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Abstract

Given a question and a set of answer
candidates, answer triggering determines
whether the candidate set contains any
correct answers. If yes, it then outputs
a correct one. In contrast to existing
pipeline methods which first consider in-
dividual candidate answers separately and
then make a prediction based on a thresh-
old, we propose an end-to-end deep neu-
ral network framework, which is trained
by a novel group-level objective function
that directly optimizes the answer trig-
gering performance. Our objective func-
tion penalizes three potential types of er-
ror and allows training the framework in
an end-to-end manner. Experimental re-
sults on the WIKIQA benchmark show
that our framework outperforms the state
of the arts by a 6.6% absolute gain under
F1 measure1.

1 Introduction
Question Answering (QA) aims at automatically
responding to natural language questions with di-
rect answers (Heilman and Smith, 2010; Severyn
and Moschitti, 2013; Yao et al., 2013; Berant and
Liang, 2014; Yih et al., 2015; Sun et al., 2015;
Miller et al., 2016; Sun et al., 2016). Most existing
QA systems always output an answer for any ques-
tion, no matter whether their answer candidate set
contains correct answers or not (Feng et al., 2015;
Severyn and Moschitti, 2015; Yang et al., 2016;
Rao et al., 2016). In practice, however, this can
greatly hurt user experience, especially when it is
hard for users to judge answer correctness. In this
paper, we study the critical yet under-addressed

1Our code is available at https://github.com/
jiez-osu/answer-triggering.

Answer Triggering (Yang et al., 2015) problem:
Given a question and a set of answer candidates,
determine whether the candidate set contains any
correct answer, and if so, select a correct answer
as system output.

The answer triggering problem can be logi-
cally divided into two sub-problems: P1: Build
an individual-level model to rank answer candi-
dates so that a correct one (if it exists) gets the
highest score. P2: Make a group-level binary pre-
diction on the existence of correct answers within
the candidate set. Previous work (Yang et al.,
2015; Jurczyk et al., 2016) attack the problem via
a pipeline approach: First solve P1 as a ranking
task and then solve P2 by choosing an optimal
threshold upon the previous step’s highest ranking
score. However, the yielded answer triggering per-
formance is far from satisfactory, with F1 between
32% and 36%. An alternative pipeline approach is
to first solve P2 and then P1, i.e., first determine
whether there’s a correct answer in the candidate
set and then rank all candidates to find a correct
one. However, as we will show using state-of-the-
art Multiple Instance Learning (MIL) algorithms
in Section 4, P2 by itself is currently a very chal-
lenging task, partly because of the difficulty of ex-
tracting features from a set of candidate answers
that are effective for answer triggering. Because
both P1 and P2 performances are far from perfect,
the above pipeline approaches also suffer from er-
ror propagation (Finkel et al., 2006; Zeng et al.,
2015).

We propose Group-level Answer Triggering
(GAT), an end-to-end framework for jointly opti-
mizing P1 and P2. Our key contribution in GAT
is a novel group-level objective function, which
aggregates individual-level information and penal-
izes three potential error types in answer triggering
as a group-level task. By optimizing this objec-
tive function, we can directly back-propagate the
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final answer triggering errors to the entire frame-
work and learn all the parameters simultaneously.
We conduct evaluation using the same dataset and
measure as in previous work (Yang et al., 2015;
Jurczyk et al., 2016), and our framework improves
the F1 score by 6.6% (from 36.65% to 43.27%),
compared with the state of the art.

2 Framework
Notations. Let i and j respectively be the index of
question and answer candidate, li,j be the binary
label of the j-th answer candidate for question qi,
and li be the group label of the answer candidate
set of qi (1 if it contains any correct answer; 0 oth-
erwise). mi,j denotes an individual-level match-
ing score, measuring how likely question qi can be
correctly addressed by its j-th answer candidate.

The GAT framework is illustrated in Figure 1,
which consists of three components: (1) Encoder.
Two separate encoders process questions and an-
swer candidates respectively, mapping them from
token sequences into two different vector spaces.
(2) QA Matching. For each question and answer
candidate pair, we concatenate their encoded vec-
tors, and pass it through a feed forward neural
network with a binary softmax output layer. The
output is an individual-level matching score, i.e.,
mi,j . (3) Signed Max Pooling. Max pooling is
applied on all the matching scores in a candidate
set. During training when each candidate is posi-
tively/negatively labeled on whether they can an-
swer the question or not, we use the labels to di-
vide the scores into two disjoint subsets and per-
form max pooling separately:

m+
i = max

j:li,j=1
mi,j , m−

i = max
j:li,j=0

mi,j ,

where m+
i is the maximum score among correct

answers (if there’s any) and m−
i is that among

wrong ones. At testing time when labels are un-
available, it reduces to normal max pooling and
pools a single score mi = maxj mi,j . The an-
swer triggering prediction is then made by com-
paring mi with a predefined threshold (0.5) to de-
cide whether to return the top-scored answer can-
didate to the user.

The GAT framework design is generic in that
the Encoder component can be instantiated with
different network architectures. In this paper, we
implement it with Bidirectional RNNs (Bi-RNN)
(Schuster and Paliwal, 1997) with GRU cells (Cho
et al., 2014), and use the temporal average pooling

DNNEncoder
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Signed Max Pooling

best answer

max pooling

Y

Feed Forward NN

answer existence ?

softmax

question answer candidateanswer candidateanswer candidate

DNN

Figure 1: GAT: An end-to-end deep framework to be trained
with a novel group-level objective function. Rounded rectan-
gles at the bottom represent input data.

over the hidden states as the encoding represen-
tation. We choose Bi-RNN mainly because of its
good performance in many QA problems (Wang
and Nyberg, 2015; Wang et al., 2016).

2.1 Learning
The cost function for negative groups (answer can-
didate sets without correct answers) and positive
groups (those with correct answers) are treated dif-
ferently. For each negative group, the highest QA
matching score is penalized by a hinge loss:

O1 =
1

Nneg

∑
i: li=0

max(0, d− − (0.5−m−
i )),

where the maximum matching score m−
i is com-

pared with 0.5, a fixed threshold for our frame-
work. The variable d− here, as well as d+ and d±

that will appear shortly after, are all margin hyper-
parameters. O1 is normalized by Nneg, which is
the number of negative groups (with li = 0). We
use O1 to reduce false-positive answer existence
predictions by penalizing the top matching score
that is not safely below the 0.5 threshold.

For a positive group, it is more complicated be-
cause answer triggering prediction can have the
following two error types: (1) the top matching
score is below the threshold, or (2) the top ranked
answer candidate is a wrong answer. We design
loss terms O2 and O3 to penalize these two types
of error, respectively. O2 is a hinge loss that pe-
nalizes the case where the highest score among
the correct answers in a group is not large enough
to signify answer existence. O3 is to penalize the
case where the highest score is obtained by an in-
correct candidate answer. Formally:

O2 =
1

Npos

∑
i: li=1

max(0, d+ − (m+
i − 0.5))

O3 =
1

Npos

∑
i: li=1

max(0, d± − (m+
i −m−

i ))
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Finally, the overall objective function in Equa-
tion 1 is a linear combination of the three loss
terms and a standard `2-regularization. Θ denotes
all the trainable parameters in the framework. α,
β and λ are hyper-parameters.

O = O1 + αO2 + βO3 + λ‖Θ‖2 (1)

2.2 A Naive Objective Baseline
For comparison, we provide an alternative objec-
tive formulation, which equivalently treats posi-
tive and negative groups, and does not explicitly
penalize cases where an incorrect candidate an-
swer obtains the highest QA matching score in a
positive group.

O∗
2 =

1
Npos

∑
i: li=1

max(0, d+ − (mi − 0.5))

O∗
1 = O1; O∗ = O∗

1 + α∗O∗
2 + λ∗‖Θ‖2

(2)

Here d+ is a margin and α∗, λ∗ are weights. We
hypothesize this formulation will work worse than
the objective in Equation 1, and will use experi-
ments to verify it.

3 Experiments
3.1 Dataset
We use the WIKIQA dataset (Yang et al., 2015) for
evaluation. It contains 3,047 questions from Bing
query logs, each associated with a group of candi-
date answer sentences from Wikipedia and manu-
ally labeled via crowdsourcing. Several intuitive
features are also included in WIKIQA: two word
matching features (IDF-weighted and unweighted
word-overlapping counts between questions and
candidate answers, denoted as Cnt), the length
of a question (QLen), and the length of a candi-
date answer (SLen). As in previous works, we
also test the effect of these features, by combining
them with other features as input into the Softmax
layer in our framework. We use the standard 70%
(train), 10% (dev), and 20% (test) split of WIK-
IQA. We also use the same data pre-processing
steps for fair comparison: Truncate questions and
sentences to a maximum of 40-token long and
initialize the 300-dimensional word vectors using
pretrained word2vec embedding (Mikolov et al.,
2013).

3.2 Implementation Details
We implement our full framework using Tensor-
Flow (Abadi et al., 2016) and train it using the
AdaDelta optimizer (Zeiler, 2012) with learning

rate 0.1 and decay factor 0.95. Dropout is used
during training to prevent overfitting. The default
threshold in Signed Max Pooling is set at 0.5.
We select the hyper-parameters using the dev set
and set α=1.2, β=1.0, d+=0.2, d−=0.3, d±=0.5,
λ=1e−4. The RNN’s hidden state size is 200 in
both directions. The feed-forward network in QA
Matching has two layers of 400 hidden units.

3.3 Evaluation Metrics
We use precision, recall, and F1, defined in the
same way as in previous work. A question is
treated as a positive case only if it contains one or
more correct answers in its candidate set. For the
prediction of a question, only the candidate with
the highest matching score is considered. A true
positive prediction shall meet two criteria: (1) the
score is above a threshold (0.5 for our framework;
tuned on dev set in other work), and (2) the candi-
date is labeled as a correct answer to the question.

3.4 Results
a. Comparison with Baselines
We evaluate the effectiveness of the proposed GAT
framework by comparing with several baseline
models. To the best of our knowledge, there has
only been limited work so far on answer trigger-
ing, and they are the first two baselines below. (1)
Yang et al. (2015) propose CNN-Cnt, which is
a combination of the CNN model from Yu et al.
(2014) and two Cnt features. We use their best
reported result which is achieved when CNN-Cnt
is combined with QLen features. (2) Jurczyk et
al. (2016) extend the previous work with various
network structures and add some more sophisti-
cated features. Here we compare with their best
model on WIKIQA, which is a CNN model com-
bined with carefully designed tree-matching fea-
tures, extracted from expensive dependency pars-
ing results. (3) We include a third Naive baseline
where the objective function in Equation 2 is used
to train our architecture in Figure 1. Due to space
limits, we show its best result obtained among var-
ious feature combinations.

The results are summarized in Table 1.
We can see that GAT combined with Cnt fea-

tures improves the F1 score from Yang et al.
(2015) and Jurczyk et al. (2016) by around 11.1%
and 6.6% (from 32.17 and 36.65 to 43.27), which
shows the effectiveness of our framework. We
denote this configuration as our full framework.
Through the comparison between Naive and GAT,
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Model Prec Rec F1
(Yang et al., 2015) 27.96 37.86 32.17
(Jurczyk et al., 2016) 29.43 48.56 36.65
Naive +Cnt 27.36 48.84 35.07
GAT 32.70 48.59 39.09
GAT +Cnt (Full) 33.54 60.92 43.27
GAT +Cnt+QLen 33.12 59.09 42.45
GAT +Cnt+SLen 28.03 64.60 39.10
GAT +All 31.35 58.82 40.90

Table 1: Results on the test set.

we can see that our proposed objective function
has a great advantage over the Naive one which
does not model the complexity of answer trigger-
ing for positive candidate sets. Different from
Yang et al. (2015)’s results, combining with the
QLen feature does not further improve the per-
formance in our case, possibly because we choose
Bi-RNN as our encoder, which may capture some
question characteristics better than a length fea-
ture.

b. Framework Breakdown
Now we conduct further analysis in order to bet-
ter understand the contribution of each component
in our full framework. Since the code from (Yang
et al., 2015) is available, we use it (rather than (Ju-
rczyk et al., 2016)) to assist our analysis.

We first test a variant of our full framework by
replacing the Encoder and QA Matching compo-
nent with the CNN based model from (Yang et al.,
2015)2, denoted as GAT w/ CNN, and train it with
our objective. From the first two rows in Table 2,
we observe that: (1) Using our current design Bi-
RNN and feed-foward NN improves from 35.03%
to 43.27%, in comparison with the CNN based
model, partly because their CNN only consists
of one convolution layer and one average pooling
layer. However, we leave more advanced encoder
and QA matching design for future work, and an-
ticipate that more complex CNN based models can
achieve similar or better results than our current
design, as in many other QA-related work (Hu
et al., 2014; He and Lin, 2016). (2) Compared with
the best result from (Yang et al., 2015) in Table 1,
training the CNN based model end-to-end using
our objective improves from 32.17% to 35.03%.
This directly shows an end-to-end learning strat-
egy works better than the pipeline approach in
(Yang et al., 2015).

Now we detach the Encoder component ENC
2Where the QA matching score is obtained first through

CNN encoding and then a bilinear model.

Framework F1 score
dev test

End-to-End Full 44.63 43.27
GAT w/ CNN 39.67 35.03

Pipeline -ENC 39.13 33.42
-ENC -QAM 38.69 33.20

Table 2: GAT framework breakdown. All variants are trained
with our proposed objective function (Equation 1).

from our end-to-end full framework. To obtain
semantic vectors of questions and candidate an-
swers as input to the subsequent QA Matching
component, we leverage Yang et al.(2015)’s re-
leased code to train the Encoder component (with
CNN) through their well-tuned individual-level
optimization, and use their learnt semantic vec-
tors. Then our framework without ENC, i.e.,
-ENC, is trained and tested as before. We fur-
ther detach the QA matching component QAM
in a similar way: We directly use the matching
score between a question and a candidate answer
obtained by Yang et al. (2015), and concate-
nate it with Cnt features as input to the Soft-
max layer, which is our framework without ENC
or QAM, denoted as -ENC -QAM, and trained
by our group-level objective. By comparing them
with our end-to-end frameworks on both dev and
test sets, we can see that it is beneficial to jointly
train the entire framework.

3.5 Error Analysis

We now demonstrate some typical mistake types
made by our framework to inspire future improve-
ments.

Q: What city was the convention when Gerald
Ford was nominated?
A: Held in Kemper arena in Kansas City , Mis-
souri , the convention nominated president Gerald
Ford for a full term, but only after narrowly de-
feating a strong challenge from former California
governor Ronald Reagan.

In this case, A is correct, but our framework
made a false negative prediction. Although al-
ready being the highest ranked in a set of 4 can-
didate answers, A only got a score of 0.134, pos-
sibly due to its complicated semantic structure (at-
tribute clause) and the extra irrelevant information
(defeating Reagan).

Q: What can SQL 2005 do?
A1: Microsoft SQL server is a relational database
management system developed by Microsoft.
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A2: As a database , it is a software product whose
primary function is to store and retrieve data as re-
quested by other software applications, be it those
on the same computer or those running on another
computer across a [TRUNCATED END]

The incorrect answer A1 is ranked higher than
the correct answer A2, both with scores above 0.5.
This is a false positive case, with incorrect rank-
ing as well. Possible reasons are that the detailed
functionality of SQL explained in A2 is hard to be
captured and related to the question, and A2 gets
truncated to 40 tokens long in our experiments.
On the other hand, the “database management sys-
tem” phrase in A1 sounds close to an explanation
of functionality, if not carefully distinguished.

Both cases above show that the semantic rela-
tion between a question and its answer is hard to
capture. For future research, more advanced mod-
els can be incorporated in the Encoder and QA
Matching components of our framework.

4 Related Work
Answer Selection. Answer selection (a.k.a., an-
swer sentence selection) is the task of assigning
answer candidates with individual-level ranking
scores given a question, which is similar to P1 de-
fined in Section 1. Existing QA systems based on
answer selection just select the top-scored candi-
date as answer, without considering the possibility
that the true answer doesn’t even exist. However,
many neural network models recently explored in
the answer existence literature (Hu et al., 2014;
Wang and Nyberg, 2015; Feng et al., 2015) could
be utilized for answer selection as well in the fu-
ture. For example, Tan et al. (2016) explore the
respective advantages of different network archi-
tectures such as Long Short-Term Memory Net-
works (LSTMs) and CNNs. They also develop
hybrid models for answer selection. Various at-
tention mechanisms have been proposed such as
(Wang et al., 2016) for RNNs and (Yin et al., 2015;
dos Santos et al., 2016) for CNNs. Answer se-
lection is also formulated as a sentence similar-
ity measurement problem (He and Lin, 2016; He
et al., 2015) or a pairwise ranking problem as in
(Severyn and Moschitti, 2015; Yang et al., 2016;
Rao et al., 2016).

Multiple Instance Learning We have briefly
mentioned MIL (Babenko et al., 2011; Amores,
2013; Cheplygina et al., 2015) in Section 1. Many
MIL algorithms can not be directly applied for an-
swer triggering, because individual-level annota-

tions and predictions are often assumed unavail-
able and unnecessary in MIL (Maron and Lozano-
Pérez, 1998; Babenko et al., 2011; Amores, 2013;
Cheplygina et al., 2015), but not in the an-
swer triggering setting, where the correctness of
each answer candidate is annotated during train-
ing and needs to be predicted during testing.
We experimented with two popular MIL algo-
rithms that explicitly discriminate individual-level
labels: MI-SVM(Andrews et al., 2003) and Sb-
MIL (Bunescu and Mooney, 2007) implemented
in one of the state-of-the-art MIL toolkits (Do-
ran and Ray, 2014), where we represented each
question/answer with encoder vectors as in Sec-
tion 3.4. Unfortunately, both algorithms predict
no correct answer exists for any question, possibly
because the training data are biased towards nega-
tive groups and the input features are not effective
enough. This indicates that using MIL for answer
triggering is challenging and still open for future
research.

5 Conclusion
In conclusion, we address the critical answer
triggering challenge with an effective framework
based on deep neural networks. We propose a
novel objective function to optimize the entire
framework end-to-end, where we focus more on
the group-level prediction and take into account
multiple important factors. In particular, the ob-
jective function explicitly penalizes three potential
errors in answer triggering: (1) false-positive and
(2) false-negative predictions of the existence of a
correct answer, as well as (3) ranking incorrect an-
swers higher than correct ones. We experimented
with different objective function settings and show
that our GAT framework outperforms the previous
state of the arts by a remarkable margin.

Acknowledgments

We would like to thank the anonymous review-
ers for valuable comments. The computing re-
sources in this work are supported by Ohio Su-
percomputer Center (Center, 1987) and the Na-
tional Science Foundation under Grant No. CNS-
1513120. The third author is supported by the Na-
tional Natural Science Foundation of China (Grant
Nos. 61522206, 61672409, 61373118), the Ma-
jor Basic Research Project of Shaanxi Province
(Grant No. 2017ZDJC-31) and the Science and
Technology Plan Program in Shaanxi Province of
China (Grant No. 2017KJXX-80).

1280



References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Jaume Amores. 2013. Multiple instance classification:
Review, taxonomy and comparative study. Artificial
Intelligence, 201:81–105.

Stuart Andrews, Ioannis Tsochantaridis, and Thomas
Hofmann. 2003. Support vector machines for
multiple-instance learning. Advances in neural in-
formation processing systems, pages 577–584.

Boris Babenko, Ming-Hsuan Yang, and Serge Be-
longie. 2011. Robust object tracking with on-
line multiple instance learning. IEEE transac-
tions on pattern analysis and machine intelligence,
33(8):1619–1632.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In ACL, pages 1415–
1425.

Razvan C Bunescu and Raymond J Mooney. 2007.
Multiple instance learning for sparse positive bags.
In Proceedings of the 24th international conference
on Machine learning, pages 105–112. ACM.

Ohio Supercomputer Center. 1987. Ohio su-
percomputer center. http://osc.edu/ark:
/19495/f5s1ph73.

Veronika Cheplygina, David MJ Tax, and Marco Loog.
2015. Multiple instance learning with bag dissimi-
larities. Pattern Recognition, 48(1):264–275.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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