
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 936–945
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Guided Open Vocabulary Image Captioning
with Constrained Beam Search

Peter Anderson1, Basura Fernando1, Mark Johnson2, Stephen Gould1

1The Australian National University, Canberra, Australia
firstname.lastname@anu.edu.au

2Macquarie University, Sydney, Australia
mark.johnson@mq.edu.au

Abstract

Existing image captioning models do not
generalize well to out-of-domain images
containing novel scenes or objects. This
limitation severely hinders the use of these
models in real world applications deal-
ing with images in the wild. We address
this problem using a flexible approach
that enables existing deep captioning ar-
chitectures to take advantage of image tag-
gers at test time, without re-training. Our
method uses constrained beam search to
force the inclusion of selected tag words
in the output, and fixed, pretrained word
embeddings to facilitate vocabulary ex-
pansion to previously unseen tag words.
Using this approach we achieve state of
the art results for out-of-domain caption-
ing on MSCOCO (and improved results
for in-domain captioning). Perhaps sur-
prisingly, our results significantly outper-
form approaches that incorporate the same
tag predictions into the learning algorithm.
We also show that we can significantly im-
prove the quality of generated ImageNet
captions by leveraging ground-truth la-
bels.

1 Introduction

Automatic image captioning is a fundamental task
that couples visual and linguistic learning. Re-
cently, models incorporating recurrent neural net-
works (RNNs) have demonstrated promising re-
sults on this challenging task (Vinyals et al., 2015;
Fang et al., 2015; Devlin et al., 2015), leverag-
ing new benchmark datasets such as the MSCOCO
dataset (Lin et al., 2014). However, these datasets
are generally only concerned with a relatively
small number of objects and interactions. Unsur-
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Figure 1: We successfully caption images contain-
ing previously unseen objects by incorporating se-
mantic attributes (i.e., image tags) during RNN de-
coding. Actual example from Section 4.2.

prisingly, models trained on these datasets do not
generalize well to out-of-domain images contain-
ing novel scenes or objects (Tran et al., 2016).
This limitation severely hinders the use of these
models in real world applications dealing with im-
ages in the wild.

Although available image-caption training data
is limited, many image collections are augmented
with ground-truth text fragments such as semantic
attributes (i.e., image tags) or object annotations.
Even if these annotations do not exist, they can be
generated using (potentially task specific) image
taggers (Chen et al., 2013; Zhang et al., 2016) or
object detectors (Ren et al., 2015; Krause et al.,
2016), which are easier to scale to new concepts.
In this paper our goal is to incorporate text frag-
ments such as these during caption generation, to
improve the quality of resulting captions. This
goal poses two key challenges. First, RNNs are
generally opaque, and difficult to influence at test
time. Second, text fragments may include words
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that are not present in the RNN vocabulary.
As illustrated in Figure 1, we address the first

challenge (guidance) by using constrained beam
search to guarantee the inclusion of selected words
or phrases in the output of an RNN, while leaving
the model free to determine the syntax and addi-
tional details. Constrained beam search is an ap-
proximate search algorithm capable of enforcing
any constraints over resulting output sequences
that can be expressed in a finite-state machine.
With regard to the second challenge (vocabulary),
empirically we demonstrate that an RNN can suc-
cessfully generalize from similar words if both the
input and output layers are fixed with pretrained
word embeddings and then expanded as required.

To evaluate our approach, we use a held-out
version of the MSCOCO dataset. Leveraging im-
age tag predictions from an existing model (Hen-
dricks et al., 2016) as constraints, we demonstrate
state of the art performance for out-of-domain
image captioning, while simultaneously improv-
ing the performance of the base model on in-
domain data. Perhaps surprisingly, our results
significantly outperform approaches that incorpo-
rate the same tag predictions into the learning
algorithm (Hendricks et al., 2016; Venugopalan
et al., 2016). Furthermore, we attempt the ex-
tremely challenging task of captioning the Ima-
geNet classification dataset (Russakovsky et al.,
2015). Human evaluations indicate that by lever-
aging ground truth image labels as constraints, the
proportion of captions meeting or exceeding hu-
man quality increases from 11% to 22%. To facil-
itate future research we release our code and data
from the project page1.

2 Related Work

While various approaches to image caption gen-
eration have been considered, a large body of
recent work is dedicated to neural network ap-
proaches (Donahue et al., 2015; Mao et al., 2015;
Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;
Devlin et al., 2015). These approaches typically
use a pretrained Convolutional Neural Network
(CNN) image encoder, combined with a Recurrent
Neural Network (RNN) decoder trained to pre-
dict the next output word, conditioned on previ-
ous words and the image. In each case the decod-
ing process remains the same—captions are gener-
ated by searching over output sequences greedily

1www.panderson.me/constrained-beam-search

or with beam search.
Recently, several works have proposed mod-

els intended to describe images containing ob-
jects for which no caption training data exists (out-
of-domain captioning). The Deep Compositional
Captioner (DCC) (Hendricks et al., 2016) uses a
CNN image tagger to predict words that are rel-
evant to an image, combined with an RNN lan-
guage model to estimate probabilities over word
sequences. The tagger and language models are
pretrained separately, then fine-tuned jointly using
the available image-caption data.

Building on the DCC approach, the Novel Ob-
ject Captioner (NOC) (Venugopalan et al., 2016)
is contemporary work with ours that also uses pre-
trained word embeddings in both the input and
output layers of the language model. Another re-
cent work (Tran et al., 2016) combines specialized
celebrity and landmark detectors into a captioning
system. More generally, the effectiveness of in-
corporating semantic attributes (i.e., image tags)
into caption model training for in-domain data has
been established by several works (Fang et al.,
2015; Wu et al., 2016; Elliot and de Vries, 2015).

Overall, our work differs fundamentally from
these approaches as we do not attempt to intro-
duce semantic attributes, image tags or other text
fragments into the learning algorithm. Instead, we
incorporate text fragments during model decod-
ing. To the best of our knowledge we are the first
to consider this more loosely-coupled approach to
out-of-domain image captioning, which allows the
model to take advantage of information not avail-
able at training time, and avoids the need to retrain
the captioning model if the source of text frag-
ments is changed.

More broadly, the problem of generating
high probability output sequences using finite-
state machinery has been previously explored
in the context of poetry generation using
RNNs (Ghazvininejad et al., 2016) and machine
translation using n-gram language models (Al-
lauzen et al., 2014).

3 Approach

In this section we describe the constrained beam
search algorithm, the base captioning model used
in experiments, and our approach to expanding the
model vocabulary with pretrained word embed-
dings.
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3.1 Constrained Beam Search

Beam search (Koehn, 2010) is an approximate
search algorithm that is widely used to decode out-
put sequences from Recurrent Neural Networks
(RNNs). We briefly describe the RNN decod-
ing problem, before introducing constrained beam
search, a multiple-beam search algorithm that en-
forces constraints in the sequence generation pro-
cess.

Let yt = (y1, ..., yt) denote an output sequence
of length t containing words or other tokens from
vocabulary V . Given an RNN modeling a proba-
bility distribution over such sequences, the RNN
decoding problem is to find the output sequence
with the maximum log-probability, where the log
probability of any partial sequence yt is typically
given by

∑t
j=1 log p(yj | y1, ..., yj−1).

As it is computationally infeasible to solve this
problem, beam search finds an approximate solu-
tion by maintaining a beamBt containing only the
b most likely partial sequences at each decoding
time step t, where b is known as the beam size. At
each time step t, the beam Bt is updated by retain-
ing the b most likely sequences in the candidate
set Et generated by considering all possible next
word extensions:

Et =
{

(yt−1, w) | yt−1 ∈ Bt−1, w ∈ V
}

(1)

To decode output sequences under constraints, a
naive approach might impose the constraints on
sequences produced at the end of beam search.
However, if the constraints are non-trivial (i.e.
only satisfied by relatively low probability output
sequences) it is likely that an infeasibly large beam
would be required in order to produce sequences
that satisfy the constraints. Alternatively, impos-
ing the constraints on partial sequences generated
by Equation 1 is also unacceptable, as this would
require that constraints be satisfied at every step
during decoding—which may be impossible.

To fix ideas, suppose that we wish to generate
sequences containing at least one word from each
constraint set C1 = {‘chair’, ‘chairs’} and C2 =
{‘desk’, ‘table’}. Note that it is possible to rec-
ognize sequences satisfying these constraints us-
ing the finite-state machine (FSM) illustrated in
Figure 2, with start state s0 and accepting state
s3. More generally, any set of constraints that can
be represented with a regular expression can also
be expressed as an FSM (either deterministic or

Figure 2: Example of constrained beam search de-
coding. Each output sequence must include the
words ‘chair’ or ‘chairs’, and ‘desk’ or ‘table’
from vocabulary V . A finite-state machine (FSM)
that recognizes valid sequences is illustrated at
top. Each state in the FSM corresponds to a beam
in the search algorithm (bottom). FSM state tran-
sitions determine the destination beam for each
possible sequence extension. Valid sequences are
found in Beam 3, corresponding to FSM accepting
state s3.

non-deterministic) that recognizes sequences sat-
isfying those constraints (Sipser, 2012).

Since RNN output sequences are generated
from left-to-right, to generate constrained se-
quences, we take an FSM that recognizes se-
quences satisfying the required constraints, and
use the following multiple-beam decoding algo-
rithm. For each state s ∈ S in the FSM, a cor-
responding search beam Bs is maintained. As in
beam search, each Bs is a set containing at most
b output sequences, where b is the beam size. At
each time step, each beamBs

t is updated by retain-
ing the b most likely sequences in its candidate set
Est given by:

Est =
⋃
s′∈S

{
(yt−1, w) | yt−1 ∈ Bs′

t−1, w ∈ V,

δ(s′, w) = s
}

(2)

where δ : S × V 7→ S is the FSM state-transition
function that maps states and words to states. As
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specified by Equation 2, the FSM state-transition
function determines the appropriate candidate set
for each possible extension of a partial sequence.
This ensures that sequences in accepting states
must satisfy all constraints as they have been rec-
ognized by the FSM during the decoding process.

Initialization is performed by inserting an
empty sequence into the beam associated with the
start state s0, so B0

0 := {ε} and Bi 6=0
0 := ∅. The

algorithm terminates when an accepting state con-
tains a completed sequence (e.g., containing an
end marker) with higher log probability than all in-
complete sequences. In the example contained in
Figure 2, on termination captions in Beam 0 will
not contain any words from C1 or C2, captions in
Beam 1 will contain a word from C1 but not C2,
captions in Beam 2 will contain a word from C2
but not C1, and captions in Beam 3 will contain a
word from both C1 and C2.

3.1.1 Implementation Details
In our experiments we use two types of con-
straints. The first type of constraint consists of
a conjunction of disjunctions C = D1, ..., Dm,
where each Di = wi,1, ..., wi,ni and wi,j ∈ V .
Similarly to the example in Figure 2, a partial cap-
tion yt satisfies constraint C iff for each Di ∈ C,
there exists a wi,j ∈ Di such that wi,j ∈ yt. This
type of constraint is used for the experiments in
Section 4.2, in order to allow the captioning model
freedom to choose word forms. For each image
tag, disjunctive sets are formed by using Word-
Net (Fellbaum, 1998) to map the tag to the set of
words in V that share the same lemma.

The use of WordNet lemmas adds minimal
complexity to the algorithm, as the number of
FSM states, and hence the number of search
beams, is not increased by adding disjunctions.
Nevertheless, we note that the algorithm maintains
one beam for each of the 2m subsets of disjunctive
constraints Di. In practice m ≤ 4 is sufficient for
the captioning task, and with these values our GPU
constrained beam search implementation based on
Caffe (Jia et al., 2014) generates 40k captions for
MSCOCO in well under an hour.

The second type of constraint consists of a sub-
sequence that must appear in the generated cap-
tion. This type of constraint is necessary for
the experiments in Section 4.3, because WordNet
synsets often contain phrases containing multiple
words. In this case, the number of FSM states, and
the number of search beams, is linear in the length

of the subsequence (the number of states is equal
to number of words in a phrase plus one).

3.2 Captioning Model

Our approach to out-of-domain image captioning
could be applied to any existing CNN-RNN cap-
tioning model that can be decoding using beam
search, e.g., (Donahue et al., 2015; Mao et al.,
2015; Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Devlin et al., 2015). However, for empir-
ical evaluation we use the Long-term Recurrent
Convolutional Network (Donahue et al., 2015)
(LRCN) as our base model. The LRCN consists
of a CNN visual feature extractor followed by
two LSTM layers (Hochreiter and Schmidhuber,
1997), each with 1,000 hidden units. The model is
factored such that the bottom LSTM layer receives
only language input, consisting of the embedded
previous word. At test time the previous word
is the predicted model output, but during train-
ing the ground-truth preceding word is used. The
top LSTM layer receives the output of the bottom
LSTM layer, as well as a per-timestep static copy
of the CNN features extracted from the input im-
age.

The feed-forward operation and hidden state
update of each LSTM layer in this model can be
summarized as follows. Assuming N hidden units
within each LSTM layer, theN -dimensional input
gate it, forget gate ft, output gate ot, and input
modulation gate gt at timestep t are updated as:

it = sigm (Wxixt +Whiht−1 + bi) (3)

ft = sigm (Wxfxt +Whfht−1 + bf ) (4)

ot = sigm (Wxoxt +Whoht−1 + bo) (5)

gt = tanh (Wxcxt +Whcht−1 + bc) (6)

where xt ∈ RK is the input vector, ht ∈ RN is
the LSTM output,W ’s and b’s are learned weights
and biases, and sigm (·) and tanh(·) are the sig-
moid and hyperbolic tangent functions, respec-
tively, applied element-wise. The above gates con-
trol the memory cell activation vector ct ∈ RN and
output ht ∈ RN of the LSTM as follows:

ct = ft � ct−1 + it � gt (7)

ht = ot � tanh (ct) (8)

where � represents element-wise multiplication.
Using superscripts to represent the LSTM layer

index, the input vector for the bottom LSTM is an
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encoding of the previous word, given by:

x1
t = WeΠt (9)

where We is a word embedding matrix, and Πt

is a one-hot column vector identifying the input
word at timestep t. The top LSTM input vector
comprises the concatenated output of the bottom
LSTM and the CNN feature descriptor of the im-
age I , given by:

x2
t = (h1

t ,CNNθ(I)) (10)

For the CNN component of the model, we evalu-
ate using the 16-layer VGG (Simonyan and Zis-
serman, 2015) model and the 50-layer Residual
Net (He et al., 2016), pretrained on ILSVRC-
2012 (Russakovsky et al., 2015) in both cases. Un-
like Donahue et. al. (2015), we do not fix the
CNN weights during initial training, as we find
that performance improves if all training is con-
ducted end-to-end. In training, we use only very
basic data augmentation. All images are resized
to 256 × 256 pixels and the model is trained on
random 224 × 224 crops and horizontal flips us-
ing stochastic gradient descent (SGD) with hand-
tuned learning rates.

3.3 Vocabulary Expansion
In the out-of-domain scenario, text fragments used
as constraints may contain words that are not ac-
tually present in the captioning model’s vocabu-
lary. To tackle this issue, we leverage pretrained
word embeddings, specifically the 300 dimen-
sion GloVe (Pennington et al., 2014) embeddings
trained on 42B tokens of external text corpora.
These embeddings are introduced at both the word
input and word output layers of the captioning
model and fixed throughout training. Concretely,
the ith column of the We input embedding matrix
is initialized with the GloVe vector associated with
vocabulary word i. This entails reducing the di-
mension of the original LRCN input embedding
from 1,000 to 300. The model output is then:

vt = tanh (Wvh
2
t + bv) (11)

p(yt | yt−1, ..., y1, I) = softmax (W T
e vt) (12)

where vt represents the top LSTM output pro-
jected to 300 dimensions,W T

e contains GloVe em-
beddings as row vectors, and p(yt | yt−1, ..., y1, I)
represents the normalized probability distribution
over the predicted output word yt at timestep t,

given the previous output words and the image.
The model is trained with the conventional soft-
max cross-entropy loss function, and learns to pre-
dict vt vectors that have a high dot-product sim-
ilarity with the GloVe embedding of the correct
output word.

Given these modifications — which could be
applied to other similar captioning models — the
process of expanding the model’s vocabulary at
test time is straightforward. To introduce an addi-
tional vocabulary word, the GloVe embedding for
the new word is simply concatenated with We as
an additional column, increasing the dimension of
both Πt and pt by one. In total there are 1.9M
words in our selected GloVe embedding, which
for practical purposes represents an open vocab-
ulary. Since GloVe embeddings capture seman-
tic and syntactic similarities (Pennington et al.,
2014), intuitively the captioning model will gen-
eralize from similar words in order to understand
how the new word can be used.

4 Experiments

4.1 Microsoft COCO Dataset

The MSCOCO 2014 captions dataset (Lin et al.,
2014) contains 123,293 images, split into a 82,783
image training set and a 40,504 image valida-
tion set. Each image is labeled with five human-
annotated captions.

In our experiments we follow standard prac-
tice and perform only minimal text pre-processing,
converting all sentences to lower case and tokeniz-
ing on white space. It is common practice to filter
vocabulary words that occur less than five times in
the training set. However, since our model does
not learn word embeddings, vocabulary filtering is
not necessary. Avoiding filtering increases our vo-
cabulary from around 8,800 words to 21,689, al-
lowing the model to potentially extract a useful
training signal even from rare words and spelling
mistakes (which are generally close to the cor-
rectly spelled word in embedding space). In all
experiments we use a beam size of 5, and we also
enforce the constraint that a single word cannot be
predicted twice in a row.

4.2 Out-of-Domain Image Captioning

To evaluate the ability of our approach to per-
form out-of-domain image captioning, we repli-
cate an existing experimental design (Hendricks
et al., 2016) using MSCOCO. Following this ap-
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Out-of-Domain Test Data In-Domain Test Data

Model CNN SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

DCC (Hendricks et al., 2016) VGG-16 13.4 21.0 59.1 39.8 15.9 23.0 77.2
NOC (Venugopalan et al., 2016) VGG-16 - 21.4 - 49.1 - - -
Base VGG-16 12.4 20.4 57.7 0 17.6 24.9 93.0
Base+T1 VGG-16 13.6 21.7 68.9 27.2 17.9 25.0 93.4
Base+T2 VGG-16 14.8 22.6 75.4 38.7 18.2 25.0 92.8
Base+T3 VGG-16 15.5 23.0 77.5 48.4 18.2 24.8 90.4
Base+T4 VGG-16 15.9 23.3 77.9 54.0 18.0 24.5 86.3

Base+T3* VGG-16 18.7 27.1 119.6 54.5 22.0 29.4 135.5
Base All Data VGG-16 17.8 25.2 93.8 59.4 17.4 24.5 91.7

Base ResNet-50 12.6 20.5 56.8 0 18.2 24.9 93.2
Base+T1 ResNet-50 14.2 21.7 68.1 27.3 18.5 25.2 94.6
Base+T2 ResNet-50 15.3 22.7 74.7 38.5 18.7 25.3 94.1
Base+T3 ResNet-50 16.0 23.3 77.8 48.2 18.7 25.2 92.3
Base+T4 ResNet-50 16.4 23.6 77.6 53.3 18.4 24.9 88.0

Base+T3* ResNet-50 19.2 27.3 117.9 54.5 22.3 29.4 133.7
Base All Data ResNet-50 18.6 26.0 96.9 60.0 18.0 25.0 93.8

Table 1: Evaluation of captions generated using constrained beam search with 1 – 4 predicted image
tags used as constraints (Base+T1 – 4). Our approach significantly outperforms both the DCC and NOC
models, despite reusing the image tag predictions of the DCC model. Importantly, performance on in-
domain data is not degraded but can also improve.

Model bottle bus couch microwave pizza racket suitcase zebra Avg

DCC (Hendricks et al., 2016) 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8
NOC (Venugopalan et al., 2016) 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1
Base+T4 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0

Table 2: F1 scores for mentions of objects not seen during caption training. Our approach (Base+T4)
reuses the top 4 image tag predictions from the DCC model but generates higher F1 scores by interpreting
tag predictions as constraints. All results based on use of the VGG-16 CNN.

proach, all images with captions that mention one
of eight selected objects (or their synonyms) are
excluded from the image caption training set. This
reduces the size of the caption training set from
82,783 images to 70,194 images. However, the
complete caption training set is tokenized as a bag
of words per image, and made available as image
tag training data. As such, the selected objects
are unseen in the image caption training data, but
not the image tag training data. The excluded ob-
jects, selected by Hendricks et. al. (2016) from the
80 main object categories in MSCOCO, are: ‘bot-
tle’, ‘bus’, ‘couch’, ‘microwave’, ‘pizza’, ‘racket’,
‘suitcase’ and ‘zebra’.

For validation and testing on this task, we use
the same splits as in prior work (Hendricks et al.,
2016; Venugopalan et al., 2016), with half of the
original MSCOCO validation set used for vali-
dation, and half for testing. We use the vali-

dation set to determine hyperparameters and for
early-stopping, and report all results on the test
set. For evaluation the test set is split into in-
domain and out-of-domain subsets, with the out-
of-domain designation given to any test image that
contains a mention of an excluded object in at least
one reference caption.

To evaluate generated caption quality, we use
the SPICE (Anderson et al., 2016) metric, which
has been shown to correlate well with human
judgment on the MSCOCO dataset, as well as
the METEOR (Denkowski and Lavie, 2014) and
CIDEr (Vedantam et al., 2015) metrics. For con-
sistency with previously reported results, scores
on out-of-domain test data are macro-averaged
across the eight excluded object classes. To im-
prove the comparability of CIDEr scores, the in-
verse document frequency statistics used by this
metric are determined across the entire test set,
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Base: A woman
is playing tennis
on a tennis court.
Tags: tennis,
player, ball,
racket. Base+T4:
A tennis player
swinging a racket
at a ball.

Base: A man
standing next to
a yellow train.
Tags: bus, yel-
low, next, street.
Base+T4: A man
standing next to a
yellow bus on the
street.

Base: A close
up of a cow on
a dirt ground.
Tags: zebra, zoo,
enclosure, stand-
ing. Base+T4:
A zebra standing
in front of a zoo
enclosure.

Base: A dog is sitting
in front of a tv. Tags:
dog, head, television, cat.
Base+T4: A dog with a cat
on its head watching televi-
sion.

Base: A group of people
playing a game of tennis.
Tags: pink, tennis, crowd,
ball. Base+T4: A crowd
of people standing around a
pink tennis ball.

Figure 3: Examples of out-of-domain captions
generated on MSCOCO using the base model
(Base), and the base model constrained to include
four predicted image tags (Base+T4). Words never
seen in training captions are underlined. The bot-
tom row contains some failure cases.

rather than within subsets. On out-of-domain test
data, we also report the F1 metric for mentions
of excluded objects. To calculate the F1 metric,
the model is considered to have predicted condi-
tion positive if the generated caption contains at
least one mention of the excluded object, and neg-
ative otherwise. The ground truth is considered to
be positive for an image if the excluded object in
question is mentioned in any of the reference cap-
tions, and negative otherwise.

As illustrated in Table 1, on the out-of-domain
test data, our base model trained only with image
captions (Base) receives an F1 score of 0, as it
is incapable of mentioned objects that do not ap-
pear in the training captions. In terms of SPICE,
METEOR and CIDEr scores, our base model per-
forms slightly worse than the DCC model on
out-of-domain data, but significantly better on in-

domain data. This may suggest that the DCC
model achieves improvements in out-of-domain
performance at the expense of in-domain scores
(in-domain scores for the NOC model were not
available at the time of submission).

Results marked with ‘+’ in Table 1 indicate that
our base model has been decoded with constraints
in the form of predicted image tags. However,
for the fairest comparison, and because re-using
existing image taggers at test time is one of the
motivations for this work, we did not train an im-
age tagger from scratch. Instead, in results T1–
4 we use the top 1–4 tag predictions respectively
from the VGG-16 CNN-based image tagger used
in the DCC model. This model was trained by the
authors to predict 471 MSCOCO visual concepts
including adjectives, verbs and nouns. Examples
of generated captions, including failure cases, are
presented in Figure 3.

As indicated in Table 1, using similar model
capacity, the constrained beam search approach
with predicted tags significantly outperforms prior
work in terms SPICE, METEOR and CIDEr
scores, across both out-of-domain and in-domain
test data, utilizing varying numbers of tag pre-
dictions. Overall these results suggest that, per-
haps surprisingly, it may be better to incorporate
image tags into captioning models during decod-
ing rather than during training. It also appears
that, while introducing image tags improves per-
formance on both out-of-domain and in-domain
evaluations, it is beneficial to introduce more tag
constraints when the test data is likely to con-
tain previously unseen objects. This reflects the
trading-off of influence between the image tags
and the captioning model. For example, we noted
that when using two tag constraints, 36% of gen-
erated captions were identical to the base model,
but when using four tags this proportion dropped
to only 3%.

To establish performance upper bounds, we
train the base model on the complete MSCOCO
training set (Base All Data). We also evaluate
captions generated using our approach combined
with an ‘oracle’ image tagger consisting of the top
3 ground-truth image tags (T3*). These were de-
termined by selecting the 3 most frequently men-
tioned words in the reference captions for each test
image (after eliminating stop words). The very
high scores recorded for this approach may mo-
tivate the use of more powerful image taggers in
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future work. Finally, replacing VGG-16 with the
more powerful ResNet-50 (He et al., 2016) CNN
leads to modest improvements as indicated in the
lower half of Table 1.

Evaluating F1 scores for object mentions (see
Table 2), we note that while our approach outper-
forms prior work when four image tags are used, a
significant increase in this score should not be ex-
pected as the underlying image tagger is the same.

4.3 Captioning ImageNet

Consistent with our observation that many image
collections contain useful annotations, and that we
should seek to use this information, in this section
we caption a 5,000 image subset of the ImageNet
(Russakovsky et al., 2015) ILSVRC 2012 classi-
fication dataset for assessment. The dataset con-
tains 1.2M images classified into 1,000 object cat-
egories, from which we randomly select five im-
ages from each category.

For this task we use the ResNet-50 (He et al.,
2016) CNN, and train the base model on a com-
bined training set containing 155k images com-
prised of the MSCOCO (Chen et al., 2015) train-
ing and validation datasets, and the full Flickr
30k (Young et al., 2014) captions dataset. We
use constrained beam search and vocabulary ex-
pansion to ensure that each generated caption in-
cludes a phrase from the WordNet (Fellbaum,
1998) synset representing the ground-truth image
category. For synsets that contain multiple en-
tries, we run constrained beam search separately
for each phrase and select the predicted caption
with the highest log probability overall.

Note that even with the use of ground-truth
object labels, the ImageNet captioning task re-
mains extremely challenging as ImageNet con-
tains a wide variety of classes, many of which are
not evenly remotely represented in the available
image-caption training datasets. Nevertheless, the
injection of the ground-truth label frequently im-
proves the overall structure of the caption over the
base model in multiple ways. Examples of gen-
erated captions, including failure cases, are pre-
sented in Figure 4.

As the ImageNet dataset contains no exist-
ing caption annotations, following the human-
evaluation protocol established for the MSCOCO
2015 Captioning Challenge (Chen et al., 2015), we
used Amazon Mechanical Turk (AMT) to collect a
human-generated caption for each sample image.

Base: A close up of a pizza
on the ground. Synset: rock
crab. Base+Synset: A large
rock crab sitting on top of a
rock.

Base: A close up shot of an
orange. Synset: pool table,
billiard table, snooker table.
Base+Synset: A close up of
an orange ball on a billiard
table.

Base: A herd or horses
standing on a lush green
field. Synset: rapeseed.
Base+Synset: A group of
horses grazing in a field of
rapeseed.

Base: A black bird is
standing in the grass.
Synset: oystercatcher, oys-
ter catcher. Base+Synset:
A black oystercatcher with
a red beak standing in the
grass.

Base: A man and a woman
standing next to each other.
Synset: colobus, colobus
monkey. Base+Synset: Two
colobus standing next to
each other near a fence.

Base: A bird standing
on top of a grass covered
field. Synset: cricket.
Base+Synset: A bird stand-
ing on top of a cricket field.

Figure 4: Examples of ImageNet captions gen-
erated by the base model (Base), and by the
base model constrained to include the ground-
truth synset (Base+Synset). Words never seen in
the MSCOCO / Flickr 30k caption training set are
underlined. The bottom row contains some failure
cases.

For each of the 5,000 samples images, three hu-
man evaluators were then asked to compare the
caption generated using our approach with the
human-generated caption (Base+Syn v. Human).
Using a smaller sample of 1,000 images, we also
collected evaluations comparing our approach to
the base model (Base+Syn v. Base), and compar-
ing the base model with human-generated captions
(Base v. Human). We used only US-based AMT
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Better Equally
Good

Equally
Poor Worse

Base v. Human 0.05 0.06 0.04 0.86
Base+Syn v. Human 0.12 0.10 0.05 0.73
Base+Syn v. Base 0.39 0.06 0.42 0.13

Table 3: In human evaluations our approach lever-
aging ground-truth synset labels (Base+Syn) im-
proves significantly over the base model (Base)
in both direct comparison and in comparison to
human-generated captions.

Figure 5: AMT evaluations of generated
(Base+Syn) ImageNet captions versus human cap-
tions, by super-category.

workers, screened according to their performance
on previous tasks. For both tasks, the user in-
terface and question phrasing was identical to the
MSCOCO collection process. The results of these
evaluations are summarized in Table 3.

Overall, Base+Syn captions were judged to be
equally good or better than human-generated cap-
tions in 22% of pairwise evaluations (12% ‘bet-
ter’, 10% ‘equally good’), and equally poor or
worse than human-generated captions in the re-
maining 78% of evaluations. Although still a long
way from human performance, this is a signifi-
cant improvement over the base model with only
11% of captions judged to be equally good or bet-
ter than human. For context, using the identical
evaluation protocol, the top scoring model in the
MSCOCO Captioning Challenge (evaluating on
in-domain data) received 11% ‘better’, and 17%
‘equally good’ evaluations.

To better understand performance across
synsets, in Figure 5 we cluster some class labels
into super-categories using the WordNet hierar-
chy, noting particularly strong performances in
super-categories that have some representation
in the caption training data — such as birds,
mammals and dogs. These promising results

suggest that fine-grained object labels can be
successfully integrated with a general purpose
captioning model using our approach.

5 Conclusion and Future Research

We investigate constrained beam search, an ap-
proximate search algorithm capable of enforcing
any constraints over resulting output sequences
that can be expressed in a finite-state machine.
Applying this approach to out-of-domain image
captioning on a held-out MSCOCO dataset, we
leverage image tag predictions to achieve state of
the art results. We also show that we can signifi-
cantly improve the quality of generated ImageNet
captions by using the ground-truth labels.

In future work we hope to use more power-
ful image taggers, and to consider the use of
constrained beam search within an expectation-
maximization (EM) algorithm for learning better
captioning models from weakly supervised data.
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