
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1269–1275
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

AMR Parsing using Stack-LSTMs

Miguel Ballesteros Yaser Al-Onaizan
IBM T.J Watson Research Center,

1101 Kitchawan Road, Route 134 Yorktown Heights, NY 10598. U.S
miguel.ballesteros@ibm.com, onaizan@us.ibm.com

Abstract

We present a transition-based AMR parser
that directly generates AMR parses from
plain text. We use Stack-LSTMs to repre-
sent our parser state and make decisions
greedily. In our experiments, we show
that our parser achieves very competitive
scores on English using only AMR train-
ing data. Adding additional information,
such as POS tags and dependency trees,
improves the results further.

1 Introduction

Transition-based algorithms for natural language
parsing (Yamada and Matsumoto, 2003; Nivre,
2003, 2004, 2008) are formulated as a series of
decisions that read words from a buffer and incre-
mentally combine them to form syntactic struc-
tures in a stack. Apart from dependency pars-
ing, these models, also known as shift-reduce al-
gorithms, have been successfully applied to tasks
like phrase-structure parsing (Zhang and Clark,
2011; Dyer et al., 2016), named entity recognition
(Lample et al., 2016), CCG parsing (Misra and
Artzi, 2016) joint syntactic and semantic parsing
(Henderson et al., 2013; Swayamdipta et al., 2016)
and even abstract-meaning representation parsing
(Wang et al., 2015b,a; Damonte et al., 2016).

AMR parsing requires solving several natural
language processing tasks; mainly named entity
recognition, word sense disambiguation and joint
syntactic and semantic role labeling.1 Given the
difficulty of building an end-to-end system, most
prior work is based on pipelines or heavily de-
pendent on precalculated features (Flanigan et al.,
2014; Zhou et al., 2016; Werling et al., 2015;
Wang et al., 2015b, inter-alia).

1Check (Banarescu et al., 2013) for a complete descrip-
tion of AMR graphs.

Inspired by Wang et al. (2015b,a); Goodman
et al. (2016); Damonte et al. (2016) and Dyer et al.
(2015), we present a shift-reduce algorithm that
produces AMR graphs directly from plain text.
Wang et al. (2015b,a); Zhou et al. (2016); Good-
man et al. (2016) presented transition-based tree-
to-graph transducers that traverse a dependency
tree and transforms it to an AMR graph. Damonte
et al. (2016)’s input is a sentence and it is therefore
more similar (with a different parsing algorithm)
to our approach, but their parser relies on external
tools, such as dependency parsing, semantic role
labeling or named entity recognition.

The input of our parser is plain text sentences
and, through rich word representations, it predicts
all actions (in a single algorithm) needed to gen-
erate an AMR graph representation for an input
sentence; it handles the detection and annotation
of named entities, word sense disambiguation and
it makes connections between the nodes detected
towards building a predicate argument structure.
Even though the system that runs with just words
is very competitive, we further improve the results
incorporating POS tags and dependency trees into
our model.

Stack-LSTMs2 have proven to be useful in tasks
related to syntactic and semantic parsing (Dyer
et al., 2015, 2016; Swayamdipta et al., 2016) and
named entity recognition (Lample et al., 2016). In
this paper, we demonstrate that they can be effec-
tively used for AMR parsing as well.

2 Parsing Algorithm

Our parsing algorithm makes use of a STACK (that
stores AMR nodes and/or words) and a BUFFER

that contains the words that have yet to be pro-
cessed. The parsing algorithm is inspired from

2We use the dynamic framework of Neubig et al. (2017)
to implement our parser.

1269



the semantic actions presented by Henderson et al.
(2013), the transition-based NER algorithm by
Lample et al. (2016) and the arc-standard algo-
rithm (Nivre, 2004). As in (Ballesteros and Nivre,
2013) the buffer starts with the root symbol at the
end of the sequence. Figure 2 shows a running ex-
ample. The transition inventory is the following:

• SHIFT: pops the front of the BUFFER and
push it to the STACK.

• CONFIRM: calls a subroutine that predicts
the AMR node corresponding to the top of
the STACK. It then pops the word from the
STACK and pushes the AMR node to the
STACK. An example is the prediction of a
propbank sense: From occured to occur-01.

• REDUCE: pops the top of the STACK. It oc-
curs when the word/node at the top of the
stack is complete (no more actions can be ap-
plied to it). Note that it can also be applied
to words that do not appear in the final output
graph, and thus they are directly discarded.

• MERGE: pops the two nodes at the top
of the STACK and then it merges them, it
then pushes the resulting node to the top of
STACK. Note that this can be applied recur-
sively. This action serves to get multiword
named entities (e.g. New York City).

• ENTITY(label): labels the node at the top of
the STACK with an entity label. This action
serves to label named entities, such as New
York City or Madrid and it is normally run
after MERGE when it is a multi-word named
entity, or after SHIFT if it is a single-word
named entity.

• DEPENDENT(label,node): creates a new node
in the AMR graph that is dependent on the
node at the top of the STACK. An example
is the introduction of a negative polarity to a
given node: From illegal to (legal, polarity
-).

• LA(label) and RA(label): create a left/right
arc with the top two nodes at the top of the
STACK. They keep both the head and the
dependent in the stack to allow reentrancies
(multiple incoming edges). The head is now
a composition of the head and the dependent.
They are enriched with the AMR label.

• SWAP: pops the two top items at the top of
the STACK, pushes the second node to the
front of the BUFFER, and pushes the first one
back into the STACK. This action allows non-
projective arcs as in (Nivre, 2009) but it also
helps to introduce reentrancies. At oracle
time, SWAP is produced when the word at
the top of the stack is blocking actions that
may happen between the second element at
the top of the stack and any of the words in
the buffer.

Figure 1 shows the parser actions and the effect
on the parser state (contents of the stack, buffer)
and how the graph is changed after applying the
actions.

We implemented an oracle that produces the se-
quence of actions that leads to the gold (or close
to gold) AMR graph. In order to map words in
the sentences to nodes in the AMR graph we need
to align them. We use the JAMR aligner provided
by Flanigan et al. (2014).3 It is important to men-
tion that even though the aligner is quite accurate,
it is not perfect, producing a F1 score of around
0.90. This means that most sentences have at least
one alignment error which implies that our oracle
is not capable of perfectly reproducing all AMR
graphs. This has a direct impact on the accuracy
of the parser described in the next section since it
is trained on sequences of actions that are not per-
fect. The oracle achieves 0.895 F1 Smatch score
(Cai and Knight, 2013) when it is run on the de-
velopment set of the LDC2014T12.

The algorithm allows a set of different con-
straints that varies from the basic ones (not al-
lowing impossible actions such as SHIFT when
the buffer is empty or not generating arcs when
the words have not yet been CONFIRMed and thus
transformed to nodes) to more complicated ones
based on the propbank candidates and number of
arguments. We choose to constrain the parser to
the basic ones and let it learn the more compli-
cated ones.

3 Parsing Model

In this section, we revisit Stack-LSTMs, our pars-
ing model and our word representations.

3We used the latest version of the aligner (Flanigan et al.,
2016)

1270



Stackt Buffert Action Stackt+1 Buffert+1 Graph
S u, B SHIFT u, S B —

u, S B CONFIRM n, S B —
u, S B REDUCE S B —

u, v, S B MERGE (u, v), S B —
u, S B ENTITY(l) (u : l), S B —
u, S B DEPENDENT(r, d) u, S B u

r→ d

u, v, S B RA(r) u, v, S B u
r→ v

u, v, S B LA(r) u, v, S B u
r← v

u, v, S B SWAP u, S v, B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting state.

ACTION STACK BUFFER

INIT It, should, be, vigorously, advocated, R
SHIFT it should, be, vigorously, advocated, R
CONFIRM it should, be, vigorously, advocated, R
SHIFT should, it be, vigorously, advocated, , R
CONFIRM recommend-01, it be, vigorously, advocated, R
SWAP recommend-01 it, be, vigorously, advocated, R
SHIFT it, recommend-01 be, vigorously, advocated, R
SHIFT be, it, recommend-01 vigorously, advocated, R
REDUCE it, recommend-01 vigorously, advocated, R
SHIFT vigorously, it, recommend-01 advocated, R
CONFIRM vigorous, it, recommend-01 advocated, R
SWAP vigorous, recommend-01 it, advocated, R
SWAP vigorous recommend-01, it, advocated, R
SHIFT recommend-01, vigorous it, advocated, R
SHIFT it, recommend-01, vigorous advocated , R
SHIFT it, recommend-01, vigorous advocated, R
SHIFT advocated, it, recommend-01, vigorous R
CONFIRM advocate-01, it, recommend-01, vigorous R
LA(ARG1) advocate-01, it, recommend-01, vigorous R
SWAP advocate-01, recommend-01, vigorous it R
SHIFT it, advocate-01, recommend-01, vigorous R
REDUCE advocate-01, recommend-01, vigorous R
RA(ARG1) advocate-01, recommend-01, vigorous R
SWAP advocate-01, vigorous recommend-01, R
SHIFT recommend01, advocate-01, vigorous R
SHIFT R, recommend01, advocate-01, vigorous
LA(root) R, recommend01, advocate-01, vigorous
REDUCE recommend01, advocate-01, vigorous
REDUCE advocate-01, vigorous
LA(manner) advocate-01, vigorous
REDUCE vigorous
REDUCE

(r / recommend-01
:ARG1 (a / advocate-01

:ARG1 (i / it)
:manner (v / vigorous)))

Figure 2: Transition sequence for the sentence It
should be vigorously advocated. R represents the
root symbol

3.1 Stack-LSTMs

The stack LSTM is an augmented LSTM
(Hochreiter and Schmidhuber, 1997; Graves,
2013) that allows adding new inputs in the same
way as LSTMs but it also provides a POP opera-
tion that moves a pointer to the previous element.
The output vector of the LSTM will consider the
stack pointer instead of the rightmost position of
the sequence.4

4We refer interested readers to (Dyer et al., 2015) for fur-
ther details.

3.2 Representing the State and Making
Parsing Decisions

The state of the algorithm presented in Section 2 is
represented by the contents of the STACK, BUFFER

and a list with the history of actions (which are
encoded as Stack-LSTMs).5 All of this forms the
vector st that represents the state which s calcu-
lated as follows:

st = max {0,W[stt;bt;at] + d} ,

where W is a learned parameter matrix, d is a bias
term and stt, bt,at represent the output vector of
the Stack-LSTMs at time t.

Predicting the Actions: Our model then uses
the vector st for each timestep t to compute the
probability of the next action as:

p(zt | st) =
exp

(
g>zt

st + qzt

)∑
z′∈A exp

(
g>z′st + qz′

) (1)

where gz is a column vector representing the (out-
put) embedding of the action z, and qz is a bias
term for action z. The set A represents the ac-
tions listed in Section 2. Note that due to parsing
constraints the set of possible actions may vary.
The total number of actions (in the LDC2014T12
dataset) is 478; note that they include all possible
labels (in the case of LA and RA ) and the differ-
ent dependent nodes for the DEPENDENT action

Predicting the Nodes: When the model selects
the action CONFIRM, the model needs to decide
the AMR node6 that corresponds to the word at

5 Word representations, input and hidden representations
have 100 dimensions, action and label representations are of
size 20.

6When the word at the top of stack is an out of vocabu-
lary word, the system directly outputs the word itself as AMR
node.

1271



the top of the STACK, by using st, as follows:

p(et | st) =
exp

(
g>et

st + qet

)∑
e′∈N exp

(
g>e′st + qe′

) (2)

whereN is the set of possible candidate nodes for
the word at the top of the STACK. ge is a column
vector representing the (output) embedding of the
node e, and qe is a bias term for the node e. It
is important to mention that this implies finding
a propbank sense or a lemma. For that, we rely
entirely on the AMR training set instead of using
additional resources.

Given that the system runs two softmax opera-
tions, one to predict the action to take and the sec-
ond one to predict the corresponding AMR node,
and they both share LSTMs to make predictions,
we include an additional layer with a tanh nonlin-
earity after st for each softmax.

3.3 Word Representations
We use character-based representations of words
using bidirectional LSTMs (Ling et al., 2015b;
Ballesteros et al., 2015). They learn represen-
tations for words that are orthographically simi-
lar. Note that they are updated with the updates
to the model. Ballesteros et al. (2015) and Lam-
ple et al. (2016) demonstrated that it is possible
to achieve high results in syntactic parsing and
named entity recognition by just using character-
based word representations (not even POS tags, in
fact, in some cases the results with just character-
based representations outperform those that used
explicit POS tags since they provide similar vec-
tors for words with similar/same morphosyntac-
tic tag (Ballesteros et al., 2015)); in this paper
we show a similar result given that both syntactic
parsing and named-entity recognition play a cen-
tral role in AMR parsing.

These are concatenated with pretrained word
embeddings. We use a variant of the skip n-gram
model provided by Ling et al. (2015a) with the
LDC English Gigaword corpus (version 5). These
embeddings encode the syntactic behavior of the
words (see (Ling et al., 2015a)).

More formally, to represent each input token,
we concatenate two vectors: a learned character-
based representation (w̃C); and a fixed vector rep-
resentation from a neural language model (w̃LM).
A linear map (V) is applied to the resulting vector
and passed through a component-wise ReLU,

x = max {0,V[w̃C; w̃LM] + b} .

where V is a learned parameter matrix, b is a bias
term and wC is the character-based learned rep-
resentation for each word, w̃LM is the pretrained
word representation.

3.4 POS Tagging and Dependency Parsing

We may include preprocessed POS tags or depen-
dency parses to incorporate more information into
our model. For the POS tags we use the Stanford
tagger (Toutanova et al., 2003) while we use the
Dyer et al. (2015)’s Stack-LSTM parser trained
on the English CoNLL 2009 dataset (Hajič et al.,
2009) to get the dependencies.

POS tags: The POS tags are preprocessed and
a learned representation tag is concatenated with
the word representations. This is the same setting
as (Dyer et al., 2015).

Dependency Trees: We use them in the same
way as POS tags by concatenating a learned rep-
resentation dep of the dependency label to the
parent with the word representation. Additionally,
we enrich the state representation st, presented in
Section 3.2. If the two words at the top of the
STACK have a dependency between them, st is en-
riched with a learned representation that indicates
that and the direction; otherwise st remains un-
changed. st is calculated as follows:

st = max {0,W[stt;bt;at;dept] + d} ,

where dept is the learned vector that represents
that there is an arc between the two top words at
the top of the stack.

4 Experiments and Results

We use the LDC2014T12 dataset7 for our experi-
ments. Table 1 shows results, including compari-
son with prior work that are also evaluated on the
same dataset.8

7This dataset is a standard for comparison and has been
used for evaluation in recent papers like (Wang et al., 2015a;
Goodman et al., 2016; Zhou et al., 2016). We use the standard
training/development/test split: 10,312 sentences for training,
1,368 sentences for development and 1,371 sentences held-
out for testing.

8The first entry for Damonte et al. is calculated us-
ing a pretrained LDC2015 model, available at https://
github.com/mdtux89/amr-eager, but evaluated on
the LDC2014 dataset. This means that the score is not di-
rectly comparable with the rest. The second entry (0.64) for
Damonte et al. is calculated by training their parser with the
LDC2014 training set which makes it directly comparable
with the rest of the parsers.

1272



Model F1(Newswire) F1(ALL)
Flanigan et al. (2014)* (POS, DEP) 0.59 0.58
Flanigan et al. (2016)* (POS, DEP, NER) 0.62 0.59
Werling et al. (2015)* (POS, DEP, NER) 0.62 –
Damonte et al. (2016)8(POS, DEP, NER, SRL) – 0.61
Damonte et al. (2016)8(POS, DEP, NER, SRL) – 0.64
Artzi et al. (2015) (POS, CCG) 0.66 –
Goodman et al. (2016)* (POS, DEP, NER) 0.70 –
Zhou et al. (2016)* (POS, DEP, NER, SRL) 0.71 0.66
Pust et al. (2015) (LM, NER) – 0.61
Pust et al. (2015) (Wordnet, LM, NER) – 0.66
Wang et al. (2015b)* (POS, DEP, NER) 0.63 0.59
Wang et al. (2015a)* (POS, DEP, NER, SRL) 0.70 0.66
OUR PARSER (NO PRETRAINED-NO CHARS) 0.64 0.59
OUR PARSER (NO PRETRAINED-WITH CHARS) 0.66 0.61
OUR PARSER (WITH PRETRAINED-NO CHARS) 0.66 0.62
OUR PARSER 0.68 0.63
OUR PARSER (POS) 0.68 0.63
OUR PARSER (POS, DEP) 0.69 0.64

Table 1: AMR results on the LDC2014T12
dataset; Newsire section (left) and full (right).
Rows labeled with OUR-PARSER show our re-
sults. POS indicates that the system uses prepro-
cessed POS tags, DEP indicates that it uses pre-
processed dependency trees, SRL indicates that it
uses preprocessed semantic roles, NER indicates
that it uses preprocessed named entitites. LM in-
dicates that it uses a LM trained on AMR data and
WordNet indicates that it uses WordNet to predict
the concepts. Systems marked with * are pipeline
systems that require a dependency parse as input.
(WITH PRETRAINED-NO CHARS) shows the re-
sults of our parser without character-based rep-
resentations. (NO PRETRAINED-WITH CHARS)
shows results without pretrained word embed-
dings. (NO PRETRAINED-NO CHARS) shows re-
sults without character-based representations and
without pretrained word embeddings. The rest
of our results include both pretrained embeddings
and character-based representations.

Our model achieves 0.68 F1 in the newswire
section of the test set just by using character-based
representations of words and pretrained word em-
beddings. All prior work uses lemmatizers, POS
taggers, dependency parsers, named entity rec-
ognizers and semantic role labelers that use ad-
ditional training data while we achieve competi-
tive scores without that. Pust et al. (2015) reports
0.66 F1 in the full test by using WordNet for con-
cept identification, but their performance drops to
0.61 without WordNet. It is worth noting that we
achieved 0.64 in the same test set without Word-
Net. Wang et al. (2015b,a) without SRL (via Prop-
bank) achieves only 0.63 in the newswire test set
while we achieved 0.69 without SRL (and 0.68
without dependency trees).

In order to see whether pretrained word em-
beddings and character-based embeddings are use-

ful we carried out an ablation study by show-
ing the results of our parser with and with-
out character-based representations (replaced by
standard lookup table learned embeddings) and
with and without pretrained word embeddings.
By looking at the results of the parser without
character-based embeddings but with pretrained
word embeddings we observe that the character-
based representation of words are useful since they
help to achieve 2 points better in the Newswire
dataset and 1 point more in the full test set. The
parser with character-based embeddings but with-
out pretrained word embeddings, the parser has
more difficulty to learn and only achieves 0.61 in
the full test set. Finally, the model that does not
use neither character-based embeddings nor pre-
trained word embeddings is the worst achieving
only 0.59 in the full test set, note that this model
has no explicity way of getting any syntactic infor-
mation through the word embeddings nor a smart
way to handle out of vocabulary words.

All the systems marked with * require that the
input is a dependency tree, which means that they
solve a transduction task between a dependency
tree and an AMR graph. Even though our parser
starts from plain text sentences when we incorpo-
rate more information into our model, we achieve
further improvements. POS tags provide small im-
provements (0.6801 without POS tags vs 0.6822
for the model that runs with POS tags). Depen-
dency trees help a bit more achieving 0.6920.

5 Conclusions and Future Work

We present a new transition-based algorithm for
AMR parsing and we implement it using Stack-
LSTMS and a greedy decoder. We present com-
petitive results, without any additional resources
and external tools. Just by looking at the words,
we achieve 0.68 F1 (and 0.69 by preprocessing
dependency trees) in the standard dataset used for
evaluation.

Acknowledgments

We thank Marco Damonte, Shay Cohen and Gior-
gio Satta for running and evaluating their parser in
the LDC2014T12 dataset. We also thank Chuan
Wang for useful discussions.

1273



References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage ccg semantic parsing with amr. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1699–1710, Lisbon, Portugal. Association for Com-
putational Linguistics.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Miguel Ballesteros and Joakim Nivre. 2013. Going
to the roots of dependency parsing. Computational
Linguistics, 39(1).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In ACL
(2), pages 748–752.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2016. An incremental parser for abstract meaning
representation. CoRR, abs/1608.06111.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proc. of ACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT 2016.

Jeffrey Flanigan, Chris Dyer, Noah A Smith, and Jaime
Carbonell. 2016. Cmu at semeval-2016 task 8:
Graph-based amr parsing with infinite ramp loss.
Proceedings of SemEval, pages 1202–1206.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics, volume 1, pages 1426–1436. Association
for Computational Linguistics.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for abstract meaning rep-
resentation parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1–11, Berlin, Germany. Association for Computa-
tional Linguistics.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, CoNLL ’09, pages
1–18, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics,
39(4):949–998.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Guillaume Lample, Miguel Ballesteros, Kazuya
Kawakami, Sandeep Subramanian, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In Proceedings of NAACL-HLT 2016.

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015a. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015b. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Dipendra Kumar Misra and Yoav Artzi. 2016. Neural
shift-reduce ccg semantic parsing. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1775–1786, Austin,
Texas. Association for Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Joakim Nivre. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

1274



Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:4:513–553. MIT Press.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 1-Volume 1, pages 351–359. Association for
Computational Linguistics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. In Proc. EMNLP, Lis-
bon, Portugal.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack lstms. In Proceedings
of the 20th SIGNLL Conference on Computational
Natural Language Learning, CoNLL 2016, Berlin,
Germany, August 11-12, 2016, pages 187–197.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings NAACL.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR parsing
with refined actions and auxiliary analyzers. In
Proc. of , ACL 2015, pages 857–862.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for amr pars-
ing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 366–375, Denver, Colorado. Asso-
ciation for Computational Linguistics.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
982–991, Beijing, China. Association for Computa-
tional Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT), pages
195–206.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105–151.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang
QU, Ran Li, and Yanhui Gu. 2016. Amr parsing
with an incremental joint model. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 680–689, Austin,
Texas. Association for Computational Linguistics.

1275


