, 2015) sim-
ilarity.

Third, we extend the notion of dirRel, intro-
duced in Hayashi (2016) to leverage the seman-
tic network structure of WordNet. Given a graph
where nodes represent synsets and arcs represent
WordNet relations such as hypernym/hyponym
and holonym/meronym, dirRel(s,t,k) is the propor-
tion of k-step neighbours of s that are also k-step

neighbours of t. In the original formula, s and
t are nodes representing a single synset. We in-
stead consider a set of nodes S and a set of nodes
T representing the set of synsets associated with
the cue and response words, respectively, as shown
in Equation 1. This may increase the probability
that |nb(S, k)∩nb(T, k)|>0, a shortcoming of the
original dirRel due to WordNet’s “relatively sparse
connective structure” (Hayashi, 2016).

dirRel(S, T, k) =
|nb(S, k) ∩ nb(T, k)|

|nb(S, k)| (1)

Fourth, in addition to the Word2Vec (w2v) co-
sine similarity between cue/response pairs calcu-
lated using Google’s pre-trained 300 dimension
Word2Vec embeddings2. We also examine the ef-
fectiveness of Stanford’s pre-trained 300 dimen-
sion GloVe embeddings3.

Fifth, in order to better capture asymmetric
word associations, we propose using Gaussian em-
beddings. Gaussian embeddings (Vilnis and Mc-
Callum, 2014) represent words not as a fixed point
in vector space but as “potential functions”, con-
tinuous densities in latent space; therefore, they
are more suitable for capturing asymmetric rela-
tionships. More specifically, for each cue/response
pair, we calculate both the KL-divergence and
cosine similarities of their Gaussian embeddings.
The embeddings have a dimensionality of 300
and are trained on English Wikipedia using the
Word2Gauss4 (w2g) and the hyperparameters re-
ported by the developer5

Sixth, since cue and response words are not
associated with a single synset, the AutoEx em-
beddings employed in Hayashi (2016) to compute
vector offsets are not well suited for our task. In-
stead, we experiment with offsets calculated using
w2v, GloVe, and w2g embeddings.

Finally, our 300 topic LDA model (Blei et al.,
2003) was trained using Gensim6 on full En-
glish Wikipedia instead of the subset of English
Wikipedia used in Hayashi (2016).

Using the above features, we trained a multi-
layer perceptron for each of our three datasets;
Evocation, USF, and EAT. In the case of Evo-
cation, we discarded any synset information and

2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://github.com/seomoz/word2gauss
5https://github.com/seomoz/word2gauss/issues/18#issuecomment-

286203006
6https://radimrehurek.com/gensim/
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Feature
Evocation USF EAT
r ρ r ρ r ρ

Hayashi (2016) 0.374 0.401 — — — —
All (w/ w2v offsets) 0.357 0.379 0.344 0.300 0.292 0.363
betweenness (max) −0.000 0.004 0.008 0.019 0.035 0.112
betweenness (avg) −0.002 −0.001 0.012 0.004 0.002 0.021
load (max) −0.009 −0.010 0.017 0.025 0.039 0.118
load (avg) −0.007 −0.006 0.002 0.004 0.002 0.017
WUP sim (max) 0.098 0.136 0.092 0.111 0.049 −0.026
WUP sim (avg) 0.051 0.062 0.045 0.051 0.033 0.014
lexVector 0.115 0.117 0.091 0.077 0.105 0.249
dirRel 0.177 0.149 0.152 0.130 0.124 0.049
LDA cos sim 0.129 0.033 0.054 0.040 0.046 0.007
AutoEx cos sim (max) 0.135 0.144 0.124 0.132 0.054 −0.034
AutoEx cos sim (avg) 0.148 0.174 0.082 0.089 0.045 0.019
w2v cos sim 0.265 0.264 0.229 0.226 0.150 0.094
GloVe cos sim 0.239 0.262 0.222 0.232 0.117 −0.010
w2g cos sim 0.227 0.246 0.173 0.185 0.109 0.046
w2g KL-divergence 0.110 0.185 −0.013 −0.011 0.086 0.205
w2v offsets 0.010 0.009 0.092 0.076 0.144 0.299
GloVe offsets 0.007 0.009 0.127 0.098 0.162 0.344
w2g offsets −0.005 −0.003 0.073 0.065 0.111 0.186

Table 1: Individual feature performance after 50
epochs

simply use each synset’s headword (e.g. given the
sysnet entity.n.01, we only considered the word
entity). Following the setup used in Hayashi
(2016), all neural networks are trained using the
Chainer7 Python library with rectified linear units,
dropout, and two hidden layers, each with 50% of
the number of units in the input layer. All were
trained on 80% of their respective dataset, with
20% held out for testing. Mean squared error was
used as a loss function and optimization was per-
formed using Adam algorithm (Kingma and Ba,
2014). To act as a baseline, we also reimple-
mented the system described in Hayashi (2016)
and trained it on the same 80/20 split of Evocation
as our system. In addition to the reported results,
we also performed feature selection experiments
using 20% of the training sets as validation.

4 Results and Discussion

The performance of individual features are re-
ported in Table 1 while the results of our ablation
experiments are reported in Table 2. For all ex-
periments we report both the Pearson correlation
coefficient (as r) and Spearman’s rank correlation
coefficient (as ρ).

The best performing single feature on Evocation
and USF is w2v cosine similarity. However, its re-
moval in the ablation test had little effect. This is
likely due to redundancy between w2v and GloVe;
not only does GloVe perform similarly to w2v but
removing both features at the same time produced
the largest drop in performance. It is unclear
why word embedding cosine similarities in gen-

7http://chainer.org/

Feature
Evocation USF EAT
r ρ r ρ r ρ

All (w/ w2v offsets) 0.357 0.379 0.344 0.300 0.292 0.363
- betweenness (max) 0.360 0.383 0.341 0.301 0.270 0.360
- betweenness (avg) 0.357 0.376 0.331 0.298 0.284 0.353
- load (max) 0.358 0.382 0.339 0.299 0.290 0.375
- load (avg) 0.360 0.381 0.340 0.304 0.279 0.353
- WUP sim (max) 0.367 0.376 0.333 0.294 0.283 0.367
- WUP sim (avg) 0.355 0.374 0.335 0.296 0.291 0.364
- lexVector 0.351 0.365 0.336 0.300 0.275 0.339
- dirRel 0.356 0.375 0.334 0.293 0.283 0.362
- LDA cos sim 0.357 0.377 0.340 0.299 0.291 0.361
- AutoEx cos sim (max) 0.362 0.382 0.347 0.299 0.280 0.358
- AutoEx cos sim (avg) 0.358 0.377 0.346 0.305 0.278 0.357
- w2v cos sim 0.352 0.377 0.331 0.294 0.280 0.345
- GloVe cos sim 0.352 0.367 0.332 0.292 0.284 0.360
- w2v and GloVe sims 0.329 0.342 0.284 0.255 0.261 0.353
- w2g cos sim 0.358 0.378 0.348 0.304 0.284 0.357
- w2g KL-divergence 0.351 0.356 0.344 0.299 0.286 0.348
- w2v offsets 0.361 0.386 0.303 0.280 0.239 0.271

Table 2: Ablation performance after 50 epochs

eral performed relatively poorly on EAT. While
the USF and EAT datasets are very similar, EAT
does seem to contain a greater number of multi-
word cues/responses which would not be in the
word embedding vocabularies. In such cases, per-
haps a multi-word embedding like Doc2Vec (Le
and Mikolov, 2014) would be more appropriate.
However, if this were indeed the issue, one would
expect vector offsets to perform equally poorly.
This is not the case, with GloVe offsets being the
best performing single feature on EAT and the re-
moval of w2v offsets causing the greatest drop in
performance in the EAT ablation tests.

The results of our Hayashi (2016) implementa-
tion are roughly comparable to those reported in
the original paper (r = 0.374, ρ = 0.401 com-
pared to r = 0.439, ρ = 0.400). Our slightly
lower Pearson’s R may be due to differences in
way we split our training and test data as well as
due to randomness in the training process itself.

On Evocation, our system does not perform as
well as Hayashi (2016). This is expected as we ex-
plicitly ignore any synset information and instead
attempt to predict association strengths between
word-sense ambiguous words. Despite this, our
performance is not appreciably lower, indicating
the fitness of our system.

The fact that we perform better on Evocation
than either USF or EAT is quite interesting consid-
ering our system was designed with USF and EAT
in mind. There are several possible explanations
for this. First, as mentioned in Section 2, 67% of
cue/response pairs in Evocation have a strength of
zero. This uniformity in Evocation strengths may
make them easier to predict. Second, due to the
way USF and EAT were collected, there are no
true zeros in the datasets. This lack of grounding
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may skew the predictions. Third, this may be an
indication that predicting associations in a word-
sense ambiguous context is a harder task than pre-
dicting them in a word-sense disambiguated one.
Boyd-Graber et al. (2006) explicitly told annota-
tors to ignore associations based on polysemy or
rhyme. It could be the case that these effects are
more difficult to identify.

Another possible explanation for this relatively
lower performance is a lack of bespoke features.
For example, we heavily rely on WordNet-based
features which make sense in a word-sense disam-
biguated context but are less suited for ambiguous
contexts. In fact, removal of several of these fea-
tures, such as betweenness or AutoEx similarity,
seem to slightly improve performance. One expla-
nation is that, despite noting in Section2 that word
association strengths are influenced by word-sense
frequencies, our system instead implicitly assumes
all synsets are equally likely.

The most surprising finding was the poor per-
formance of Gaussian embeddings overall, and
KL-divergence in particular. Given the asymmet-
ric nature of word associations, KL-divergence
seemed to be a natural fit. However, it is
vastly outperformed by even cosine similarity
on the same set of embeddings. Despite this,
the usefulness of Gaussian embeddings cannot
be ruled out. While we used pre-trained em-
beddings for Word2Vec and GloVe, we had to
train our own Gaussian embedding model. Not
only were Word2Vec and GloVe trained on much
larger corpora than Gaussian embedding’s English
Wikipedia, but the pre-trained embeddings likely
underwent a greater degree of hyperparameter tun-
ing.

5 Conclusions and Future Works

In this paper we explored the effectiveness of
various features for predicting Evocation, USF,
and EAT association strengths, finding GloVe and
Word2Vec cosine similarities as well as vector off-
sets to be the most useful features. We also exam-
ined the effectiveness of Gaussian embeddings for
capturing the asymmetric nature of word embed-
dings but found it to be less effective than tradi-
tional word embeddings.

Although we report a lower performance than
that in Hayashi (2016), potentially indicating that
predicting association strengths in word-sense am-
biguous contexts is a harder task, we believe our

results are a promising start. Training Gaussian
embeddings on a larger corpus may lead to im-
proved effectiveness. Future works should also
consider incorporating word-sense frequencies or
developing word-sense agnostic features, with a
particular focus on asymmetric features.
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