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Abstract

Community-driven Question Answering
(CQA) systems such as Yahoo! Answers
have become valuable sources of reusable
information. CQA retrieval enables usage
of historical CQA archives to solve new
questions posed by users. This task has re-
ceived much recent attention, with meth-
ods building upon literature from transla-
tion models, topic models, and deep learn-
ing. In this paper, we devise a CQA re-
trieval technique, LASER-QA, that embeds
question-answer pairs within a unified la-
tent space preserving the local neighbor-
hood structure of question and answer
spaces. The idea is that such a space
mirrors semantic similarity among ques-
tions as well as answers, thereby enabling
high quality retrieval. Through an em-
pirical analysis on various real-world QA
datasets, we illustrate the improved effec-
tiveness of LASER-QA over state-of-the-
art methods.

1 Introduction

Community-based Question Answering (CQA)
services such as Yahoo! Answers1, Quora2, Stack-
Overflow3, and Baidu Zhidao4 have become a de-
pendable source of knowledge to solve common
user problems. These allow a user to post queries
such as how and why questions that seek descrip-
tive solutions and opinions as answers. Over time,
these services build up a large archive of question-
answer knowledge that may be leveraged to solve
new user questions. The CQA retrieval problem,

1
https://answers.yahoo.com/

2
https://www.quora.com/

3
http://stackoverflow.com/

4
https://en.wikipedia.org/wiki/Baidu Knows

Table 1: Example CQA Pairs

# QA Cause

1

Q: My internet connection is not working, my

router shows the ”Internet” led blinking in red. Router

A: Please go to the router login page and re-login Authentication

with broadband credentials; click ”connect” and Issue

you should be on the internet.

2

Q: My internet connection is not working, only

the power led is lit in the router. Router

A: Can you check whether the broadband cable Loose

is plugged in. Maybe, the broadband cable is not Connection

connected properly.

that has received much recent attention, is about
addressing this opportunity. CQA retrieval meth-
ods focus on finding historical archived knowl-
edge (questions, answers or QA pairs) that are rel-
evant to a newly posed user question. The cen-
tral technical challenge that differentiates CQA re-
trieval from other general purpose IR tasks is that
of the need to address the lexical gap (aka lexi-
cal chasm) in QA archives. Lexical chasm means
that text fragments in questions (e.g., disk full)
may lead to semantically correlated content in an-
swers (e.g., format). This QA-correlation is differ-
ent from semantic relatedness such as synonymy
and antonymy; in the above example, the correla-
tion is due to disk full issues often leading to so-
lution involving disk formating. Explicit correla-
tion modelling, using statistical translation mod-
els, have met with much success in CQA retrieval.

In this paper, we take a neighborhood preserv-
ing learning approach, and learn a unified repre-
sentation for QA pairs in an abstract latent space.
Consider two example CQA pairs from a techni-
cal support forum presented in Table 1; the in-
tuitive causes listed alongside are external to the
dataset. Though the questions are reasonably sim-
ilar lexically, they pertain to very different issues
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as illustrated by the wide disparity in the answers
posed to them. We model QA-pairs in a uni-
fied space that preserves the similarity neighbor-
hood in question and answer spaces. In this ex-
ample, the wide divergence in answer-space simi-
larity neighborhoods between the two QAs would
pull them apart, so they live in different parts of the
latent space, reflecting the dissimilarity between
their causes. Thus, our contribution in this paper
is a neighborhood-preserving method for CQA re-
trieval, LASER-QA, expanding to LAtent-Space
Embedding for Rretrieval in QA archives.

2 Related Work

The three main CQA retrieval tasks target retriev-
ing (a) related past questions (Zhou et al., 2015),
(b) potentially usable past answers (Shtok et al.,
2012), and (c) past question-answer pairs (Xue
et al., 2008). Techniques for CQA typically use
one of: (i) statistical translation models, (ii) topic
models and (iii) neural networks. A fourth class
target exploiting metadata such as question cate-
gories and author data, or domain-specific syntac-
tic information, and are not as applicable in the
absence of such information.

In the interest of keeping this section focused
on retrieval, we do not cover other tasks that have
been addressed for CQA, such as QA-pair dis-
covery (Deepak and Visweswariah, 2014), cluster-
ing (Deepak, 2016) and auxiliary IR tasks such as
query suggestions (Deepak et al., 2013).

2.1 Translation Model based Techniques

Translation models (Brown et al., 1990) take
parallel corpora, collections of document pairs
expressing the same thing in different natu-
ral languages, and learn correlations between
words/phrases; for example, p(f |e) quantifies the
probability of an english word e getting translated
to a french word f in an English-French transla-
tion system. Though question-answer pairs do
not semantically qualify as parallel corpora, us-
age of translation models treating them so(Xue
et al., 2008) have led to retrieval accuracy im-
provements. Simplistically, a high probability for
p(format|disk) leads to retrieval models boost-
ing the score of a answer containing the word for-
mat to respond to a user query involving a disk
problem. Later methods have improved upon them
by phrase-level (Zhou et al., 2011) and entity-
level (Singh, 2012) modelling as well as by unim-

portant word removal (Lee et al., 2008) and dif-
ferential treatment of concepts (Park and Croft,
2015). Recent work has even explored using a
different language (e.g., Chinese) to enrich ques-
tions (Zhang et al., 2015).

2.2 Topic Model based Techniques
Topic models (Blei et al., 2003) have been used
to retrieve topically similar questions (Cai et al.,
2011) with usage of the solution side leading to
further improvements (Ji et al., 2012). They have
been combined with language modeling whereby
question and answer parts are modeled to have
been generated from paired latent topics, but in
”question and answer languages” (Zhang et al.,
2014). We will use such paired topic modelling,
called TBLM, as a baseline in our experimental
study.

2.3 Topic+Translation Models
Hybrid methods build upon topic and transla-
tion models by interpolating the separate scorings.
Due to the usage of a combination of multiple
types of parameterized models, the results of such
”pipeline methods” have been observed to be hard
to reproduce (Qiu et al., 2013).We use a recent
hybrid scoring method, called TopicTRLM (Zhou
et al., 2015), as a baseline in our experimental
study.

2.4 Deep Learning Methods
Neural networks such as DBNs (Wang et al., 2011;
Hu et al., 2013) and more sophisticated neural
pipelines (Shen et al., 2015) have been explored
for CQA retrieval. A recent work (Nakov et al.,
2016a) trains a neural network to discriminate be-
tween good and bad comments for a question. Us-
ing neural networks for retrieval within question
datasets (not involving answers) has also been a
subject of recent interest (e.g., (Bogdanova et al.,
2015; Das et al., 2016)). The most recent method
for generic QA-pair processing, which we will call
as AENN (Zhou et al., 2016), trains separate auto-
encoders for question and answer corpora, and in-
duces correlatedness of intermediate representa-
tions in a fine-tuning step. In our empirical anal-
ysis, we will use the AENN approach from (Zhou
et al., 2016) as a baseline.

2.5 Auxiliary-information based Methods
This category of methods target to exploit specific
kinds of auxiliary information that are potentially
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available with CQA data. Techniques have consid-
ered usage of question categories (Cao et al., 2009;
Zhou et al., 2014), the split between question ti-
tle and description (Qiu et al., 2013), and assump-
tions of the question syntax (Duan et al., 2008).
While such information is available in many sys-
tems, QA information from systems such as fo-
rums and chat-based customer support sometimes
have very little information other than just QA-
pairs. We target a general scenario where such
metadata is not expected as a pre-requisite, as in
the case of most techniques from other categories.

3 Problem Statement

Let D = {(q1,a1), . . . , (qn,an)} be QA pairs
from a CQA archive where answer ai is associ-
ated with question qi; for cases involving mul-
tiple answers for a question, the question would
be replicated for each answer. For a new question
q, the CQA retrieval problem is about devising a
scoring function f(q, (qi,ai)) that quantifies the
relevance of each (qi,ai) pair from D to the new
question q. Having devised a scoring function, re-
trieval is trivially accomplished by choosing an or-
dered set of top-t QA pairs from D in accordance
with their f(·, ·) scores.

3.1 Evaluation
In the datasets that we use, we have labels indicat-
ing which QAs are related/relevant to a particular
question. Thus, the quality of the scoring func-
tion can be evaluated using traditional information
retrieval metrics (Robertson and Zaragoza, 2007)
such as Precision, MAP, MRR, and NDCG when
measured against such labellings. In addition, we
will use one more metric, namely Success Rate,
the fraction of questions for which at least one re-
lated question is ranked among the top-t, in eval-
uation.

4 LASER-QA: The Proposed Technique

Our method, LASER-QA, embeds QA pairs in D,
within a unified space of desired dimensionality.

{(q1,a1), . . . , (qn,an)} LASER−QA−−−−−−−−→ {u1, . . . ,un}

where, ui ∈ Rd is a vector space embedding in
the latent space Rd. As we will illustrate, LASER-
QA targets to preserve the local similarity struc-
tures in the question and answer spaces within the
unified embedding. Having built the embedding

of QA pairs, cosine similarity between vectors in
Rd is used for scoring:

f(q, (qi,ai)) =
u>ui

‖u‖‖ui‖ , (1)

where, u ∈ Rd is the embedding of the new ques-
tion q; we will outline the embedding of single
questions into Rd in a later section.

Our motivation behind LASER-QA stems from
the idea of Local Linear Embedding (LLE) (Saul
and Roweis, 2000); further, the choice of lo-
cal neighborhood preservation is motivated by
pervasive usage of local neighbors (i.e., k-
NN retrieval) in case-based reasoning frame-
works (De Mantaras et al., 2005) that seek to reuse
structured problem-solution data.

4.1 Data Representation

We use the tf-idf vector representation for each
question (denoted as xi) and each answer (yi) in
D. The tf-idf vectors are in RD where D denotes
the size of the vocabulary. The question and an-
swer tf-idf vectors are arranged as columns to form
matrices X and Y , both of size D × n. Recall,
the latent space would be a Euclidean space of di-
mension d, and typically, we have d < D. Our
method is intentionally designed to not rely on the
specifics of the representation used, and thus can
make use of any vector representation of text data.
Note that our latent space embeddings in Rd are
evidently unrelated to distributional text embed-
dings (e.g., (Mikolov et al., 2013)) and are com-
plementary in that such embeddings could be used
as an alternative input representation for xi and yi.

4.2 Regularized Reconstruction Coefficients

For any question xi, let Nk(xi) denote the set of
top-k nearest questions to the question xi, prox-
imity assessed using cosine similarity of vectors in
RD; analogously, Nk(yi) denotes the top-k near-
est answers to yi. Much like the representation,
the similarity measure may also be replaced as
appropriate. Inspired by LLE (Saul and Roweis,
2000), we model the local neighborhood geome-
try around xi using reconstruction coefficient wq

ij

for each question xj ∈ Nk(xi). We intend to learn
the co-efficients such that xi may be reconstructed
well as a linear combination of the neighbors us-
ing the co-efficients. Thus, these co-efficients
are computed by minimizing, for every question
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xi, the regularized reconstruction penalty (RRP)
given below:

RRP(xi) =

1
2

∥∥∥∥∥∥xi −
∑

xj∈Nk(xi)

wq
ijxj

∥∥∥∥∥∥
2

+
λ

2

∑
xj∈Nk(xi)

(
wq

ij

)2

(2)

The first term denotes the approximation error
in reconstructing xi as a linear combination of its
k nearest neighbors using weights wq

ij . The sec-
ond term is an L2 regularization term weighted
with a non-negative hyperparameter λ, which we
set to 0.01 in our experiments. We replaced the
sum-to-one constraint in (Saul and Roweis, 2000)
by L2 regularization since the former produces
large swings in magnitude on either sides of 0.0
(note co-efficients are not constrained to be non-
negative) on high-dimensional spaces such as our
tf-idf space, leading to stability concerns.

By explicitly assigning wq
ij = 0 ∀xj 6∈ Nk(xi),

we rewrite the above problem as:

min
wq

i

1
2
wq>

i

(
X>X + λI

)
wq

i−

wq>
i X>xi +

1
2
x>i xi

subject to wq
ij = 0 ∀j 6∈ Nk(xi) (3)

where I is an n× n identity matrix and wq
i is a

column vector of size n comprising reconstruction
coefficients vector for xi. It can be shown that the
nonzero entries of the optimal coefficient vector is:

(X>i Xi + λIk)−1X>i xi (4)

where Ik is an identity matrix of the size k and
matrix Xi is a D × k matrix obtained from the
matrix X by retaining only those columns which
are neighbors of xi. Note, the above matrix in-
verse is well-defined since the matrix is positive
definite by construction. Once we find these opti-
mal coefficient vectors for all questions (answers),
we stack them together column-wise and obtain a
matrix, W q (W a) of size n × n, called the re-
construction coefficient matrix for questions (an-
swers). These two matrices W q and W a capture
the local geometry of the questions and answers in
the QA-archive D.

4.3 Embedding into Latent Space Rd

In this step, we use the W q and W a matrices to do
the transformation of the QA pairs, the (xi,yi)s to
uis. Building upon LLE, we develop a scheme to
preserve the local neighborhood structure around
xi and yi in learning the ui.

min
U

α
n∑

i=1

‖ui-Uwq
i ‖2+(1-α)

n∑
i=1

‖ui-Uwa
i ‖2

subject to:
n∑

i=1

ui = 0

UU> = (n-1)Id (5)

where, U is a d × n matrix whose ith column
is equal to ui. α ∈ [0, 1] is a weighting param-
eter that allows to trade-off between question and
answer spaces. At α = 1, the embedding ui will
try to maximally align with question xi and vice
versa. Our constraints, like the analogous ones
in LLE, ensure origin-centered mean solutions
and avoid degenerate solutions, respectively (Pang
et al., 2005). The first constraint is soft in that any
optimal solution disregarding the constraint can be
shifted to ensure origin-centering.

Towards capturing the optimal solution for
Eq. 5, we define three n× n symmetric matrices,

Q = (I −W q)(I −W q)> (6)

A = (I −W a)(I −W a)> (7)

Z = αQ + (1− α)P , α ∈ [0, 1] (8)

Theorem 1. If the eigenvalues of the matrix Z are
arranged in the descending order and the eigen-
vectors corresponding to the last d eigenvalues are
denoted by {v1,v2, . . . ,vd}, then, the optimal so-
lution for Eq. (5), denoted by U∗ is:

U∗ =


v>1
v>2
. . .
v>d

 (9)

Further, origin centering is achieved by the fol-
lowing transformation:

U∗centered = U∗ −U∗ee> (10)

where e is a a vector of all 1′s.
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Proof: First, observe that the objective function
of Eq. (5) can be rewritten in a compact form:

α ‖U −UW q‖2F + (1− α) ‖U −UW a‖2F (11)

where, ‖ · ‖F denotes the Frobenius norm.
Now, keeping the first constraint aside, we fold in
the second constraint using Lagrange multipliers
yielding the following Lagrangian L(U ,Λ).

L(U ,Λ) = α ‖U -UW q‖2F +(1-α) ‖U -UW a‖2F
+ e>

(
Λ ◦

(
UU>-(n-1)Id

))
e (12)

where e is an all 1’s vector. In this Lagrangian,

• Matrix Λ is a d× d symmetric matrix denot-
ing the Lagrange multipliers for the second
constraint. Note, the last term is a compact
representation of d2/2 equality constraints.

• The symbol ◦ denotes the Hadamard prod-
ucts (element wise product) of two matrices.

For any matrix M , we have ‖M‖2F =
Tr(MM>) where Tr(.) is the trace. Thus, we
can rewrite the first two terms of Eq.(12) as:

αTr
(
(U −UW q) (U −UW q)>

)
+

(1− α) Tr
(
(U −UW a) (U −UW a)>

)
A slight re-arrangement yields:

αTr
(
U (I −W q) (I −W q)>U>

)
+

(1− α) Tr
(
U (I −W a) (I −W a)>U>

)
The Q and A space components are now sepa-

rated out into the first and second terms. We now
simplify the notation using Eq. (6) and (7) to:

L(U ,Λ) = αTr
(
UQU>

)
+(1-α) Tr

(
UAU>

)
+ e>

(
Λ ◦

(
UU>-(n-1)Id

))
e

Recall the following for any matrices A,B, & C.

1. A ◦ (B −C) = (A ◦B)− (A ◦C)

2. e> (A ◦B) e = Tr(AB>) = Tr(A>B)

This allows us to rewrite Eq. (13) as:

L(U ,Λ) = Tr
(
αUQU> + (1− α)UAU>

+ ΛUU> − (n− 1)Λ
)

(13)

To find an optimal U , we differentiate L(U ,Λ)
w.r.t U and equate to zero. This leads to:

∂L(U ,Λ)
∂U

= 2αUQ + 2(1− α)UA + 2ΛU = 0

The above follows from standard matrix proper-
ties (Petersen and Pedersen, 2012). Re-arranging:

(αQ + (1− α)A) U> = −U>Λ (14)

One possible solution of the above equation could
be constructed in the following manner.

1. Let Z = αQ + (1− α)A

2. Compute the Eigen decomposition of Z

3. Find the lowest (i.e., bottom) d Eigen values,
and take the corresponding Eigen vectors.

4. Form a matrix U by stacking the selected
Eigen vectors row-wise.

While any subset of d eigenvectors (and their
eigenvalues) would be a solution for Eq. (14), we
would take the bottom d eigenvectors for minimiz-
ing the objective; this is so since the objective be-
comes Tr(−Λ) when Eq. (14) holds. The matrix
constructed above is the optimal U∗ in Eq. (9).
This completes the proof.

The first constraint in Eq.(5) is then applied to
centre the vectors around the origin using Eq.(10).

4.4 Embedding a new Question in Rd

To use the historical ui vectors to retrieve histor-
ical QAs against a new question (vector) q, we
need to embed the latter in the same space Rd.
This is achieved using the same structure as ap-
plied in forming the embedding; we start with
identifying, from D, the k-nearest questions to q.
The reconstruction co-efficient vector wq is then
learnt using Eq. (2). Finally, we obtain the em-
bedding u for x as a wq-weighted linear combi-
nation of the Rd embeddings corresponding to the
k-nearest neighbors. This is captured in steps 9-11
in Algorithm 1 given in the next section.
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Algorithm 1: LASER-QA Algorithm
input : D = {(q1,a1), . . . , (qn,an)}

(CQA corpus) & query q
output : Top-t relevant QA pairs from D
Offline Phase

1 Use appropriate data representation to form
vector-pairs (xi,yi) for every QA (qi,ai);

2 Compute the reconstruction coefficient
matrices W q and W a (Ref. Section 4.2);

3 Q← (I −W q)(I −W q)>;
4 A← (I −W a)(I −W a)>;
5 Z ← αQ + (1− α)A;
6 {v1,v2, . . . ,vd} ← Bottom d eigenvectors of

matrix Z;

7 U∗ ←


v>1
v>2
. . .
v>d

;

8 U∗centered = U∗ −U∗ee>;
Query-time (Online) Phase

9 x← Vector representation of the query q;
10 wx ← Vector of size n capturing the

reconstruction coefficients for x;
11 u← U∗centeredwx;
12 Output top-t QA pairs based by computing

the following scores

f(q, (qi,ai)) =
u>ui

‖u‖‖ui‖

4.5 LASER-QA Algorithm
The details of the LASER-QA technique from the
previous sections are summarized in Algorithm 1,
with the offline (Steps 1-8) and query-time phase
(Steps 9-12) clearly demarcated. It may be noted
that, LASER-QA, being an optimization-based
method, preserves Q/A-space local neighborhoods
on a best-effort basis and does not offer guarantees
on the fraction of local neighbors preserved from
either spaces in the Rd embedding.

4.5.1 Generalizability of LASER-QA
LASER-QA can be easily extended to incorpo-
rate other kinds of information that might be avail-
able along with QA pairs such as images, votes
(e.g., Blurtit5, Quora and Yahoo! Answers) tags
(Quora), categories (answers.com6 and Yahoo!

5http://www.blurtit.com/
6http://www.answers.com/

Answers) or comments (Quora and Blurtit). Con-
sider data in the form of triplets (qi,ai,mi) where
mi represents the extra information. The mi vec-
tors are subjected to the same form of process-
ing as qi and ai vectors, leading to the W m and
M matrices. Line 5 in Algorithm 1 would then
change to:

Z ← αqQ + αaA + αmM (15)

where the different αs denote interpolation
weights that need to be set appropriately. The re-
mainder of the LASER-QA steps remain identical
to Algorithm 1. It may be noted that αm could be
set to a low value if the utility of the extra infor-
mation is deemed to be low.

4.5.2 Scalability of LASER-QA
We now analyze the scalability of LASER-
QA, separately analysing the (a) one-time offline
phase, and (b) query-time phase.
Offline Phase: This is a one-time operation at
the system design time, involving matrix multi-
plications followed by eigen-decomposition. Our
matrices being sparse, multiplications are fast and
worst-case quadratic7 in n. The Eigendecomposi-
tion is O(n3), but being a fundamental matrix op-
eration, very efficient implementations exist (es-
pecially for symmetric matrices such as ours) with
sub-second response times for n of the order of
thousands (in packages such as Eigen8 and LA-
PACK9), trendlines illustrating that Eigendecom-
positions with even n of the order of millions are
easy. The embeddings of all vectors are then in-
dexed using conventional multi-dimensional in-
dexes and/or locality sensitive hashing to aid
querying.
Online/Query-time Phase: This encompasses (a)
an IR query to find the k most similar questions,
(b) solving for the k reconstruction co-efficients in
Eq. 4 and forming the embedding, and (c) simply
querying for top-t nearest neighbors over indexes
built at design-time. The main query-time over-
head (vis-a-vis conventional information retrieval)
is the additional query over the multi-dimensional
index; this construction ensures fast sub-linear re-
sponse times for the online phase.
Scalability against other methods: In contrast
to LASER-QA, it is notable that the baselines

7https://goo.gl/RQ1m0V
8https://goo.gl/phMJv9
9https://goo.gl/rJjBY6 (Fig 3.1)
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employ expensive query-time operations; specif-
ically, it is unclear as to how query-time retrieval
using Eq.4 in the TBLM paper (Zhang et al., 2014)
and Eq.1 in Topic-TRLM paper (Zhou et al., 2015)
could be completed in sub-linear time.

5 Experimental Evaluation

5.1 Datasets and Experimental Setup

Datasets: We use two recent datasets in our eval-
uation, CQADupStack (Hoogeveen et al., 2015)
and SemEval2016-Task3 (Nakov et al., 2016b).
The former has a manually labelled set of related
questions to every question, whereas the latter has
relevance labels associated with answers (appear-
ing as comments); these labellings make auto-
mated evaluation possible. Among the 12 subsets
in CQADupStack, owing to scalability issues of
the AENN baseline, we choose the three smaller
subsets from CQADupStack, namely webmasters
(1299 QAs), android (2193), and gis (3726) for
a full comparative evaluation. Each of these are
split into two halves, with one portion used for the
training (that is, learning the statistical model such
as LASER-QA, translation model, etc.) and the
other one used for the testing (the 50:50 split en-
sures a sizeable test set). The related labellings
are used only for evaluation purposes; however,
since only training pairs are retrieved within this
setup, related labellings across QAs in the testing
set would be missed, artificially lowering the recall
of all the methods in our evaluation. In a recent
analysis (Hoogeveen et al., 2016), CQADupStack
authors quantify the incompleteness of labeling in
the dataset. Such issues further artificially reduce
retrieval accuracies as estimated from our auto-
mated evaluation. The SemEval2016 dataset, on
the other hand, has an implicit test-train split. We
use the subset of the data categorized under Qatar
Living Lounge, the largest category (which is 27%
of the full dataset), for our experiments. All ‘com-
ments’ that are labelled relevant to the associated
question are paired together as QA-pairs to form a
training set of 1366 pairs, with the test questions
from the dataset used as is.
Baselines: As detailed in Section 2, we com-
pare against three baselines (a) TBLM (Zhang
et al., 2014) (topic model approach), (b) Topic-
TRLM (Zhou et al., 2015) (topic+translation mod-
els), and (b) AENN (Zhou et al., 2016) (deep
learning). TBLM requires an answer quality
signal that we set to unity. We use author-

recommended parameter settings for TBLM and
TopicTRLM. Since AENN learns a latent space
representation (though a separate one for ques-
tions and answers unlike LASER-QA), the evalua-
tion w.r.t LASER-QA is a direct comparison of the
quality of the respective latent spaces. The AENN
method requires training triplets, i.e., [question,
answer, other answer]; we populate the other an-
swer part using the answer of a related question.
This gives AENN an advantage as it uses relations
among training pairs that are unavailable to other
methods. For AENN, quality measures peaked
around 2000 (for webmasters and gis) and 3000
(for android and SemEval2016) for latent space di-
mensionality; our results are from such settings.
LASER-QA Parameters: We set k = 15 and
α = 0.8, the latter ensuring that the question space
is given more importance. We always set d to the
number of eigen vectors in Z, equalling |D|. We
will separately study LASER-QA trends against
parameter variations as well.
Evaluation Metrics: We use Precision, Success
Rate (SR) (Ref. Sec 3), MAP and NDCG (Robert-
son and Zaragoza, 2007) for our evaluation. Preci-
sion simply measures the fraction of related doc-
uments among the top-t that were retrieved. Due
to this rank-agnostic construction, precision is un-
able to incentivize for putting the relevant results
at the top of the result instead of deeper down.
In contrast, MAP and NDCG are rank-aware met-
rics. MAP10 computes the average of precisions
computed at rank positions where a relevant result
is returned. NDCG is another rank-aware met-
ric11 that discounts the appearance of the reve-
lant result based on it’s rank in the result set. We
assess statistical significance using randomization
tests (Smucker et al., 2007).

5.2 Evaluation Results and Insights

Table 2 summarizes the comparative evaluation
across varying t (best results boldfaced). The fol-
lowing observations are notable:

• LASER-QA outperforms the other methods
across datasets. This is followed by Topic-
TRLM, TBLM and then AENN.

• LASER-QA’s margin is highest at (small)
values of t that are typical of scenarios in-
volving human perusal of results. As t in-

10https://goo.gl/xr7NnD
11https://goo.gl/26Pcct
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Table 2: Retrieval Results (•& ◦ denote statistical significance at p-value< 0.01 &< 0.05 respectively)

Dataset→ webmasters (#QAs=1299) android (#QAs=2193) gis (#QAs=3726) SemEval2016 (#QAs=1366)
t=5 t=5 t=5 t=5

Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.022• 0.101• 0.079• 0.082• 0.026◦ 0.127• 0.094• 0.102• 0.023• 0.111• 0.085• 0.089• 0.141◦ 0.407• 0.266◦ 0.265◦
TBLM 0.009 0.043 0.031 0.034 0.017 0.080 0.059 0.061 0.008 0.041 0.034 0.035 0.084 0.259 0.158 0.158
TTRLM 0.012 0.056 0.030 0.033 0.022 0.101 0.061 0.067 0.016 0.079 0.048 0.052 0.067 0.201 0.134 0.139
AENN 0.008 0.035 0.023 0.026 0.007 0.033 0.012 0.012 0.005 0.026 0.016 0.017 0.030 0.148 0.060 0.059

t=10 t=10 t=10 t=10
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.013• 0.116• 0.080• 0.088• 0.015◦ 0.148• 0.097• 0.110• 0.013• 0.123• 0.086• 0.095• 0.125• 0.556• 0.291• 0.292•
TBLM 0.006 0.050 0.031 0.036 0.010 0.089 0.060 0.066 0.005 0.046 0.034 0.037 0.070 0.296 0.156 0.163
TTRLM 0.010 0.093 0.036 0.043 0.014 0.124 0.065 0.076 0.010 0.098 0.050 0.060 0.069 0.383 0.152 0.160
AENN 0.005 0.043 0.024 0.029 0.005 0.047 0.014 0.018 0.003 0.030 0.016 0.019 0.036 0.259 0.069 0.078

t=20 t=20 t=20 t=20
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.007 0.121 0.080• 0.092• 0.008 0.157 0.097• 0.116• 0.007 0.126 0.087• 0.100• 0.079 0.605 0.296• 0.327•
TBLM 0.003 0.050 0.031 0.038 0.006 0.100 0.060 0.070 0.003 0.052 0.034 0.038 0.051 0.333 0.157 0.175
TTRLM 0.006 0.118 0.037 0.052 0.008 0.149 0.066 0.085 0.006 0.119 0.052 0.067 0.059 0.519 0.149 0.182
AENN 0.003 0.053 0.025 0.032 0.003 0.066 0.015 0.023 0.002 0.039 0.017 0.021 0.023 0.321 0.074 0.104

t=50 t=50 t=50 t=50
Method Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG Prec SR MAP NDCG
LASER-QA 0.003 0.125 0.081• 0.096• 0.003 0.166 0.097• 0.121• 0.002 0.129 0.087• 0.103• 0.033 0.630 0.295• 0.359•
TBLM 0.001 0.056 0.031 0.040 0.003 0.112 0.060 0.074 0.001 0.060 0.035 0.040 0.026 0.346 0.151 0.187
TTRLM 0.003 0.145◦ 0.038 0.061 0.004◦ 0.177 0.066 0.093 0.003• 0.152• 0.052 0.074 0.039 0.667 0.140 0.214
AENN 0.002 0.070 0.025 0.035 0.002 0.088 0.015 0.028 0.001 0.065 0.017 0.025 0.016 0.407 0.066 0.107

t=5 t=50
Dataset #QAs Prec SR MAP NDCG Prec SR MAP NDCG
stats 4004 0.016• 0.076• 0.057• 0.060• 0.002 0.096 0.058• 0.071•
programmers 4107 0.020• 0.096• 0.068• 0.075• 0.002 0.115 0.069• 0.088•
wordpress 4744 0.019• 0.091• 0.069• 0.074• 0.002 0.112 0.070• 0.085•
physics 5044 0.025• 0.120• 0.088• 0.094• 0.003 0.148 0.090• 0.111•
mathematica 5084 0.018• 0.087• 0.067• 0.072• 0.002 0.116 0.069• 0.084•
unix 5330 0.023• 0.115• 0.089• 0.094• 0.003 0.137 0.091• 0.107•
gaming 6398 0.034• 0.166• 0.130• 0.137• 0.004 0.189 0.132• 0.155•
english 6668 0.024• 0.115• 0.090• 0.095• 0.003 0.130 0.092• 0.107•

Table 3: LASER-QA Results (Boldfacing and Statistical Sig-
nificance indications from comparison with TopicTRLM and
TBLM) over Larger Categories in CQADupStack Figure 1: NDCG (Y-axis) v/s. k

creases way beyond the training neighbor-
hood size (i.e., 15), LASER-QA is seen to
deteriorate gracefully (as expected).

• LASER-QA performance peaks on rank-
aware metrics such as MAP and NDCG (even
at t = 50), indicating it’s high effectiveness
in producing relevant results at the top.

These observations underline the effectiveness of
LASER-QA as a CQA retrieval method. It may
be noted that LASER-QA uses compact represen-
tations (d < 2000), as compared to vocabulary
space representations that are typically ≥ 5000.
Trends at High t: The performance trends at high
values of t are explained by the usage of the lo-
cal neighborhood (of size k) in LASER-QA latent
space learning. Going down the result list much
beyond k reveals expected, but graceful, decline
in accuracy. For automated processing scenarios
that necessitate large t, a correspondingly high k
may be used in learning. It is notable that LASER-

QA’s focus on local neighborhood manifests as en-
hanced accuracy at the top of the result set.
LASER-QA Analysis on Larger CQADup-
Stack Datasets: Owing to scalability issues of
AENN that disallows a full evaluation over larger
categories in CQADupStack, we present LASER-
QA results over them in Table 3 to illustrate the
consistency in trends. Boldfacing and statistical
significance have the same semantics as earlier,
with the comparison performed against only Top-
icTRLM and TBLM.

5.3 LASER-QA Parameter Analysis

We now analyze the NDCG trends (NDCG being
the most popular IR metric) across LASER-QA
parameters, i.e., k, α and d, varying each one sep-
arately keeping the default choice for others.

• Varying k: Figure 1 plots NDCG against val-
ues of k from {5, 10, 15, 20}. As may be
seen, the accuracy is seen to improve with
increasing k in the lower ranges, while sat-
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Figure 2: NDCG (Y-axis) v/s
varying values of α

Figure 3: NDCG (Y-axis) v/s
varying values of d

Figure 4: Precision (Y-axis) v/s
Recall (X-axis)

urating beyond 15. The trends are seen to be
similar across datasets.

• Varying α: The retrieval accuracies were
seen to be stable across a wide range of val-
ues of α such as illustrated in Figure 2. This
shows that LASER-QA is not very sensitive
to α.

• Varying d: The size of the latent space,
d, forms a critical parameter for LASER-
QA. Given the LASER-QA construction, this
space is limited by the number of eigenvec-
tors in the matrix Z which is n × n. This
means, d is limited above by n, the size of
the training dataset. Table 3 plots the ac-
curacies with varying values of d, with the
upper end different for different datasets due
to the dependence on the training dataset
size. The plots indicate that the perfor-
mance improves steadily with increasing val-
ues of d. The performance saturates beyond
400 for the topically coherent CQADupStack
datasets. The Qatar Living Lounge category
in SemEval2016, unlike the CQADupStack
categories, is more diverse discussing issues
ranging from massage centres to immigra-
tion. Thus, LASER-QA is able to make use
of much more dimensions to model the com-
plexity involved.

To summarize, LASER-QA is not very sensitive to
α and is best run with k ≥ 15 and values of d ≈ n.

Finally, the precision-recall curve with varying
values of t is presented in Figure 4. As may be
observed, LASER-QA exhibits a gradual degrada-
tion of precision with increasing t correlated with
a corresponding improvement in recall. The di-
versity in the SemEval2016 dataset manifests as a
sharper precision drop at high t, as the result set
starts to transcend sub-topic boundaries.

6 Conclusions

We considered the problem of CQA retrieval –
the task of retrieving relevant historical QA pairs
in response to a new question. We formulated
a method that builds upon the ideas from local
linear embedding to use collective corpus level
information across historical QA pairs to embed
them in a latent space. In contrast to the main-
stream paradigm in literature, we do not explic-
itly model lexical correlations; instead, we learn
an embedding of QA pairs in a way that the local
neighborhood in question and answer spaces are
preserved. LASER-QA provides a single-model
based solution in lieu of learning separate mod-
els (e.g., topic and translation models) which are
then interpolated to a final scoring; the latter ap-
proach has been observed to have reproducilibil-
ity issues (Qiu et al., 2013). We analyzed our
method empirically against state of the art meth-
ods from across families of CQA retrieval meth-
ods that use topic models, translation models and
deep learning. Our empirical results confirm that
the LASER-QA method significantly outperforms
the baselines on all IR metrics of interest, under-
lining the effectiveness of our modelling.
Future Work: A study on the correlation between
the kNNs in the LASER-QA embedded space and
the original Question and Answer spaces would
provide insights into the extent of correlation be-
tween manifolds in the original spaces. Further,
we would like to see how LASER-QA generalizes
to beyond text; one immediate scenario of interest
is to explore how pictures and multimedia within
QAs may be leveraged within LASER-QA.
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