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Abstract

Search systems are often focused on pro-
viding relevant results for the “now”, as-
suming both corpora and user needs that
focus on the present. However, many
corpora today reflect significant longitudi-
nal collections ranging from 20 years of
the Web to hundreds of years of digitized
newspapers and books. Understanding the
temporal intent of the user and retrieving
the most relevant historical content has be-
come a significant challenge. Common
search features, such as query expansion,
leverage the relationship between terms
but cannot function well across all times
when relationships vary temporally. In this
work, we introduce a temporal relation-
ship model that is extracted from longitu-
dinal data collections. The model supports
the task of identifying, given two words,
when they relate to each other. We present
an algorithmic framework for this task and
show its application for the task of query
expansion, achieving high gain.

1 Introduction

The focus of large-scale Web search engines is
largely on providing the best access to present
snapshots of text — what we call the “Now Web”.
The system constraints and motivating use cases
of traditional information retrieval (IR) systems,
coupled with the relatively short history of the
Web, has meant that little attention has been paid
to how search engines will function when search
must scale not only to the number of documents
but also temporally. Most IR systems assume fixed
language models and lexicons. They focus only
on the leading edge of query behavior (i.e., what
does the user likely mean today when they type

“Jaguar”). In this context, features as basic as dis-
ambiguation and spelling corrections are fixed to
what is most likely today or within the past few
years (Radinsky et al., 2013), query expansions
and synonyms are weighted towards current infor-
mation (Shokouhi and Radinsky, 2012), and re-
sults tend to include the most recent and popular
content. While this problem would seem to be
speculative in that it will be years until we need to
address it, the reality is the rate of change (Adar
et al.,, 2009) of the Web, language, and culture
have simply compressed the time in which critical
changes happen.

The “Now Web” assumptions are entirely rea-
sonable for temporally coherent text collections
and allow users (and search engines) to ignore the
complexity of changing language and concentrate
on a narrower (though by no means simpler) set of
issues. The reality is that this serves a significant
user population effectively. There are nonethe-
less a growing number of both corpora and users
who require access not just to what is relevant
at a particular instant (e.g., Hathitrust (Willis and
Efron, 2013), historical news corpora, the Internet
Archives, and even fast changing Twitter feeds).
Within such contexts, a search engine will need
to vary the way it functions (e.g., disambigua-
tion) and interacts (e.g., suggested query expan-
sions) depending on the period and temporal scale
of documents being queried. This, of course, is
further complicated by the fact that Web pages are
constantly evolving and replaced.

Take for example the query “Prime Minister
Ariel Sharon”. When fed into a news archive
search engine, the likely intent was finding results
about Sharon’s role as Israel’s Prime Minister, a
role held from 2001 to 2006. Singh et al. (2016)
refer to this as a Historical Query Intent. However,
most popular search engines return results about
Sharon’s death in 2011, when he was no longer
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prime minister. The searcher may take the addi-
tional step of filtering results to a time period, but
this requires knowing what that period should be.
Other query features are also unresponsive to tem-
poral context. For example, the top query sugges-
tions for this query focus on more recent events
of his death: “Former prime minister Sharon dies
at 857, “Former prime minister Sharon’s condi-
tion worsens”, etc. While these might satisfy the
searcher if they are looking for the latest results,
or the results most covered by the press, there are
clearly other possible needs (Bingham, 2010).

In this paper, we focus on the task of measuring
word relatedness over time. Specifically, we infer
whether two words (tokens) relate to each other
during a certain time range. This task is an essen-
tial building block of many temporal applications
and we specifically target time-sensitive query ex-
pansion (QE). Our focus is on semantic related-
ness rather than semantic similarity. Relatedness
assumes many different kinds of specific relations
(e.g. meronymy, antonymy, functional associa-
tion) and is often more useful for computational
linguistics applications than the more narrow no-
tion of similarity (Budanitsky and Hirst, 2006).

We present several temporal word-relatedness
algorithms. Our method utilizes a large scale tem-
poral corpus spanning over 150 years (The New
York Times archive) to generate temporal deep
word embeddings. We describe several algorithms
to measure word relatedness over time using these
temporal embeddings. Figure 1a presents the per-
formance of one of those algorithms on the words
“Obama” and “President”. Note that the high-
est relatedness score for the words appears during
the presidential term of Barack Obama. Similarly,
Figure 1b shows a high score for “Ariel Sharon”
and “prime minister” only during his term.

Using the approach above, we present a spe-
cific application — producing temporally appropri-
ate query-expansions. For example, consider the
query: “Trump Businessman”. Figure 2 shows the
non-temporal query expansion suggestions which
focus heavily on the first entity (i.e., “Trump”) and
his current “state” (i.e., a focus on Donald Trump
as President, rather than presenting suggestions
about Trump’s business activity as implied by the
query). We present an empirical analysis present-
ing the strengths and weaknesses of the different
temporal query-expansion algorithms and compar-
ing them to current word-embeddings-based QE
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Figure 1: Similarity identified by our algorithms
between words over time. Dark gray indicates
high similarity whereas light gray indicates non-
significant similarity.

algorithms (Kuzi et al., 2016; Diaz et al., 2016).

In this paper we describe a novel problem of
evaluating word relatedness over time and con-
tribute our datasets to evaluate this task to the com-
munity'. Second, we present novel representa-
tions and algorithms for evaluating this task and
show high performance. We share our code with
the community as well. Finally, we present the
application of this task to query-expansion and
present several methods built on top of the tem-
poral relatedness algorithms that show high per-
formance for QE.

2 Related Work

Understanding the semantic change of words has
become an active research topic (Section 2.1).
Most work has focused on identifying semantic

"https://github.com/guyrosin/
learning-word-relatedness
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Q_  trump businessman i | !,

trump businessman president
trump businessman quote
trump businessman or politician
trump businessman

Figure 2: Query expansions for the terms “Trump
Businessman”. Most results are referring to his
term as president and not to his business activity.

drifts and word meaning changes. A lot of effort
has been made into analyzing texts temporally:
several methods for temporal information extrac-
tion were recently proposed (Ling and Weld, 2010;
Kuzey and Weikum, 2012; Talukdar et al., 2012),
as well as publicly released knowledge bases, such
as YAGO2 (Hoffart et al., 2013). These meth-
ods automatically extract temporal relational facts
from free text or semi-structured data. In addi-
tion, Pustejovsky et al. (2003); UzZaman et al.
(2012) and others annotated texts temporally, and
extracted events as well as temporal expressions.

Work in Information Retrieval (IR, Section 2.2)
has discussed the concept of ‘time’ as a contextual
parameter for understanding user intent. Largely,
this research utilizes query-log analysis with the
time of the query as a context signal. In this work,
we leverage the temporal variation in word relat-
edness to understand, and better accommodate, in-
tent.

2.1 Word Dynamics

Continuous word embeddings (Mikolov et al.,
2013) have been shown to effectively encapsu-
late relatedness between words. Radinsky et al.
(2011) used temporal patterns of words from a
large corpus for the task of word similarity. They
showed that words that co-occur in history have a
stronger relation. In our work, we focus on iden-
tifying when a relation holds. Numerous projects
have studied the change of word meanings over
time, and specifically focused on identification of
the change itself. Sagi et al. (2009) used Latent
Semantic Analysis for detecting changes in word
meaning. Wijaya and Yeniterzi (2011) character-
ized 20 clusters to describe the nature of meaning
change over time, whereas Mitra et al. (2014) used
other clustering techniques to find changes in word
senses. Mihalcea and Nastase (2012) identified
changes in word usage over time by the change in
their related part-of-speech. Others have investi-
gated the use of word frequency to identify epochs
(Popescu and Strapparava, 2013).

Jatowt and Duh (2014) represented a word em-
bedding over the Google Books corpus (granu-
larity of decades) and presented qualitative eval-
uation for several words. Hamilton et al. (2016)
built Word2Vec embedding models on the Google
Books corpus to detect known word shifts over 30
words and presented a dozen new shifts from the
data. The authors presented two laws that gov-
ern the change of words — frequent words change
more slowly and polysemous words change more
quickly. Finally, Kenter et al. (2015) studied
changes in meaning (represented by a few seed
words), and monitored the changing set of words
that are used to denote it.

In our work, we focus on learning relatedness of
words over time. We evaluate the technique using
a large scale analysis showing its prediction accu-
racy. Moreover, we define the task of identifying
the temporality of relatedness between two words.
We show that understanding the temporal behavior
of entities improves performance on IR tasks.

2.2 Temporal Search

The temporal aspects of queries and ranking
gained significant attention in IR literature. Some
have focused on characterizing query behavior
over time. For example, different queries change
in popularity over time (Wang et al., 2003) and
even by time of day (Beitzel et al., 2004). Jones
and Diaz (2007) described queries to have three
temporarilty patterns: atemporal, temporally un-
ambiguous and temporally ambiguous. Others
have leveraged temporal variance to look for in-
dicators of query intent (Kulkarni et al., 2011).
Several efforts (Shimshoni et al., 2009; Chien
and Immorlica, 2005; M. Vlachos and Gunop-
ulos, 2004; Zhao et al., 2006; Shokouhi, 2011;
Radinsky et al., 2012) were done to not only
characterize the temporal query behavior but also
model it via time-series analysis. Radinsky and
colleagues modeled changes in the frequency of
clicked URLs, queries, and clicked query-URL
pairs by using time-series analysis and show its
application for improving ranking and query auto-
suggestions (Radinsky et al., 2013; Shokouhi and
Radinsky, 2012). Singh et al. (2016) focused on
serving the specific needs of historians, and intro-
duced the notion of a Historical Query Intent for
this purpose.

Whereas prior work mainly focuses on query-
log analysis and understanding the user’s intent
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based on the time the query was issued or the
document was changed, our work focuses on un-
derstanding the subtle changes of language over
time that indicate a temporal intent. We show that
understanding the temporal relatedness between
words is a building block needed for understand-
ing better query intent. Given two words or en-
tities we identify when their relatedness was the
strongest to help produce better query expansions.

3 Temporal Relatedness Dynamics and
Semantics

To address the task of understanding temporal re-
latedness, our approach consists of three main
steps: (1) Represent relatedness using word em-
beddings over time (Section 3.1). (2) Model re-
latedness change over time as a time series (Sec-
tion 3.2). (3) Combine these to identify when re-
latedness relations hold temporally (Section 3.3).

3.1 Representing Relatedness using Word
Embeddings

In our work we leverage the distributed represen-
tation framework of Word2Vec (Mikolov et al.,
2013) (specifically skip-grams). Intuitively, given
a word wy, skip-grams attempt to predict sur-
rounding words, e.g. wi_9,Ws_1, W1, Weto for
a window size of ¢ = 2.

Definition 3.1. Let C; be the word context for a
word w;. In this work, we consider the context to
be the surrounding words of a window size of n
Ci = {wji—n, Wi—1, Wit1, Witn }. We define C! to
be the context for a word w; in time period ¢, i.e.
only in the documents written during time .

Definition 3.2. We define the word context of a
specific embedding of a year y for a word wy,
to be {w, € C}}. Intuitively, a specific embed-
ding represents the embedding of a word in a cer-
tain year. We denote the vector representation of a
word w; in a year y by vY.

Definition 3.3. We define the word context of a
global embedding for a word w; to be C;. Intu-
itively, a global embedding represents the embed-
ding of a word over all time periods. We denote
the vector representation of a word w; by v;.

Using Word2Vec, we approximate the seman-
tic relatedness between two entities by the co-
sine similarity between their embeddings (Turney
et al., 2010).

Definition 3.4. A temporal relation (e, e, 1),
where e; are entities and ¢ is a referenced time pe-
riod, is said to be true if ey, e relate during {, i.e.
their semantic relatedness during that time is rela-
tively high. For example: (Christopher Nolan, The
Dark Knight, 2008) is true, due to the fact that the
movie, which was released in 2008, was directed
by Nolan.

Definition 3.5. The dynamics of two entities
e1, eg is defined to be the time series of the se-
mantic relatedness of e and es:

Dynamics(ey, es) =

t1

<cos(v1 ,V5'), ..., cos Ul ,02 > €))

where t1, ..., 1, are all the time periods.

We model entities’ relatedness change over time
by constructing their dynamics. Recall Figure 1a,
which shows the semantic distance between the
vector representations of Barack Obama and Pres-
ident over the years. Semantic distance is an accu-
rate indicator of the time period when Obama was
president. Therefore, our goal is to detect the time
periods of high relatedness using peak detection.

3.2 Understanding Relatedness Dynamics

When considering a relationship between entities,
detecting time periods of high relatedness enables
us to reveal and identify what we call “periods of
interest” — time periods in which the entities were
the closest. In this section, we present an algo-
rithm to identify these “periods of interest”. Intu-
itively, when considering the dynamics of two en-
tities, its peaks represent the lowest distances over
time. More formally, given two entities e, ea we
want to construct their dynamics and find peaks
in it, i.e. the following sequence of time peri-
ods: {t; | cos(vl',v§) is relatively high, and t; <
tiifi <j}

Traditional peak detection algorithms focus on
detecting peaks that are sharp and isolated (i.e.
not too many surrounding points have similar val-
ues) (Palshikar et al., 2009). In our case, rela-
tions often imply continuous periods of peaks, e.g.
Obama was president for eight years. Therefore,
we need to detect peaks, as well as periods of con-
tinuous peaks (i.e., steps).

Let L = (t1,v1), (t2,v2),..., (tn.vy) be a list
of tuples, where ¢; are time periods and v; are val-
ues. Given L, the algorithm returns a list of peak
periods, i.e. {t € L | ¢ contains a peak}.
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The first step is to find relative maxima: we
scan L and look for pairs (¢;,v;) such that v;_; <
v; > Vit1, 1.6. v; is a local maximum. We apply
two minimum thresholds in order to filter insignifi-
cant points: An absolute threshold, which below it
we consider the peak not to be significant enough,
and a relative threshold which facilitates removing
points that are much lower than the highest max-
imum. The final step of the algorithm is to find
plateaus which will also be considered part of the
peak. For each peak point, the algorithm considers
the point’s surrounding neighbors. Using a thresh-
old relative to the current peak, those identified as
close in their value to the current peak are added
to the peak list.

3.3 Learning Temporal Relatedness

We define the task of learning temporal related-
ness: given two entities ey, es, identify whether
they relate to each other during a certain year y,
i.e., whether the temporal relation (ep,ez,y) is
true. For example, in Figure 1a, Obama was re-
lated to President in 2010 but not in 2005.

3.3.1 Specific Classifier

The first method we present to classify word re-
latedness, employs a classifier that receives as in-
puts v; corresponding to the entities e; and an ad-
ditional feature of the year. In our evaluation (Sec-
tion 4) we will use about 40 years of data, i.e.
the year feature will have 40 possible values. The
classifier will predict, given two entities, whether
they relate to each other during a referenced year.
Let Cl: R™ — {0, 1} be a classifier mapping a
vector of n features F' = (f1,..., f,) to a label
L € {0,1}. Let our feature vector be of the form:

F = (v[lvilly) (2)

where v{ is the first entity’s specific embedding
(i.e. at time y), v3 is the second entity’s spe-
cific embedding and y is the year. As a prelimi-
nary step, we need to train C'/ on a diverse dataset
of positive and negative examples, i.e. true and
false temporal relations. For this purpose, we uti-
lize our temporal relations dataset (Section 3.4.2).
From each relation, we extract a temporal relation
(e1,e2,y), calculate its feature vector and use it
for training.

Given a new temporal relation, we apply CI to
predict whether it is true, i.e. whether its entities
relate during the referenced time.

3.3.2 Temporal Classifier

Here we use a classifier similar to the one de-
scribed in Section 3.3.1 (training is performed the
same way), combined with input from the enti-
ties dynamics. First, we build the dynamics, i.e.
build specific word embeddings of e; and ey for
every year y, and calculate their cosine similarity
cos(v{,vy). We then apply our peak detection al-
gorithm (Section 3.2) on the dynamics and use its
output as one of the classifier’s features (denoted
by isPeak). As a result, our feature vector is:

F = (v]||v3|lyllis Peak) 3)

3.4 Leveraging World Knowledge

We apply our techniques to two corpora: the first is
a temporal corpora (Section 3.4.1), which we used
for creating word embeddings, and the second is a
relational corpora (Section 3.4.2), which we used
for training our models and for evaluation.

3.4.1 Temporal Corpora

For constructing the corpora, we used The New
York Times archive?, with articles from 1981
to 2016 (9GB of text in total). Specific word
embeddings were generated for every time pe-
riod (i.e., year) using Word2Vec. Each year’s
data was used to create word embeddings using
Word2Vec’s skip-gram with negative sampling ap-
proach (Mikolov et al., 2013), with the Gensim li-
brary (lvlehﬁfek and Sojka, 2010). We trained the
models with the following parameters: window
size of 5, learning rate of 0.05 and dimensional-
ity of 140. We filtered out words with less than 30
occurrences during that year.

We observe both ambiguity (Apple, the com-
pany and the fruit) and variability (different
phrases referring to the same entity, e.g., Presi-
dent Obama, Barack H. Obama, Obama). While
such ‘noise’ may be problematic, both the scale of
the data and stylistic standards of The New York
Times help. Additionally, we ensure a connection
to an entity database (Wikipedia) and perform ad-
ditional cleaning methods (lemmatization, remov-
ing stopwords).

3.4.2 Relational Corpora

In this work, we use YAGO2 (Hoffart et al., 2013)
as our relational corpora due to its temporal focus.
The YAGO2 knowledge base contains millions of
facts about entities, automatically extracted from

2http ://spiderbites.nytimes.com/
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Relation Type Count %
Directed 37713 4742
HoldsPoliticalPosition 2765  3.48
IsMarriedTo 2210  2.78
PlaysFor 4376  5.50
Produced 23567 29.63
HappenedIn 8899 11.19
Total 79530 100

Table 1: Relations Dataset Composition

Wikipedia and other sources. We use relations
from YAGO?2 to build our own dataset of tempo-
ral relations, which we use in all of our algorithms
and evaluation — as a source for temporal relations.

The dataset consists of temporal relations in the
following format: (entity;, entitys, year, type,
class), where entity; and entitys are entities,
type is a relation type, and class is true if the
relation holds on year. For example, (Tim Bur-
ton, Batman Returns, 1992, Directed, true) and
(Battle Mogadishu, Somalia, 2010, Happenedin,
true). Table 1 shows the exact dataset composi-
tion. We built our dataset on all the relation types
that have a temporal dimension in YAGO?2: Di-
rected, HoldsPoliticalPosition, IsMarriedTo, Pro-
duced, PlaysFor, HappenedIn. The dataset con-
tains 80K of such relations.

4 Evaluation

4.1 Experimental Methodology

We compare the methods described in Section 3.3,
where for Cl we chose to use a Support Vector
Machine (SVM)?, with an RBF kernel and C=1.0
(chosen empirically). Two baselines were used
for comparison. The first is the common non-
temporal model, i.e. a classifier that uses the
global (all-time) word embeddings and the follow-
ing features: the two entities’ global embeddings,
and a year. More formally,

F = (vi]|v2]y) 4)

Given a new temporal relation, the classifier pre-
dicts whether it is true during the referenced year,
and we output the classifier’s prediction. The sec-
ond baseline we compare against is a standard text

3We used the implementation by the scikit-learn li-
brary (Pedregosa et al., 2011).

classifier that uses the global word embeddings as
its only features, i.e. F' = (v1||ve).

The dataset on which we perform the evalua-
tion is described in Section 4.2. The dataset is not
balanced: it contains more negative examples than
positive ones. Therefore, for evaluating the meth-
ods that involve a classifier we use stratified 10-
fold cross validation. We remove relations from
consideration if there is insufficient data in the cor-
pora for that year (i.e., one of the entities was fil-
tered out due to low incidence).

4.2 Dataset Construction

Recall that our relational corpora consists of
80K temporal relations in the following format:
(entityy, entitys, year, type, class), where type
is a relation type, and class is true if the relation
holds on year.

For training and evaluating our classifiers we
need negative examples as well as positive exam-
ples. We generate negative examples in the follow-
ing way: for every relation in the corpora, we ran-
domly sample 10 negative examples. We exclude
the years of the true examples from the dataset’s
year range, and then randomly choose years for the
negative examples. To illustrate, let us observe the
case of Obama, President: Obama was president
from 2009-2016, so we sample negative examples
from 1981 to 2008, such as (Obama, President,
1990, HoldsPoliticalPosition, false). The resulting
dataset contains 420K relations. We refer to it as
the Temporal Relations Dataset*.

4.3 Main Results

Table 2 presents the results of our experiments.

Baselines: The Global and Global+Year base-
lines produced an AUC of 0.55 and 0.57, respec-
tively. They both performed much worse com-
pared to our methods, with F1 of 0.13.

Specific Classifier produced an AUC of 0.72. It
has the highest recall score of all methods (0.88),
but its other scores are relatively low.

Temporal Classifier produced an AUC of 0.83.
As reported in Table 2, it performed significantly
better compared to all other methods, with p <
0.05. We applied the Wilcoxon signed-rank test to
calculate statistical significance.

*https://github.com/guyrosin/
learning-word-relatedness
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Algorithm  Acc. Rec. Pr F1 AUC
Global 0.67 0.26 0.08 0.13 0.57
Global+Year 0.52 039 0.08 0.13 0.55
Specific 052 091 032 047 0.73
Temporal 0.81 0.67 0.58 0.62 0.84

Table 2: Relatedness Learning Evaluation Results
(Accuracy, Recall, Precision, F1, AUC)

4.4 Performance Analysis

We tuned Word2Vec parameters by empirically
testing on a random subset of our dataset: we
set the vector size to be 140 and used a mini-
mum threshold of 30 occurrences (per year). We
found that this balanced the removal of noisy data
while ensuring that key entities were retained. For
constructing the Word2Vec models, the amount of
data is crucial or it may lead to unreliable (Hellrich
and Hahn, 2016) or inaccurate results. We saw
a clear correlation between accuracy and num-
ber of occurrences of a participating word. That
drove our decision to evaluate our algorithms only
on New York Times articles from 1981 onwards
— where the number of articles per year is suffi-
ciently large.

5 Task Example: Query Expansion

Temporal relatedness learning can be used for var-
ious NLP and IR-related tasks. For example, it is
a common practice in IR to expand user queries to
improve retrieval performance (Carpineto and Ro-
mano, 2012). Our technique allows us to produce
temporally appropriate expansions. Specifically,
given a query of n entities Q = {e1,e2,...,en},
our task is to expand () with additional search
terms to add to it to improve retrieval of relevant
documents.

For example, consider the query “Trump Busi-
nessman” (Figure 2). Current QE methods, which
do not have a temporal aspect, focus on Donald
Trump as President of the United States, a poten-
tially erroneous result depending on the temporal
focus of the searcher. A reasonable temporal ex-
pansion, might contain terms that relate to Donald
Trump’s business activity, such as “billionaire” or
“real estate”. Using our technique, the temporal
focus of a query can be identified and appropriate
expansions offered to the end-user. Specifically,
we can analyze the relationship between the query

entities to identify the “most relevant” time period
— when those entities were strongly connected. In-
tuitively, the QE algorithms will identify the most
relevant time period ¢ for the query entities, and
find semantically related terms from that time, to
expand the query with.

To tackle this task, we use the algorithms de-
scribed in Section 3.3. Several different algo-
rithms can utilize the temporal relation models for
the task of query expansion. Let us introduce the
following definitions for our QE algorithms:

Definition 5.1. Let N N}, (e) be the set of K terms
that are the closest to an entity e in time .

Definition 5.2. Let N Ng (e) be the set of “glob-
ally” (all-time) closest terms to an entity e .

Definition 5.3. Mutual closeness between an en-
tity « and a query (Q is defined by the sum of co-
sine similarities between z and every e € (), i.e.

Mps(z,Q) := Z cos(x, e) (5)
ecqR)

5.1 Query Expansion Algorithms

We describe alternative strategies to provide tem-
poral query expansion ranging from a generic
baseline to algorithms that leverage our embed-
ding and classifiers. As a running example, we
use the query: “Steven Spielberg, Saving Private
Ryan” (Spielberg directed the movie in 1998).
‘Reasonable’ (temporally relevant) expansions for
this query might include: actors who played in this
movie, other Spielberg films or similar films from
the same time and genre, etc.

5.1.1 Baseline

Following the results of Roy et al. (2016), we con-
sider a baseline method that expands each entity
separately, based on global Word2Vec similarity.
We define the set of candidate expansion terms as

C = U NNk(e) (6)
ecqR

i.e., for each entity, we choose the closest K global
terms. For each ¢ € C, we compute the mu-
tual closeness M,s(c, Q) and sort the terms in
C on the basis of this value. The top K candi-
dates are selected as the actual expansion terms.
The baseline (poorly) expands the query “Steven
Spielberg, Saving Private Ryan” with “Inglourious
[Basterds], George Lucas”. In some sense, one
can see the relation — both are war movies, and
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Lucas and Spielberg have worked together. How-
ever, Inglourious Basterds was created at 2009 and
was directed by Quentin Tarantino.

5.1.2 Globally-Based Classifier
We use a heuristic and assume that the most rele-
vant time period ¢ for the entities of the query is
the time when the entities were the closest. We
use the classifier from our baseline method in Sec-
tion 4.1, whose goal is to estimate how relevant
a year is to a given set of n entities. Its features
are the global word embeddings, as well as a year:
F = (vrflva]l ... [oully).

We apply the classifier to every year y, and
choose the one with the highest returned proba-
bility of the true label as the most relevant time ¢.

t = argmax{Cl(vi,va,...,vn,y)}  (7)

y
We take as candidate-expansion terms the K clos-
est terms to each entity from that year, separately:

C = |J NNg(e) ®)
ecqR
(' is then filtered as described in the baseline.

To train the classifier, for each temporal rela-
tion in our temporal relations dataset, we calculate
its feature vector and use it for training. Consid-
ering our example, this method wrongly chooses
t = 2004. In that year the entity Saving Private
Ryan does not exist, so we end up with a wrong
expansion of “Francis Ford Coppola film”.

5.1.3 Temporal Classifier

As we have seen in the previous subsection, the
globally-based classifier is limited in cases where
time-specific knowledge might yield better results.
Thus, in this method we use the specific classi-
fier from Section 3.3.1. Its features are the en-
tities’ specific embeddings, and a year: F =
(WY [|vd]l...|vnlly). We then continue as de-
scribed in the previous method (find ¢, choose can-
didate terms and filter).

For our example, this method chooses correctly
t = 1998, which is exactly the year of Saving Pri-
vate Ryan release. Its expansion is “Tom Hanks,
Movie”. Since Tom Hanks had a lead role in the
movie, the expansion is reasonable. The next al-
gorithm produces the same expansion as well.

5.1.4 Temporal Model Classifier

This method uses the temporal classifier from
Section 3.3.2. Its feature vector is: F =

(WY |[v8]] ... [Jvh|ly||isPeak). The rest is the same
as described in Section 5.1.3.

5.2 Query Expansion Evaluation

Dataset. To evaluate temporal query expansion
we use our temporal relations dataset, which will
be made publicly available (described in Sec-
tion 3.4.2). First, we evaluate on queries consist-
ing of two entities (n = 2): for each relation, we
create a distinct query that consists of its two enti-
ties concatenated. We search The New York Times
corpus with this query®>. We compare search per-
formance when applying the various QE methods
described in Section 5.1. To evaluate the methods
that involve a classifier, we use stratified 10-fold
cross validation, as the previous task was evalu-
ated (Section 4.1). We use K = 2 for all methods,
i.e. we generate two expansion terms per query.

In addition, we evaluate on queries consisting of
three entities (n = 3): we created a new dataset,
which contains triplets of entities instead of pairs,
by merging every two related (true) relations from
our relations dataset. Two relations are considered
related if they share an entity, and their time peri-
ods overlap. We then generate negative relations
as described in Section 4.2. In this new dataset,
each temporal relation consists of three entities, a
year and a binary classification.

Evaluation Metrics. Though a complete eval-
uation of QE is beyond the scope of this paper we
describe here an evaluation suited for the tempo-
ral case. It should be noted that the technique we
propose here would likely be used alongside es-
tablished QE techniques (e.g., log mining).

First, when providing query expansions and
suggestions we would like for them to not only
retrieve relevant content, but temporally-relevant
content. To test the latter we say that given a
temporal relation, a retrieved article is considered
“true” if it were published within the referenced
time, and “false” otherwise. Additional manual
validation was done to evaluate its relevance to the
query. This metric, while not the most accurate
one, allows us to distinguish between results from
the most relevant time period and others. Preci-
sion of the top 10 retrieved documents (P@10) is
used to evaluate the retrieval effectiveness.

Results. The results of the QE evaluation are
reported in Table 3. We observe a consistent be-

Sthe archive was indexed using Solr (https://
lucene.apache.org/solr/)
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P@10

Method
n=2 n=3
Baseline (Roy et al., 2016) 14.0% 17.7%
Globally-Based Classifier 18.0% 22.7%
Temporal Classifier 271% 38.5%
Temporal Model Classifier 29.4%  39%

Table 3: Results of QE Algorithms Evaluation

havior for different query sizes (n = 2,3). For
our temporal classifiers, for n = 3 there is a 30%
increase in precision, compared to n = 2.

All of our methods performed significantly bet-
ter compared to the baseline (statistical signifi-
cance testing has been performed using paired t-
test with p < 0.05). This establishes our claim
that utilizing temporal knowledge yields more
temporal—promising results. The Temporal Model
Classifier showed the best performance of all.
This, too, suits our claim and fits to the results
from the previous task (Section 4.3).

5.3 Textual Relevance

To validate results, we compared our query expan-
sion algorithms’ performance on different relation
types and found big differences. On the relations
HoldsPoliticalPosition, HappenedIn and IsMar-
riedTo, the temporal algorithms achieved around
50% accuracy, while on Directed and Produced
they got only 20%. This difference is reasonable,
as our models were built upon a news corpus.

Let us observe an example of using the QE al-
gorithms with the query “Vicente Fox President”
(Fox was president of Mexico from 2000 to 2006).
The baseline expands with Mexico’s two previous
presidents (Zedillo and Salinas). This makes sense
as the baseline doesn’t take time into account. The
globally-based classifier expands with Roh Moo-
hyun, who was president of Korea during the same
time period. Temporal Classifier expands with
“Ricardo Lagos, National Action Party” (Lagos
was president of Chile during that time. The lat-
ter is Fox’s political party). The Temporal Model
Classifier expands with ‘presidential’ and Fran-
cisco Labastida (the candidate who lost the elec-
tions to Fox).

Figure 3 shows the similarity between Apple
and its top products since 1990. We can infer
which products were the most significant at each
time. Take as example the query “Apple Steve

075
5
07

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

——Macintosh ——iTunes iPhone —iPad iPod

Figure 3: Similarity between Apple and its top
products over time. The y-axis is cosine similarity.

Jobs”. Using our technique, we can find the most
relevant time period for this query, which is from
Apple’s foundation in 1976 until Jobs’ death in
2011. Leveraging Figure 3, we can expand this
query focusing on the most popular products of
that time.

6 Conclusions

We believe that as corpora evolve to include
temporally-varying datasets, new techniques must
be devised to support traditional and new IR meth-
ods. In this paper, we introduced a novel technique
for extracting relations in temporal datasets. The
technique is efficient at large scales and works in
an unsupervised manner. Our experiments demon-
strate the viability of the extraction technique as
well as describing ways that it can be used in
downstream applications. We specifically demon-
strate a number of query expansion algorithms that
can benefit from this technique.
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