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Abstract

We present the first unsupervised LSTM
speech segmenter as a cognitive model
of the acquisition of words from unseg-
mented input. Cognitive biases toward
phonological and syntactic predictability
in speech are rooted in the limitations of
human memory (Baddeley et al., 1998);
compressed representations are easier to
acquire and retain in memory. To model
the biases introduced by these memory
limitations, our system uses an LSTM-
based encoder-decoder with a small num-
ber of hidden units, then searches for a
segmentation that minimizes autoencod-
ing loss. Linguistically meaningful seg-
ments (e.g. words) should share regu-
lar patterns of features that facilitate de-
coder performance in comparison to ran-
dom segmentations, and we show that
our learner discovers these patterns when
trained on either phoneme sequences or
raw acoustics. To our knowledge, ours is
the first fully unsupervised system to be
able to segment both symbolic and acous-
tic representations of speech.

1 Introduction

This paper describes a new cognitive model of the
acquisition of word-like units from unsegmented
input. The model is intended to describe the pro-
cess by which pre-linguistic infants learn their ear-
liest words, a stage they pass through during the
first year of life (Jusczyk and Aslin, 1995; Bergel-
son and Swingley, 2012). Our model is based
on the standard memory model of Baddeley and
Hitch (1974) in which the listener encodes lexical
items into phonological working memory, but rep-
resents the entire sentence as a higher-level syn-

tactic structure without phonological detail. Our
model implements this architecture using encoder-
decoder LSTMs with limited memory capacity,
then searches for word segmentations which make
it easy to remember the sentence.!

Word learning has been extensively studied in
previous research, both with transcribed symbolic
input and acoustics. Why attempt yet another ap-
proach? Our model has three main advantages.
First, as a cognitive model, it relates the kinds
of learning biases used in previous work to the
wider literature on working memory. Second, its
sequence-to-sequence neural architecture allows it
to handle either one-hot symbolic input or dense
vectors of acoustic features. In contrast, existing
models are typically designed for “clean” sym-
bolic input, then retrofitted with additional mech-
anisms to cope with acoustics. Finally, neural net-
works have been impressively successful in super-
vised language processing domains, yet are still
underused in unsupervised learning. Even sys-
tems which do use neural nets to model lexical ac-
quisition generally require an auxiliary model for
clustering the embeddings, which can make their
learning objectives difficult to understand. Our
system uses the well-understood autoencoder ob-
jective to perform the segmentation task without
requiring auxiliary clustering, and thus suggests a
new direction for neural unsupervised learning.

In an experiment conducted on the widely used
Brent corpus (Brent, 1999), our system achieves
performance close to that of Fleck (2008), al-
though subsequent systems outperform ours by a
wider margin. We show that memory limitations
do indeed drive the performance of the system,
with smaller LSTM hidden states outperforming
larger ones in the development set.

In a follow-up experiment designed to ex-

'The system is available from https://github.
com/melsner/neural-segmentation.
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plore the flexibility of our model, we deploy the
segmenter on acoustic input: the English por-
tion of the Zerospeech 2015 challenge (Versteegh
et al.,, 2015). Our model outperforms the win-
ning model from that challenge (Risdnen et al.,
2015), although we underperform more recent un-
supervised acoustic segmentation systems (Kam-
per et al., 2016; Risédnen et al., under review).

To our knowledge, our system is the first un-
supervised LSTM speech segmenter, as well as
the first unsupervised speech segmenter to succeed
on both symbolic and acoustic representations of
speech. Our results are of note for several reasons.
First, they provide modeling support for the claim
that memory limitations encourage lexical acquisi-
tion. Second, they show that a general strategy of
searching for maximally compressible represen-
tations can realistically guide lexical acquisition
without explicit reference to perceptual biases (c.f.
e.g. Risidnen et al., 2015), regardless of input rep-
resentation. And third, they demonstrate the bene-
fits of our adaptation of neural sequence modeling
to unsupervised learning.

2 Motivations

We begin with a short overview of previous ap-
proaches to the word learning problem, then ex-
plain each of our main contributions in detail.
Many cognitive models of the word learning prob-
lem draw on Brent (1999), which used a sim-
ple unigram model of the lexicon to discover re-
peated patterns in phonemically transcribed input.
Brent’s model laid the groundwork for later gen-
erative models with more sophisticated prior dis-
tributions over word frequencies, co-occurrence
statistics and phonological shapes (Johnson and
Goldwater, 2009, among others). Other model-
ing architectures for segmentation have focused on
detecting phonological boundaries between words
using transitional probabilities (Christiansen et al.,
1998, among others) or inducing words procedu-
rally by “subtracting” known word forms from ut-
terances (Lignos, 2011).

All these modeling architectures are designed
to work with phonemically transcribed input, and
require some degree of retrofitting to work with
more realistic inputs. In the Bayesian framework,
this typically takes the form of a transducer which
probabilistically transforms “underlying” lexical
items to “surface” acoustics (Lee et al., 2015) or
discrete symbols (Elsner et al., 2013); the same

framework is used for morphological segmenta-
tion in Cotterell et al. (2015). For transition-
based models, the input must be transformed into
discrete symbols from which segment-to-segment
probabilities can be extracted; this transforma-
tion requires an externally trained preprocessor (a
phone recognizer). Transition-based models are
fairly robust to variation in the symbols (Rytting,
2007; Rytting et al., 2010; Daland and Pierrehum-
bert, 2011; Fleck, 2008) and can be relatively suc-
cessful in this framework. Extensions using neural
nets (Christiansen et al., 1998; Rytting et al., 2010)
are discussed in more detail below (subsec. 2.3).
Lignos (2011) requires the most complex prepro-
cessing of the input (segmentation into syllables,
with marked lexical stresses); adapting it to noisy
input is an open problem.

2.1 Working memory and learning biases

Cognitive models of word segmentation rely on
two kinds of learning biases to structure their in-
ferred lexicons: predictability within words (of-
ten expressed as a prior over phonological forms),
and Zipfian unigram and bigram frequencies of
words (a prior over word distributions). These
biases control the entropy of utterances, making
it easy for adult listeners to remember what they
hear and reconstruct any missing parts from con-
text (Piantadosi et al., 2012). The biases corre-
spond to different components in a standard model
of working memory (Baddeley, 2007; Baddeley
and Hitch, 1974). In this model, listeners can
store the last few items they heard in a phonolog-
ical loop, from which words are transferred into
episodic memory which represents them at a syn-
tactic/semantic level.

Baddeley et al. (1998) claim that the phonologi-
cal loop functions in word learning as well as pro-
cessing by proficient listeners, aiding in the ac-
quisition of unfamiliar words. They summarize
a number of studies showing that the vocabulary
size of typically developing infants correlates with
their ability to remember a sequence of phono-
logically plausible non-words, a test of phonolog-
ical loop capacity. Children with Specific Lan-
guage Impairment, meanwhile, remember non-
words poorly, a deficit which may contribute to
their atypically small vocabularies. Baddeley et al.
(1998) argue that the ability to remember an unfa-
miliar phonological form in the short term is es-
sential if it is to be transferred to long-term mem-
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ory as a datapoint for lexical learning. This ac-
count of word learning is one of a growing number
which attempt to unify acquisition and speech pro-
cessing in terms of the same real-time, resource-
constrained mechanisms (Apfelbaum and McMur-
ray, 2016).

In our model, memorization itself can be viewed
as the objective for early word learning. The
model attempts to reconstruct its input from mem-
ory; chunks that are easy to reconstruct (and that
make the context reconstructible) are good can-
didate words. The working memory model ac-
counts for the two types of bias normally found
in Bayesian segmenters. Phonological predictabil-
ity due to consistent word shapes (Borschinger and
Johnson, 2014; Johnson and Goldwater, 2009) re-
duces the load on the phonological loop. Pre-
dictability between words reduces the load on syn-
tactic memory. The two memory systems draw on
different cognitive resources, which correspond to
different parameters of the model.

2.2 Input representations

As stated above, traditional segmentation models
operate on phonemic transcriptions and must be
adapted to cope with phonetic or acoustic input.
For models which infer an explicit lexicon (i.e.,
those which do not simply count segment transi-
tions), this takes the form of a mapping between
the data and the space of “underlying” latent word
forms.

Learning such a mapping can be problematic.
Traditional generative learning models use para-
metric distributions over the data— for acoustics,
Gaussians (Vallabha et al., 2007; Feldman et al.,
2009) or Gaussian-HMMs (Lee and Glass, 2012;
Lee et al., 2015). But these are a notoriously poor
fit to real speech sounds (Glass, 2003).

An example of an alternative approach to rep-
resentation learning from acoustics is Risidnen
et al. (2015). They exploit known acoustic indi-
cators of syllable boundaries to infer syllable seg-
ments, cluster those segments using expectation-
maximization (EM), and then identify multisyl-
labic words by searching for recurring cluster n-
grams. As a result, their system is constrained
to propose word boundaries only at proposed syl-
lable boundaries regardless of the representations
acquired downstream. Furthermore, EM is known
to find non-optimal solutions for many problems
in natural language (Johnson, 2007). To the ex-

tent that this inhibits their system’s ability to ex-
ploit information in the acoustic feature space, it
might lead to misidentification of recurrent sylla-
ble n-grams and consequently to segmentation er-
TOf.

Latent underlying representations can also
cause search problems, since the model must ex-
plore all the possible underlying forms which
might map to some utterance on the surface. In
a probabilistic system capable of mapping every
word to every possible realization, this quickly be-
comes intractable. Many systems use dynamic
programming (Mochihashi et al., 2009; Neubig
et al., 2010), sometimes with pruning (Van Gael
et al., 2008). But these algorithms require Markov
models with small context windows, and in any
case can still be slow and prone to search errors.

Neural nets, on the other hand, learn a non-
linear mapping between input and output. This
allows them to model speech more flexibly, out-
competing Gaussian/HMMs for supervised speech
recognition (Graves et al., 2013; Hinton et al.,
2012). Recurrent neural nets also produce hidden
representations differently than HMMs. Rather
than use dynamic programming to search a latent
space, they produce a single vector deterministi-
cally at each timestep. Models such as LSTMs
(Hochreiter and Schmidhuber, 1997) can learn
long-distance sequential dependencies in their in-
put without making inference more expensive.

2.3 Neural unsupervised learning

A few previous papers have used neural networks
for word segmentation. Christiansen et al. (1998),
drawing on older work with Simple Recurrent
Networks (Elman, 1990), trains a recurrent net-
work as a language model. Word boundaries are
extracted at points where the network predicts an
upcoming utterance boundary; that is, utterance
boundaries are used as distant supervision for the
locations of word boundaries. While effective, this
system uses symbolic rather than acoustic input.
Moreover, it may have trouble with word endings
which do not end utterances, such as the endings
of function words; experiments show that infants
learn detailed representations of function words by
13 months (Shi et al., 2006) and use known words
as “anchors” for segmentation within utterances
(Bortfeld et al., 2005).

Rytting (2007) adapts the Christiansen model
to variable input by using the posterior probabil-
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ity distribution from a phone recognizer as its fea-
ture representation. This system was run on natu-
ral data; results for word boundary detection were
significantly above chance, though still much less
accurate than results for symbolic input. The use
of utterance boundaries as distant supervision may
create problems for this system similar to those
pointed out for Christiansen above. Moreover, the
use of an SRN rather than an LSTM means that the
system is essentially phonotatic; it makes its deci-
sions based on the previous one or two phones,
without the capacity to remember whole lexical
items.

Recent work (Kamper et al., 2016) has at-
tempted to harness the flexibility of neural fea-
ture extractors within the generative model frame-
work. This model has a hybrid architecture con-
sisting of a neural feature extractor, the Correspon-
dence Autoencoder, pretrained using distant su-
pervision (Kamper et al., 2015), and a Bayesian
clustering/segmentation model. The system repre-
sents each word by neurally encoding its frames,
then downsampling to obtain a fixed-dimensional
word vector; the clustering model assumes that
these vectors can be modeled with Gaussian clus-
ters. The advantage of this approach is its ability
to exploit the known strengths of both Bayesian
and neural learning systems. The disadvantage is
its indirectness: there is no end-to-end objective
to be optimized, and the system’s lexical learning
does not inform its phonetic representations.

Even outside the domain of segmentation, neu-
ral networks have been most successful for super-
vised problems, and are not widely used for un-
supervised learning of discrete structures (trees,
clusters, segment boundaries). While some re-
searchers have proposed information-theoretic ob-
jectives for learning clusters (Klapper-Rybicka
et al., 2001), the most widely used unsupervised
objective is the one used here: autoencoding.
Yet autoencoders are rarely used to learn discrete
hidden structures. One exception, Socher et al.
(2011), uses autencoders to find a latent tree struc-
ture for sentiment analysis by greedily merging
adjacent nodes so as to minimize the reconstruc-
tion error.

Chung et al. (2017) describe a model similar
to our own which performs a segmentation task
using autoencoders. Both models use multiscale
autoencoding to learn a sequence model with un-
known segment boundaries. The main difference

is the different technique used to deal with the
discontinuities caused by switching discrete seg-
ment boundary variables. However, they evaluate
their model on downstream tasks (notably, char-
acter language modeling) without evaluating the
segmentations directly.

3 The Model

The model uses a basic encoder-decoder archi-
tecture now typical in machine translation (Cho
et al., 2014) and image captioning (Vinyals et al.,
2015). In a typical encoder-decoder, the input is
fed into an LSTM sequence model (Hochreiter and
Schmidhuber, 1997) which represents it as a la-
tent numeric embedding. This embedding is then
fed into another sequence model, which uses it to
generate an output sequence. Our two-level model
performs this process in stages, first encoding ev-
ery word, character-by-character, and then encod-
ing the word sequence, vector-by-vector. In an au-
toencoder, the objective is to make input and out-
put match; thus, the decoder performs the encod-
ing stages in reverse. We provide the final encoder
hidden state as input to each decoder unit. To force
the system’s learned embeddings to be robust to
noise caused by mishearing or misremembering,
we use dropout (Srivastava et al., 2014) at the in-
put (deleting individual timesteps) and at the word
encoding layer (deleting entire words). This archi-
tecture is illustrated in Figure 1.

The encoder-decoder does not predict segment
boundaries directly, but gives an objective func-
tion (reconstruction loss) which can be used to
guide segmentation. Because the segment bound-
ary decisions are hard (there are no “partial”
boundaries), the loss function is not differentiable
as a function of the boundary indicators. We use
sampling to estimate the gradient, as in previous
work (Mnih et al., 2014; Xu et al., 2015). Our
sampling system works as follows: we begin with
a proposal distribution P, over sequences of seg-
ment boundaries for the current utterance x. We
sample m sequences of boundaries, Bj.,, from
Ps.4. Each boundary sequence splits the utterance
into words. We use the autoencoder network to
encode and decode the words, and obtain the loss
(the cross-entropy of the reconstructed input) for
each sequence, L1.p,.

We can use the cross-entropy to estimate the
posterior probability of the data given a breakpoint
sequence (Eq. 1), assuming a uniform prior over
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Figure 1: Architecture of the model: top two panels show the encoder/decoder, bottom panels show
computation of breakpoints and resulting loss. Horizontal arrows represent LSTMs.

break positions. We then treat each breakpoint ¢ in
the utterance independently: for each one, we use
the losses and the proposal probabilities to com-
pute an importance weight w! for sample i and po-
sition ¢t (Eq. 2), then compute the expected prob-
ability of a boundary at that position by summing
over the weighted samples (Eq. 3). Essentially,
a breakpoint will be more likely if it appeared in
samples with low reconstruction loss, especially if
it is not encouraged by the current proposal.

| _ PBilx)P(B) | exp(Li)
P(z|B;) = Pa) 5 exn(L) (1)
¢+ _ Plz|Bi)
w; = m (2)
E[B(1)] ~ let > i, 3)

We initialize by making random breakpoint pro-
posals (with probability .1 at each position). The
random proposal does not search the space of seg-
mentation boundaries particularly efficiently, so
we train a better proposal using another LSTM.
This LSTM simply reads the input from left to
right and predicts a binary output (segment or not)
at each timestep. We update the proposal LSTM
by using the sampling-derived Py, as a training
target after each batch. Thus, the proposal learns
to predict segment boundaries that are likely to re-
sult in low reconstruction loss for the main net-
work. To force the system to explore the space,
we smooth the learned proposal by interpolating it
with a uniform distribution: Py = .9X Prora +

1
1X§

We control the memory capacity of the system
using four tunable parameters: the number of hid-
den states at the phonological level (H,) and at
the utterance level (H,,) and the dropout probabil-
ity of mishearing a phonological segment (D)) or
a word (D,). We discuss parameter tuning results
below.

The system also has several other parameters
which were not tuned against the evaluation met-
ric. For convenience in GPU training, we treat all
sequences as fixed length, either clipping them or
padding with a dummy symbol. This requires us
to set a maximum length for each word (in charac-
ters), and each utterance (in words and characters);
we set these parameters to ensure 99% coverage
of the input (for the Brent corpus, 7, 10, and 30
respectively).

Clipping creates the possibility of pathological
outcomes where the system deliberately creates
extremely long words, exploiting the fact that the
excess characters will be discarded and will not
have to be predicted in the output. We penalize this
by subtracting 50 for each deleted character. Fi-
nally, we find that, despite pre-training, the system
may settle into an initial state where the phono-
logical network simply embeds the characters and
the utterance network learns a character LM. To
avoid this, we subtract 10 from the objective for
each one-symbol word. These parameters were
tuned only lightly; we increased the values until
the problematic behavior (segmentation of the en-
tire utterance as one word, or each character as a
word) ceased.

We implemented the network in Keras (Chollet,
2015), using Adam (Kingma and Ba, 2014) with
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default settings for optimization. We use mini-
batches of 128 and take 100 samples of potential
segment boundaries per sequence. We perform 10
iterations of pretraining with random boundaries,
10 iterations of boundary induction with random
proposals, and 70 iterations of full training with
the learned LSTM proposal.

4 Results

4.1 Brent Corpus

The Brent corpus (Brent, 1999) is a standard
benchmark dataset for segmentation, consisting
of 9790 utterances from Bernstein-Ratner (1987),
translated into phonemic transcription using the
CMU dictionary. The standard metrics for seg-
mentation are F-score for word boundary detec-
tion (treating each boundary in isolation) and F-
score for word token segmentation (a word is cor-
rect only if both its boundaries are correct and no
spurious boundaries intervene). Although early
work on Brent used all 9790 utterances for both
development and test, we use the first 8000 utter-
ances for parameter tuning. Thus, we present re-
sults for the whole corpus (for comparison with
previous work) and clean test results for the last
1790.

We tune the four parameters of our system,
H, H,,D,and D,, using a grid search (see Fig-
ure 2). Each subplot shows a particular dropout
setting, D,/D,; the cells within represent set-
tings of H, (rows) and H, (columns), where
darker cells have higher boundary F-score. Exces-
sive noise decreases scores, especially high word
dropout (right side of the plot). For low levels
of dropout, the best systems tend to have small
numbers of hidden units (dark regions in the lower
left); for larger dropout, more hidden units can be
useful. For instance, compare the top left subplot,
with 0 dropout and good performance with H, =
20, H,, = 100, to subplot 3,3, with optimal per-
formance at H, = 80, H,, = 200. In other words,
limiting the system’s memory resources is indeed
the key to its performance. The best score occurs
at H, = 80,H, = 400,D, = 0.5,D, = 0.25
with a dev boundary F-score of 83%. We used
these parameters for our final evaluation, along
with 100 hidden units in the proposal network.

To further demonstrate that limited memory
can bias the network to learn a low-entropy lexi-
con, we perform a separate experiment using the
phonological encoder/decoder alone. We create

Du 0.75

|
N
——

100 200 400 100 200 400

100 200 400

100 200 400

Figure 2: Tuning results on Brent development.
Cell axes represent H,, and H,, darker cells have
higher scores (best 83%, worst 60%).
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Figure 3: Reconstruction accuracy of the phono-
logical encoder/decoder on real words vs. length-
matched pseudowords from Brent.

networks with varying H,, (setting D), to 0); for
each network size, we train one net on real words
from the gold segmentation of Brent, and another
on length-matched pseudowords sampled by ran-
domly segmenting the Brent corpus. Figure 3
shows the reconstruction error rates as a function
of H,. The gap between the green and orange
lines shows the difference in reconstruction error
obtained by using real words rather than pseu-
dowords. For the smallest H,,, neither network
does a good job; for the largest, both networks
learn the sequences perfectly. For values in be-
tween, however, the lines are relatively far apart,
showing that the real words are easier for the net-
work to remember.

Our results for Brent, along with selected com-
parisons, are shown in Table 1.> Our system per-

*Comparison system scores are those reported in their
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System BdP BdR BdF WdF
Goldwater 09 90 74 87 74
Johnson 09 - - - 88
Berg- - - - 88
Kirkpatrick

10

Fleck 08 95 74 83 71
Ours (all) 81 85 83 72
Ours (test) 81 86 83 72

Table 1: Selected segmentation results on Brent.

forms at the lower end of the reported range for
Brent segmenters, scoring 83% for boundary de-
tection and 72% for word detection (comparable to
(Fleck, 2008)). (Lignos (2011) scores 93% bound-
ary F on a different corpus with marked syllable
boundaries.) From a cognitive modeling point of
view, it is not clear what performance we should
expect on Brent to model the performance of a
young human infant. Models of early word seg-
mentation are motivated by studies showing that,
by their first birthday, infants can distinguish many
common words from nonwords (Vihman et al.,
2004; Swingley, 2005). But this does not im-
ply that they learn every word they hear, or that
they can use their word knowledge to segment ev-
ery utterance correctly. Thus, while our result is
not state-of-the-art, it is good enough to conform
with the reported infant results and suggest that
our neural architecture is a promising direction.
Learning curves for segmentation on the Brent
corpus are shown in Figure 4. The first 10 it-
erations show a gradual increase in segmentation
performance using the random proposal. Perfor-
mance increases sharply with the activation of the
learned proposal, then climbs slowly over time.
Precision initially exceeds recall (that is, the sys-
tem proposes too few boundaries) but recall climbs
over time as the system exploits known words as
“anchors” to discover new ones, a pattern consis-
tent with the infant data (Bortfeld et al., 2005).

4.2 Zerospeech 2015 acoustic segmentation

We began by claiming that an advantage of our
model was its flexible architecture that permits
dense acoustic features as input (rather than sym-
bolic phone labels) with little modification. In
this section, we present preliminary results from
respective publications, except for Goldwater et al. (2009),

which are corrected numbers published with their software
release. Not all systems report all metrics.

0.8-

07- )
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—BP

value

— BR
06-
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)|
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Figure 4: Boundary precision, recall, and F1 score
by iteration on the entire Brent dataset.

a follow-up experiment in which we tested this
claim by deploying our system as an acoustic seg-
menter on the English portion of the Zerospeech
2015 challenge dataset (Versteegh et al., 2015).
We preprocess the raw acoustic data by extract-
ing 25ms 13-dimensional mel frequency cepstral
coefficients with first and second order deltas at a
step size of 10ms. We then train the network on
the resulting sequences of 39-dimensional frames.

Given that the goal of the experiment was to
test the existing architecture on a novel task, we
intentionally conducted this experiment with min-
imal parameter tuning or architectural modifica-
tion. However, we made several key changes in
response to the unique challenges presented by
acoustic input.

First, since we are now reconstructing dense
vectors of acoustic features, we use mean squared
error (MSE) instead of categorical cross-entropy
as the autoencoder loss function. We consequently
rescale our clipping penalty from 50 to 1, a coeffi-
cient which seemed more in balance with the vari-
ation in decoder loss produced by MSE. We also
increase our one-letter penalty from 10 to 50, mod-
eling our strong prior assumption that a 1-frame
segment will never correspond to a word.

Second, in contrast to the phoneme sequences
in the Brent corpus discussed above, utterance
boundaries are not observed in acoustic input. The
input to the two-level autoencoder must be divided
into sequences of utterances, so we imposed utter-
ance boundaries by iteratively consuming the next
discovered word in the time series up to the maxi-
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System BdP BdR BdF WdF
Lyzinski 15 18.8 64.0 29.0 2.4
Risdnen 15 7577 3377 46.7 9.6
Risanennew 61.1 50.1 552 124
Kamper 16 66.5 588 624 20.6
Ours 624 432 51.1 9.3

Table 2: Selected word segmentation results on the
the Zerospeech 2015 English corpus.

mum utterance length (in frames). The aforemen-
tioned clipping penalties punish the system for ut-
terances that contain too many words, preventing
it from optimizing its autoencoder loss by seg-
menting everywhere.

Third, for our initial proposal distribution we
use the speech region segmentation provided by
the Zerospeech challenge, consisting of speech in-
tervals identified through automatic voice activ-
ity detection (VAD), rather than using the uniform
initialization described above for symbolic mode.
We interpolate the initial distribution with a uni-
form prior as described above.

Fourth, we discovered in practice that the as-
sumption of independence between samples made
by the importance scoring scheme as implemented
for symbolic mode was distortionary in acoustic
mode, such that the “best” segmentation discov-
ered through sampling often contained many times
more segments than any of its component sam-
ples.® To prevent this from happening, we simply
used 1-best rather than importance sampling for
acoustic segmentation.

We trained the system for 80 iterations using pa-
rameters H,, = 20,H, = 400,D, = 0,D, =
0.25 and 1500 hidden units in the proposal LSTM.
In the auto-encoder network, we limited frames
per utterance, words per utterance, and frames per
word to 400, 16, and 100, respectively. Results
are presented in Table 2, along with a compari-
son to results from other systems. Lyzinski et al.
(2015) and Risidnen et al. (2015) were entrants in
the Zerospeech 2015 challenge, in which Résidnen
et al. (2015) performed best in the word bound-

3We believe this is driven by training batches in which
multiple samples receive similar scores but have fairly non-
overlapping segmentations. In this case, the output segmen-
tation can contain something close to the union of the best
samples’ segmentation points, leading to oversegmentation.
This effect is likely exaggerated in acoustic mode as com-
pared to symbolic mode because acoustic word segments are
generally much longer (in frames) than their corresponding
symbolic word segments (in characters).

ary detection measure. As shown in the table, our
system beats both of these competitors’ boundary
detection scores, with a word detection score com-
parable to that of Résinen et al. (2015). How-
ever, since the challenge concluded, Risédnen et al.
(under review) have modified their system and
improved their segmentation score,* and Kamper
et al. (2016) have established a new state of the
art for this task. While our system currently re-
mains far from these newer benchmarks, we ex-
pect that with systematic parameter tuning and in-
vestigation into appropriate sampling procedures
for acoustic input, we might be able to improve
substantially on the results presented here. We be-
lieve that the results of this preliminary investiga-
tion into the acoustic domain are promising, and
that they bear out our claims about the flexibility
of our general architecture.

5 Conclusions and future directions

This work presented a new unsupervised LSTM
architecture for discovering meaningful segments
in representations of continuous speech. Mem-
ory limitations in the autoencoder part of the net-
work apply pressure to discover compressed rep-
resentations much as human memory limitations
have been argued to guide lexical acquisition. By
varying the size of the LSTM’s hidden state, we
showed that word segmentation performance on
the Brent corpus is driven by memory limitations,
with performance improving (up to a point) as we
constrain the system’s memory capacity. And by
successfully deploying our system on both sym-
bolic (character) and acoustic representations of
speech, we demonstrated that our approach is flex-
ible enough to adapt to either representation of the
speech stimulus.

In the future we hope to pursue a number of
lines of inquiry. We plan to conduct more de-
tailed parameter tuning in the acoustic domain and
to segment the Xitsonga dataset supplied with the
Zerospeech 2015 challenge. We also intend to
introduce additional layers into the autoencoder
network so as to allow for joint acquisition of
phone-like, morph-like, and/or word-like units in
the acoustic signal; this may benefit from the al-
ternate model structure of Chung et al. (2017).
And we plan to explore clustering techniques that

“The new results are not yet published. Those reported
above are copied from the results summary in Kamper et al.
(2016).

1077



would allow our system to discover categories in
addition to probable segmentation points.
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