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Abstract

Humans interpret texts with respect to
some background information, or world
knowledge, and we would like to develop
automatic reading comprehension systems
that can do the same. In this paper, we in-
troduce a task and several models to drive
progress towards this goal. In particular,
we propose the task of rare entity predic-
tion: given a web document with several
entities removed, models are tasked with
predicting the correct missing entities con-
ditioned on the document context and the
lexical resources. This task is challenging
due to the diversity of language styles and
the extremely large number of rare enti-
ties. We propose two recurrent neural net-
work architectures which make use of ex-
ternal knowledge in the form of entity de-
scriptions. Our experiments show that our
hierarchical LSTM model performs signif-
icantly better at the rare entity prediction
task than those that do not make use of ex-
ternal resources.

1 Introduction

Reading comprehension is the ability to process
some text and understand its contents, in order to
form some beliefs about the world. The starting
point of this paper is the fact that world knowledge
plays a crucial role in human reading comprehen-
sion and language understanding. Work in the psy-
chology of reading literature has demonstrated this
point, for example by showing that readers are bet-
ter able to recall the contents of a story when it de-
scribes a counter-intuitive but plausible sequence
of events, rather than a bizarre or a highly pre-
dictable one (Barrett and Nyhof, 2001). This point
is also central to work in the Schankian tradition

of scripts (Schank and Abelson, 1977).
Despite the importance of world knowledge,

previous data sets and tasks for reading compre-
hension have targeted other aspects of the read-
ing comprehension problem, at times explicitly at-
tempting to factor out its influence. In the Daily
Mail/CNN dataset (Hermann et al., 2015), named
entities such Clarkson and Top Gear are replaced
by anonymized entity tokens like ent212. The
Children’s Book Test focuses on the role of con-
text and memory (Hill et al., 2016a), and the fic-
tional genre makes it difficult to connect the enti-
ties in the stories to real-world knowledge about
those entities.

As a result, language models have proved to
be a highly competitive solution to these tasks.
Chen et al. (2016) showed that their attention-
based LSTM model achieves state-of-the-art re-
sults on the Daily Mail/CNN data set. In fact, their
analysis shows that more than half of the ques-
tions can be answered by exact word matching
and sentence-level paraphrase detection, and that
many of the remaining errors are difficult to solve
exactly because the entity anonymization proce-
dure removes necessary world knowledge.

In this paper, we propose a novel task called
rare entity prediction, which places the use of ex-
ternal knowledge at its core, with the following
key features. First, our task is similar in flavour
to the Children’s Book and other language model-
ing tasks, in that the goal of the models is to pre-
dict missing elements in text. However, our task
involves predicting missing named entities, rather
than missing words. Second, the number of unique
named entities in the data set is very large, roughly
on par with the number of documents. As such,
there are very few instances per named entity for
systems to train on. Instead, they must rely on ex-
ternal knowledge sources such as Freebase (Bol-
lacker et al., 2008) in order to make inferences
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Context
[...] , who lived from 1757 to 1827, was
admired by a small group of intellectuals and
artists in his day, but never gained general recog-
nition as either a poet or painter. [...]

Candidate Entities
Peter Ackroyd: Peter Ackroyd is an English biog-
rapher, novelist and critic with a particular inter-
est in the history and culture of London. [...]
William Blake: William Blake was an English
poet, painter, and printmaker. [...]
Emanuel Swedenborg: Emanuel Swedenborg
was a Swedish scientist, philosopher, theologian,
revelator, and mystic. [...]

Table 1: An abbreviated example from the Wik-
ilinks Rare Entity Prediction dataset. Shown is an
excerpt from the text (context), with a missing en-
tity that must be predicted from a list of candidate
entities. Each candidate entity is also provided
with its description from Freebase.

about the likely entities that fit the context.
For our task, we use a significantly enhanced

version of the Wikilinks dataset (Singh et al.,
2012), with entity descriptions extracted from
Freebase serving as the lexical resources, which
we call the Wikilinks Rare Entity Prediction
dataset. An example from the Wikilinks Entity
Prediction dataset is shown in Table 1.

We also introduce several recurrent neural
network-based models for this task which take in
entity descriptions of candidate entities. Our first
model, DOUBENC, combines information derived
from two encoders: one for the text passage be-
ing read, and one for the entity description. Our
second model, HIERENC, is an extension which
considers information from a document-level con-
text, in addition to the local sentential context. We
show that language modeling baselines that do not
consider entity descriptions are unable to achieve
good performance on the task. RNN-based mod-
els that are trained to leverage external knowl-
edge perform much better; in particular, HIERENC

achieves a 17% increase in accuracy over the lan-
guage model baseline.

2 Related Work

Related to our work is the task of entity predic-
tion, also called link prediction or knowledge base
completion, in the context of multi-relational data.
Multi-relational datasets like WordNet (Miller,

1995) and Freebase (Bollacker et al., 2008) con-
sist of entity-relation triples of the form (head, re-
lation, tail). In entity prediction, either the head or
tail entity is removed, and the model has to predict
the missing entity. Recent efforts have integrated
different sources of knowledge, for example com-
bining distributional and relational semantics for
building word embeddings (Fried and Duh, 2015;
Long et al., 2016). While this task requires under-
standing and predicting associations between enti-
ties, it does not require contextual reasoning with
text passages, which is crucial in rare entity pre-
diction.

Rare entity prediction is also clearly distinct
from tasks such as entity tagging and recogni-
tion (Ritter et al., 2011), as models are provided
with the actual name of the entity in question, and
only have to match the entity with related con-
cepts and tags. It is more closely related to the
machine reading literature from e.g. Etzioni et al.
(2006); however, the authors define machine read-
ing as primarily unsupervised, whereas our task is
supervised.

A similar supervised reading comprehension
task was proposed by Hermann et al. (2015) us-
ing news articles from CNN and the Daily Mail.
Given an article, models are tasked with filling in
blanks of one-sentence summaries of the article.
The original dataset was found to have a low ceil-
ing for machine improvement (Chen et al., 2016);
thus, alternative datasets have been proposed that
consist of more difficult questions (Trischler et al.,
2016; Rajpurkar et al., 2016). A dataset with
a similar task was also proposed by Hill et al.
(2016a), where models must answer questions
about short children’s stories. While these tasks
require the understanding of unstructured natural
language, they do not require integration with ex-
ternal knowledge sources.

Hill et al. (2016b) proposed a method of com-
bining distributional semantics with an external
knowledge source in the form of dictionary defi-
nitions. The purpose of their model is to obtain
more accurate word and phrase embeddings by
combining lexical and phrasal semantics, and they
achieve fairly good performance on reverse dictio-
naries and crossword puzzle solving tasks.

Perhaps the most related approach to our work
is the one developed by Ahn et al. (2016).
The authors propose a WikiFacts dataset where
Wikipedia descriptions are aligned with Freebase
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facts. While they also aim to integrate exter-
nal knowledge with unstructured natural language,
their task differs from ours in that it is primarily a
language modeling problem.

More recently, Bahdanau et al. (2017) investi-
gated a similar approach to generate embeddings
for out-of-vocabulary words from their definitions
and applied it to a number of different tasks. How-
ever, their method mainly focuses on modeling
generic concepts and is evaluated on tasks that do
not require the understanding of world knowledge
specifically. Our work, on the other hand, shows
the effectiveness of incorporating external descrip-
tions for modeling real-world named entities and
is evaluated on a task that explicitly requires the
understanding of such external knowledge.

3 Rare Entity Prediction

3.1 The Wikilinks Dataset

The Wikilinks dataset (Singh et al., 2012) is a large
dataset originally designed for cross-document
coreference resolution, the task of grouping en-
tity mentions from a set of documents into clusters
that represent a single entity. The dataset consists
of a list of non-Wikipedia web pages (discovered
using the Google search index) that contain hy-
perlinks to Wikipedia, such as random blog posts
or news articles. Every token with a hyperlink to
Wikipedia is then marked and considered an en-
tity mention in the dataset. Each entity mention is
also linked back to a knowledge base through their
corresponding Freebase IDs

In order to ensure the hyperlinks refer to the cor-
rect Wikipedia pages, additional filtering is con-
ducted to ensure that either (1) at least one token
in the hyperlink (or anchor) matches a token in
the title of the Wikipedia page, or (2) the anchor
text matches exactly an anchor from the Wikipedia
page text, which can be considered an alias of the
page. As many near-duplicate copies of Wikipedia
pages can be found online, any web pages where
more than 70% of the sentences match those from
their linked Wikipedia pages are discarded.

3.2 The Wikilinks Rare Entity Prediction
Dataset

We use a significantly pre-processed and aug-
mented version of the Wikilinks dataset for the pur-
pose of entity prediction, which we call the Wik-
ilinks Rare Entity Prediction dataset. In particular,
we parse the HTML texts of the web pages and ex-

Number of documents 269,469
Average # blanks per doc 3.69
Average # candidates per doc 3.35
Number of unique entities 245,116
# entities with n <= 5 207,435 (84.6%)
# entities with n <= 10 227,481 (92.8%)
# entities with n <= 20 238,025 (97.1%)

Table 2: Statistics for the augmented version of
the Wikilinks dataset, where n represents the en-
tity frequency in the corpus. Web documents with
more than 10 blanks to fill are filtered out for com-
putational reasons.

tract their page contents to form our corpus. Entity
mentions with hyperlinks to Wikipedia are marked
and replaced by a special token (**blank**), serv-
ing as the placeholder for missing entities that we
would like the models to predict. The correct
missing entity ẽ is preserved as a target. Addition-
ally, we extract the lexical definitions of all enti-
ties that are marked in the corpus from Freebase
using their Freebase IDs, which are available for
all entities in the Wikilinks dataset. These lexical
definitions will serve as the external knowledge to
our models.

Table 2 shows some basic statistics of a sub-
set of the corpus used in our experiments. As we
can see, unlike the Children’s Book dataset, which
has 50k candidate entities for almost 700k context
and query pairs (Hill et al., 2016a), the number of
unique entities found in our dataset has the same
order of magnitude as the number of documents
available.

Moreover, the majority of entities appears a rel-
atively small number of times, with 92.8% ob-
served less than or equal to 10 times across the
entire corpus. This suggests that models that only
rely on the surrounding context information may
not be able to correctly predict the missing enti-
ties. This further motivates us to incorporate ad-
ditional information into the decision process to
improve the performance. In the experiments sec-
tion, we show that the external entity descriptions
are indeed necessary to achieve better results.

3.3 Task Definition1

Here we formalize the task definition of the en-
tity prediction problem. Given a document D in

1On notation: we use A to denote sequences, A to denote
sets, a to denote words / entities, a to denote vectors, A to
denote matrices.
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Figure 1: An example from the Wikilinks Rare Entity Prediction dataset. Shown is a paragraph from the
dataset, along with the context (in blue italics) and the missing entity (in red underline). We also visually
show the notation that we use for the remainder of this paper. The correct answer here is Peter Ackroyd.

the corpus, we split it into an ordered list of con-
texts C = {C1, ...,Cn} where each context Ci

(1 ≤ i ≤ n) is a word sequence (w1, ..., wm)
where the special token **blank** is found. Let
E be the set of candidate entities. For each miss-
ing entity, we want the model to select the correct
entity ẽ ∈ E to fill the blank slot. In our problem
setting, the model also has access to the lexical re-
source L = {Le | e ∈ E} where Le = (le1 , ..., lek

)
is the lexical definition of entity e extracted from
the knowledge base. Thus, the task of the model
is to predict the correct missing entities for each
empty slot in D.

There are several possible ways to specify the
candidate set E . For instance, we could define
E so that it includes all entities found in the cor-
pus. However, given the extremely large amount
of unique entities found in the dataset, this would
render the task difficult to solve from both a prac-
tical and computational perspective. We present a
simpler version of the task where E is the set of en-
tities that are present in the documentD. Note that
we can make the task arbitrarily more difficult by
randomly sampling other entities from the entity
vocabulary and adding them to candidate set.

We show an example from the Wikilinks Entity
Prediction dataset in Figure 1, along with a visual
guide to the notation from this section.

4 Model Architectures

In this section, we present two models that use
the lexical definitions of entities to solve the pro-
posed rare entity prediction problem. The basic

building blocks of our models are recurrent neu-
ral networks (RNN) with long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997). An RNN is a neural network with feedback
connections that allows information from the past
to be encoded in the hidden layer representation,
thus is ideal for modeling sequential data (Diet-
terich, 2002) and most language related problems.

LSTMs are an extension of RNNs which in-
clude a memory cell ct alongside their hidden state
representation ht. Reads and writes to the mem-
ory cell are controlled by a set of three gates that
allow the model to either keep or discard infor-
mation from the past and update their state with
the current input. This allows LSTMs to model
potentially longer dependencies and at the same
time mitigate the vanishing and exploding gradient
problems, which are quite common among regular
RNNs (Bengio et al., 1994). In our experiments,
we use LSTMs augmented with peephole connec-
tions (Gers et al., 2002).

We denote the output (i.e. the last hidden state)
of an RNN f operating on a sequence S as f(S),
and subscript the t-th hidden state as ft(S).

4.1 Double Encoder (DOUBENC)
This model uses two jointly trained recurrent mod-
els, a lexical encoder g(.) and a context encoder
f(.), and a logistic predictor P (see Figure 2).

The lexical encoder converts the definition of an
entity into a vector embedding, while the context
encoder repeats the same process for a given con-
text to obtain its context embedding. These two
embeddings are then used by P to predict if the
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e→ Le :

Ci:
de

he
i

w1 ... ... wm

le1
... lek

P (e = ẽ|Ci, Le) = σ((he
i )

TWde + b)

Figure 2: Our double encoder architecture. Each entity e has an associated lexical definition Le =
(le1 , le2 , ..., lek

), which is fed through the lexical encoder g (orange squares) to provide an encoding de.
This definition embedding is then fed as the blank input token of context Ci to the context encoder f
(blue circles), which provides a context embedding he

i .

given entity-context pair is correct. Additionally,
the blank in the context sentence is replaced by the
encoded definition embedding to provide more in-
formation to f .

For an entity e in the candidate set E of docu-
ment D, we retrieve its corresponding lexical def-
inition Le, itself a sequence of words, to compute
its encoding g(Le) ≡ de.

For a given context Ci, we replace the em-
bedding of the blank token with de. Thus
Ci = (w1, ..., wblank, ..., wm) becomes Ce

i =
(w1, ...,de, ..., wm)2. We then compute the con-
text embedding of the new Ce

i , f(Ce
i ) ≡ he

i .
After getting he

i and de, we wish to compute the
probability of candidate e being the correct entity
ẽ missing in context Ci. This probability is the
output of the predictor:

P (e = ẽ|Ci, Le) = σ((he
i )

TWde + b)

where σ is the sigmoid function, W and b are
model parameters.

The cross term (he
i )

TWde is a dot product be-
tween he

i and de that weighs the dimensions dif-
ferently based on the learned parameters W . Sim-
ilar prediction methods have been used success-
fully for question answering (Bordes et al., 2014;
Yu et al., 2014) and dialogue response retrieval
(Lowe et al., 2015).

We also experimented with only feeding he
i

to the predictor, without the cross term, and
found this slows down training the lexical encoder.
While he

i is a function of de, using de in the cross
term (he

i )
TWde provides a much shorter gradient

path from the loss to the lexical encoder through
de, thus allowing both modules to learn at the
same pace.

2We mix the word / vector notation here since each word
w is replaced by its corresponding word embedding vector.

Given a context, the model outputs a probabil-
ity for each entity e ∈ E . Entities in the candidate
set are then ranked against each other according to
their predicted probabilities. The entity with the
highest probability is considered as the most plau-
sible answer for the missing entity in the current
context. We consider the model to make an error
if that entity is not ẽ.

4.2 Hierarchical Double Encoder
(HIERENC)

The double encoder architecture mentioned above
considers each context independently. However,
since each document consists of a sequence of
contexts, the knowledge carried by other contexts
in C could also provide useful information for the
decision process of Ci. To that end, we propose
a hierarchical model structure by adding a LSTM
network r, which we call the temporal network
(see Figure 3), on top of the double encoder ar-
chitecture. Since a document is a sequence of Cis,
each time step of this network consists of one such
context, and thus is indexed with i.

Since we already have a context encoder f , we
reuse the output of f(Ce

i ) as the input of r at time
step i. More specifically, we combine the embed-
dings generated by f into a single one via aver-
aging: h̄i = 1

|E|
∑

e′∈E he′
i , which then serves as

the input to the temporal network for context Ci.
Note that alternatively, one could aggregate infor-
mation about the past predictions through other
means like policies or soft attention. However, this
would introduce extra complexities to the learning
process. As such, we use averaging to that end.

Finally, at each time step i, the temporal net-
work outputs an embedding ri(C1, ...,Cn) ≡
ri. We use this temporal embedding to predict
the probability of the context-entity pair with a
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h̄i = 1
|E|

∑
e′∈E he′

ih̄i−1h̄i−2

...

P (e = ẽ|C1,...,i, Le) = σ((he
i )

TWde + rT
i V + b)

ri

... de′ ... de

he
iCi

Figure 3: Our hierarchical encoder architecture. Each entity e is encoded as de, at each time step, he
i is

computed for each e. h̄i is the average encoding, which is fed as input to the temporal network r (green
diamonds). The temporal network produces ri, which is used to compute P (e = ẽ|C1,...,i, Le).

slightly altered logistic predictor:

P (e = ẽ|C1,...,i, Le) = σ((he
i )

TWde + rT
i V + b)

where W , V and b are model parameters. The
entities in candidate set are again ranked against
each other based on their probabilities.

5 Experiments

5.1 Setup

We randomly partition the data into training, vali-
dation and test sets. The training set consists of ap-
proximately 80% of the total documents, the vali-
dation and test sets comprise about 10% each.

In our experiments, the context windows are de-
fined as the sentences where the special **blank**
tokens are found; the lexical definitions for each
entity are the first sentences of their Freebase de-
scriptions. We experimented with different config-
urations of defining contexts and entity definitions,
such as expanding the context windows by includ-
ing sentences that come before and after the one
where blank is found, as well as taking more than
one sentence out of the entity description. How-
ever, results on validation set show that increasing
the context window size and the definition size had
very little impact on accuracies, but drastically in-
creased the training time of all models. We thus
chose to use only the immediate sentence of the
context and the first sentence of the entity descrip-
tion.

To train our models, we use the correct missing
entity for each blank as the positive example and
all other entities in the candidate set as the negative
examples, which we found to be more beneficial
empirically than using only a subset of rest of the

candidate set. During the testing phase, we present
each entity in the candidate set to our models and
record the probabilities output by the models. The
entity with the highest probability is chosen as the
model prediction. For all gradient-based methods,
including both baseline models and our proposed
models, the learning objective is to minimize the
binary cross-entropy of the training data.

We measure the performance on our entity pre-
diction task using the accuracy; that is, the number
of correct entity predictions made by the model di-
vided by the total number of predictions. This is
equivalent to the metric of Recall@1 that is often
used in information retrieval.

5.2 Baselines

In order to demonstrate the effects of using lex-
ical resources as external knowledge for solv-
ing the task, we present three sets of baselines:
one set of simple baselines (RANDOM and FRE-
QENT), one LSTM-based model that only relies
on the contexts and does not utilize the definitions
(CONTENC), and another set of models that do
make use of the entity definitions but in a simplis-
tic fashion (TF-IDF + COS and AVGEMB + COS).

RANDOM For each context in a given document,
this baseline simply selects an entity from the can-
didate set uniformly at random as its prediction.

FREQENT Under this baseline, we rank all en-
tities in the candidate set by the number of times
that they appear in the document. For each blank
in the document, we always choose the entity with
the highest frequency in that document as the pre-
diction. Note that this baseline has access to extra
information compared to the other models, in par-
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ticular the total number of times each entity ap-
pears in the document.

CONTENC Instead of using their definitions,
entities are treated as regular tokens in vocabu-
lary. Thus for a particular entity e, the context
sequence Ci = (w1, ..., wblank, ..., wm) becomes
(w1, ..., we, ..., wm). We feed the sequence Ci into
the context encoder and as usual take the last hid-
den state as the context embedding he

i . Thus given
Ci and e ∈ E, the probability of e being the cor-
rect missing entity is:

P (e = ẽ|Ci) = σ((he
i )

TW + b)

where again σ is the sigmoid function, W and b
are model parameters. This model is essentially a
language model baseline, that does not make use
of the external a priori knowledge.

TF-IDF + COS This method takes the term
frequency-inverse document frequency (TF-IDF)
vectors of the context and the entity definition as
their corresponding embeddings. The aggrega-
tions of contexts and definitions are treated as their
own corpora, and two separate TF-IDF transform-
ers are fitted. Candidate entities are ranked by the
cosine similarity between their definition vectors
and the context vector. The entity with the highest
cosine similarity score is chosen as the prediction.

AVGEMB + COS This baseline computes the
context embedding by taking the average of some
pre-trained word embeddings. The entities’ em-
beddings are computed in the same way. In our ex-
periments, we choose to use the published GloVe
(Pennington et al., 2014) pre-trained word embed-
dings. Same as above, the prediction is made by
considering the cosine similarity between the con-
text embedding and the entity embeddings.

5.3 Hyperparameters

For the CONTENC baseline, we choose 300 as
the size of hidden state for the encoder. For the
DOUBENC and the HIERENC models, the size
of hidden state for both the context encoder and
the lexical encoder is set to 300. An RNN with
200 LSTM units is used as the temporal net-
work in the hierarchical case. All three mod-
els are trained with stochastic gradient descent
with Adam (Kingma and Ba, 2015) as our opti-
mizer, with learning rates of 10−3 used for CON-
TENC and 10−4 used for DOUBENC as well as

Accuracy
Model Valid Test
Fixed Baselines
RANDOM 29.4% 30.1%
FREQENT 32.9% 33.1%
Without External Knowledge
CONTENC 39.3% 39.6%
With External Knowledge
TF-IDF + COS 29.2% 30.0%
AVGEMB + COS 35.5% 35.9%
DOUBENC 54.7% 54.0%
HIERENC 57.3% 56.6%

Table 3: Empirical results on Wikilinks Entity Pre-
diction dataset for proposed baselines and models.

Figure 4: Accuracies of CONTENC, DOUBENC,
and HIERENC on test set, for different frequency
ranges; n is entity frequency in the entire corpus.

HIERENC. Models with the best performance on
validation set are saved and used to test on test set.

5.4 Results

Empirical results are shown in Table 3. We test our
proposed model architectures (detailed in Section
4), along with baselines described in Section 5.2.

It is clear from Table 3 that models that only
use contextual knowledge give relatively poor per-
formance compared to the ones that utilize lexi-
cal resources. The large discrepancy between the
context encoder and the double encoder shows that
lexical resources play a crucial role in solving the
task. The best result is achieved by the hierarchi-
cal double encoder, which confirms that knowing
about previous contexts is indeed beneficial to the
prediction at the current time step.

We performed statistical significance tests on
the predictions from CONTENC, compared to the
predictions made by DOUBENC and HIERENC re-
spectively. Both tests yielded p < 10−5. We also
computed the p-value between DOUBENC and HI-
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Context & Prediction
[...] We heard from Audrey Bomse, who is with
the Free Gaza movement. She was in ,
Cyprus. [...]

CONTENC: Istanbul HIERENC: Larnaca

Candidate Set
Istanbul: Istanbul is the most populous city in
Turkey, and the country’s economic, cultural, and
historical center.
Larnaca: Larnaca is a city on the southern coast
of Cyprus and the capital of eponymous district.
Ben Macintyre: Ben Macintyre is a British au-
thor, historian, reviewer and columnist writing for
The Times newspaper.
(Other candidate entities......)

Table 4: An example from the test set, with the
predictions made by CONTENC and HIERENC;
HIERENC was able to successfully predict the cor-
rect missing entity, Larnaca.

ERENC, with p ≈ 0.003. This suggests that the
performance improvement achieved by the hierar-
chical model is statistically significant.

6 Discussion

Figure 4 provides a performance breakdown of
test accuracies over various entity frequencies for
CONTENC, DOUBENC, and HIERENC. As we
can see, the biggest performance gap between
the baseline and our two proposed models oc-
curs when n ≤ 5; as entity frequencies increase,
the accuracy of CONTENC also increases. This
confirms the value and necessity of lexical re-
sources, especially when entities appear extremely
infrequently. We also see that HIERENC outper-
forms DOUBENC consistently over all frequency
ranges. This suggests that by propagating infor-
mation from the past through temporal network,
the hierarchical model is able to reason beyond the
local context, thus achieve higher accuracies.

Table 4 shows an example found in the test set,
along with the predictions from CONTENC and
HIERENC. Even though the context encoder base-
line was able to identify that the missing entity
should be a city, it incorrectly predicted Istanbul.
This is likely because Istanbul appears 86 times in
the dataset, whereas Larnaca appears only twice
in the test set, and not at all in the training set. It
seems that, although the context encoder was able
to derive a strong association between Istanbul and

Middle Eastern geolocations, such knowledge was
not learned for Larnaca because of the lack of ex-
amples. Conversely, the hierarchical double en-
coder was able to take both the context and the
external knowledge into account and successfully
predicted the correct missing city.

One interesting observation is the margin of dif-
ference in accuracy between the context encoder
and the embedding average baseline. The con-
text encoder, which is a relatively sophisticated
context-only model, only slightly outperforms the
simple embedding average baseline that has no
learning component. This suggests that the entity
definitions are valuable in solving such tasks even
when it is used in a rather simplistic way.

As we discussed in Section 5.1, we found in ini-
tial experiments that using a large context window
size (including sentences before and after the sen-
tence where blank token is found) does not have
any significant positive impact on the results. This
may imply that words that are most informative
about the missing entity in the blank are generally
found in vicinity of the blank. It is also likely that
more sophisticated models will be able to use the
surrounding context information more effectively,
leading to greater performance increases.

7 Conclusions

In this paper, we examined the use of external
knowledge in the form of lexical resources to
solve reading comprehension problems. Specifi-
cally, we propose the problem of rare entity pre-
diction. In our Wikilinks Rare Entity Prediction
dataset, the majority of the entities have very low
frequencies across the entire corpus; thus, mod-
els that solely rely on co-occurrence statistics tend
to under-perform. We show that models leverag-
ing the Freebase descriptions achieve large per-
formance gains, particularly when this informa-
tion is incorporated intelligently as in our double
encoder-based models.

For future work, we plan to examine the effects
of other knowledge sources. In this paper, we use
entity definitions as the source of external knowl-
edge. However, Freebase also contains other types
of valuable information, such as relational infor-
mation between entities. Thus, one potential di-
rection for future work would be to incorporate
both relational information and lexical definitions.

We have demonstrated the crucial role that ex-
ternal knowledge plays in solving tasks with many
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rare entities. We believe that incorporating ex-
ternal knowledge into other systems, such as dia-
logue agents, should also see similar positive re-
sults. We plan to explore the idea of external
knowledge integration further in future research.
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