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Abstract

Many modern NLP systems rely on word
embeddings, previously trained in an un-
supervised manner on large corpora, as
base features. Efforts to obtain embed-
dings for larger chunks of text, such as
sentences, have however not been so suc-
cessful. Several attempts at learning unsu-
pervised representations of sentences have
not reached satisfactory enough perfor-
mance to be widely adopted. In this paper,
we show how universal sentence represen-
tations trained using the supervised data of
the Stanford Natural Language Inference
datasets can consistently outperform unsu-
pervised methods like SkipThought vec-
tors (Kiros et al., 2015) on a wide range
of transfer tasks. Much like how com-
puter vision uses ImageNet to obtain fea-
tures, which can then be transferred to
other tasks, our work tends to indicate the
suitability of natural language inference
for transfer learning to other NLP tasks.
Our encoder is publicly available1.

1 Introduction

Distributed representations of words (or word em-
beddings) (Bengio et al., 2003; Collobert et al.,
2011; Mikolov et al., 2013; Pennington et al.,
2014) have shown to provide useful features for
various tasks in natural language processing and
computer vision. While there seems to be a con-
sensus concerning the usefulness of word embed-
dings and how to learn them, this is not yet clear
with regard to representations that carry the mean-
ing of a full sentence. That is, how to capture the

1https://www.github.com/
facebookresearch/InferSent

relationships among multiple words and phrases in
a single vector remains an question to be solved.

In this paper, we study the task of learning uni-
versal representations of sentences, i.e., a sentence
encoder model that is trained on a large corpus
and subsequently transferred to other tasks. Two
questions need to be solved in order to build such
an encoder, namely: what is the preferable neu-
ral network architecture; and how and on what
task should such a network be trained. Follow-
ing existing work on learning word embeddings,
most current approaches consider learning sen-
tence encoders in an unsupervised manner like
SkipThought (Kiros et al., 2015) or FastSent (Hill
et al., 2016). Here, we investigate whether su-
pervised learning can be leveraged instead, tak-
ing inspiration from previous results in computer
vision, where many models are pretrained on the
ImageNet (Deng et al., 2009) before being trans-
ferred. We compare sentence embeddings trained
on various supervised tasks, and show that sen-
tence embeddings generated from models trained
on a natural language inference (NLI) task reach
the best results in terms of transfer accuracy. We
hypothesize that the suitability of NLI as a train-
ing task is caused by the fact that it is a high-level
understanding task that involves reasoning about
the semantic relationships within sentences.

Unlike in computer vision, where convolutional
neural networks are predominant, there are mul-
tiple ways to encode a sentence using neural net-
works. Hence, we investigate the impact of the
sentence encoding architecture on representational
transferability, and compare convolutional, recur-
rent and even simpler word composition schemes.
Our experiments show that an encoder based on a
bi-directional LSTM architecture with max pool-
ing, trained on the Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015),
yields state-of-the-art sentence embeddings com-
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pared to all existing alternative unsupervised ap-
proaches like SkipThought or FastSent, while be-
ing much faster to train. We establish this finding
on a broad and diverse set of transfer tasks that
measures the ability of sentence representations to
capture general and useful information.

2 Related work

Transfer learning using supervised features has
been successful in several computer vision appli-
cations (Razavian et al., 2014). Striking examples
include face recognition (Taigman et al., 2014)
and visual question answering (Antol et al., 2015),
where image features trained on ImageNet (Deng
et al., 2009) and word embeddings trained on large
unsupervised corpora are combined.

In contrast, most approaches for sentence repre-
sentation learning are unsupervised, arguably be-
cause the NLP community has not yet found the
best supervised task for embedding the semantics
of a whole sentence. Another reason is that neural
networks are very good at capturing the biases of
the task on which they are trained, but can easily
forget the overall information or semantics of the
input data by specializing too much on these bi-
ases. Learning models on large unsupervised task
makes it harder for the model to specialize. Lit-
twin and Wolf (2016) showed that co-adaptation of
encoders and classifiers, when trained end-to-end,
can negatively impact the generalization power of
image features generated by an encoder. They pro-
pose a loss that incorporates multiple orthogonal
classifiers to counteract this effect.

Recent work on generating sentence embed-
dings range from models that compose word em-
beddings (Le and Mikolov, 2014; Arora et al.,
2017; Wieting et al., 2016b) to more complex neu-
ral network architectures. SkipThought vectors
(Kiros et al., 2015) propose an objective func-
tion that adapts the skip-gram model for words
(Mikolov et al., 2013) to the sentence level. By en-
coding a sentence to predict the sentences around
it, and using the features in a linear model, they
were able to demonstrate good performance on 8
transfer tasks. They further obtained better results
using layer-norm regularization of their model
in (Ba et al., 2016). Hill et al. (2016) showed
that the task on which sentence embeddings are
trained significantly impacts their quality. In ad-
dition to unsupervised methods, they included su-
pervised training in their comparison—namely, on

machine translation data (using the WMT’14 En-
glish/French and English/German pairs), dictio-
nary definitions and image captioning data from
the COCO dataset (Lin et al., 2014). These mod-
els obtained significantly lower results compared
to the unsupervised Skip-Thought approach.

Recent work has explored training sentence en-
coders on the SNLI corpus and applying them on
the SICK corpus (Marelli et al., 2014), either us-
ing multi-task learning or pretraining (Mou et al.,
2016; Bowman et al., 2015). The results were in-
conclusive and did not reach the same level as sim-
pler approaches that directly learn a classifier on
top of unsupervised sentence embeddings instead
(Arora et al., 2017). To our knowledge, this work
is the first attempt to fully exploit the SNLI cor-
pus for building generic sentence encoders. As we
show in our experiments, we are able to consis-
tently outperform unsupervised approaches, even
if our models are trained on much less (but human-
annotated) data.

3 Approach

This work combines two research directions,
which we describe in what follows. First, we ex-
plain how the NLI task can be used to train univer-
sal sentence encoding models using the SNLI task.
We subsequently describe the architectures that we
investigated for the sentence encoder, which, in
our opinion, covers a suitable range of sentence
encoders currently in use. Specifically, we exam-
ine standard recurrent models such as LSTMs and
GRUs, for which we investigate mean and max-
pooling over the hidden representations; a self-
attentive network that incorporates different views
of the sentence; and a hierarchical convolutional
network that can be seen as a tree-based method
that blends different levels of abstraction.

3.1 The Natural Language Inference task

The SNLI dataset consists of 570k human-
generated English sentence pairs, manually la-
beled with one of three categories: entailment,
contradiction and neutral. It captures natural lan-
guage inference, also known in previous incarna-
tions as Recognizing Textual Entailment (RTE),
and constitutes one of the largest high-quality la-
beled resources explicitly constructed in order to
require understanding sentence semantics. We hy-
pothesize that the semantic nature of NLI makes
it a good candidate for learning universal sentence
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embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u− v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)

with either mean or max pooling, self-attentive
network and hierarchical convolutional networks.

3.2.1 LSTM and GRU

Our first, and simplest, encoders apply recurrent
neural networks using either LSTM (Hochreiter
and Schmidhuber, 1997) or GRU (Cho et al.,
2014) modules, as in sequence to sequence en-
coders (Sutskever et al., 2014). For a sequence
of T words (w1, . . . , wT ), the network computes
a set of T hidden representations h1, . . . , hT , with
ht =

−−−−→
LSTM(w1, . . . , wT ) (or using GRU units

instead). A sentence is represented by the last hid-
den vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling

For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pooling)
(Collobert and Weston, 2008) or by considering
the average of the representations (mean pooling).

3.2.3 Self-attentive network

The self-attentive sentence encoder (Liu et al.,
2016; Lin et al., 2017) uses an attention mecha-
nism over the hidden states of a BiLSTM to gen-
erate a representation u of an input sentence. The
attention mechanism is defined as :

h̄i = tanh(Whi + bw)

αi =
eh̄

T
i uw∑

i e
h̄T

i uw

u =
∑

t

αihi
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The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x

x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.

where {h1, . . . , hT } are the output hidden vec-
tors of a BiLSTM. These are fed to an affine trans-
formation (W , bw) which outputs a set of keys
(h̄1, . . . , h̄T ). The {αi} represent the score of
similarity between the keys and a learned con-
text query vector uw. These weights are used
to produce the final representation u, which is a
weighted linear combination of the hidden vectors.

Following Lin et al. (2017) we use a self-
attentive network with multiple views of the input
sentence, so that the model can learn which part of
the sentence is important for the given task. Con-
cretely, we have 4 context vectors u1

w, u
2
w, u

3
w, u

4
w

which generate 4 representations that are then con-
catenated to obtain the sentence representation u.
Figure 3 illustrates this architecture.

The movie was great

uw

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

α1 α2 α3 α4

u

w1 w2 w3 w4

Figure 3: Inner Attention network architecture.

3.2.4 Hierarchical ConvNet
One of the currently best performing models on
classification tasks is a convolutional architecture
termed AdaSent (Zhao et al., 2015), which con-
catenates different representations of the sentences

at different level of abstractions. Inspired by this
architecture, we introduce a faster version consist-
ing of 4 convolutional layers. At every layer, a
representation ui is computed by a max-pooling
operation over the feature maps (see Figure 4).

……
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… …
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great
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convolutional layer
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Figure 4: Hierarchical ConvNet architecture.

The final representation u = [u1, u2, u3, u4]
concatenates representations at different levels of
the input sentence. The model thus captures hi-
erarchical abstractions of an input sentence in a
fixed-size representation.

3.3 Training details
For all our models trained on SNLI, we use SGD
with a learning rate of 0.1 and a weight decay of
0.99. At each epoch, we divide the learning rate
by 5 if the dev accuracy decreases. We use mini-
batches of size 64 and training is stopped when the
learning rate goes under the threshold of 10−5. For
the classifier, we use a multi-layer perceptron with
1 hidden-layer of 512 hidden units. We use open-
source GloVe vectors trained on Common Crawl
840B2 with 300 dimensions as fixed word embed-
dings.

4 Evaluation of sentence representations

Our aim is to obtain general-purpose sentence em-
beddings that capture generic information that is

2https://nlp.stanford.edu/projects/
glove/
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name N task C examples
MR 11k sentiment (movies) 2 ”Too slow for a younger crowd , too shallow for an older one.” (neg)
CR 4k product reviews 2 ”We tried it out christmas night and it worked great .” (pos)
SUBJ 10k subjectivity/objectivity 2 ”A movie that doesn’t aim too high , but doesn’t need to.” (subj)
MPQA 11k opinion polarity 2 ”don’t want”; ”would like to tell”; (neg, pos)
TREC 6k question-type 6 ”What are the twin cities ?” (LOC:city)
SST 70k sentiment (movies) 2 ”Audrey Tautou has a knack for picking roles that magnify her [..]” (pos)

Table 1: Classification tasks. C is the number of class and N is the number of samples.

useful for a broad set of tasks. To evaluate the
quality of these representations, we use them as
features in 12 transfer tasks. We present our
sentence-embedding evaluation procedure in this
section. We constructed a sentence evaluation
tool3 to automate evaluation on all the tasks men-
tioned in this paper. The tool uses Adam (Kingma
and Ba, 2014) to fit a logistic regression classifier,
with batch size 64.

Binary and multi-class classification We use
a set of binary classification tasks (see Table 1)
that covers various types of sentence classifica-
tion, including sentiment analysis (MR, SST),
question-type (TREC), product reviews (CR), sub-
jectivity/objectivity (SUBJ) and opinion polarity
(MPQA). We generate sentence vectors and train
a logistic regression on top. A linear classifier re-
quires fewer parameters than an MLP and is thus
suitable for small datasets, where transfer learning
is especially well-suited. We tune the L2 penalty
of the logistic regression with grid-search on the
validation set.

Entailment and semantic relatedness We also
evaluate on the SICK dataset for both entailment
(SICK-E) and semantic relatedness (SICK-R). We
use the same matching methods as in SNLI and
learn a Logistic Regression on top of the joint rep-
resentation. For semantic relatedness evaluation,
we follow the approach of (Tai et al., 2015) and
learn to predict the probability distribution of re-
latedness scores. We report Pearson correlation.

STS14 - Semantic Textual Similarity While
semantic relatedness is supervised in the case of
SICK-R, we also evaluate our embeddings on the
6 unsupervised SemEval tasks of STS14 (Agirre
et al., 2014). This dataset includes subsets of
news articles, forum discussions, image descrip-
tions and headlines from news articles contain-
ing pairs of sentences (lower-cased), labeled with

3https://www.github.com/
facebookresearch/SentEval

a similarity score between 0 and 5. These tasks
evaluate how the cosine distance between two sen-
tences correlate with a human-labeled similarity
score through Pearson and Spearman correlations.

Paraphrase detection The Microsoft Research
Paraphrase Corpus is composed of pairs of sen-
tences which have been extracted from news
sources on the Web. Sentence pairs have been
human-annotated according to whether they cap-
ture a paraphrase/semantic equivalence relation-
ship. We use the same approach as with SICK-E,
except that our classifier has only 2 classes.

Caption-Image retrieval The caption-image
retrieval task evaluates joint image and language
feature models (Hodosh et al., 2013; Lin et al.,
2014). The goal is either to rank a large collec-
tion of images by their relevance with respect to a
given query caption (Image Retrieval), or ranking
captions by their relevance for a given query image
(Caption Retrieval). We use a pairwise ranking-
loss Lcir(x, y):

∑
y

∑
k

max(0, α− s(V y, Ux) + s(V y, Uxk)) +∑
x

∑
k′

max(0, α− s(Ux, V y) + s(Ux, V yk′))

where (x, y) consists of an image y with one
of its associated captions x, (yk)k and (yk′)k′ are
negative examples of the ranking loss, α is the
margin and s corresponds to the cosine similarity.
U and V are learned linear transformations that
project the caption x and the image y to the same
embedding space. We use a margin α = 0.2 and
30 contrastive terms. We use the same splits as
in (Karpathy and Fei-Fei, 2015), i.e., we use 113k
images from the COCO dataset (each containing
5 captions) for training, 5k images for validation
and 5k images for test. For evaluation, we split the
5k images in 5 random sets of 1k images on which
we compute Recall@K, with K ∈ {1, 5, 10} and
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name task N premise hypothesis label
SNLI NLI 560k ”Two women are embracing while

holding to go packages.”
”Two woman are holding packages.” entailment

SICK-E NLI 10k A man is typing on a machine used
for stenography

The man isn’t operating a steno-
graph

contradiction

SICK-R STS 10k ”A man is singing a song and play-
ing the guitar”

”A man is opening a package that
contains headphones”

1.6

STS14 STS 4.5k ”Liquid ammonia leak kills 15 in
Shanghai”

”Liquid ammonia leak kills at least
15 in Shanghai”

4.6

Table 2: Natural Language Inference and Semantic Textual Similarity tasks. NLI labels are contra-
diction, neutral and entailment. STS labels are scores between 0 and 5.

median (Med r) over the 5 splits. For fair compari-
son, we also report SkipThought results in our set-
ting, using 2048-dimensional pretrained ResNet-
101 (He et al., 2016) with 113k training images.

Model NLI Transfer
dim dev test micro macro

LSTM 2048 81.9 80.7 79.5 78.6
GRU 4096 82.4 81.8 81.7 80.9
BiGRU-last 4096 81.3 80.9 82.9 81.7
BiLSTM-Mean 4096 79.0 78.2 83.1 81.7
Inner-attention 4096 82.3 82.5 82.1 81.0
HConvNet 4096 83.7 83.4 82.0 80.9
BiLSTM-Max 4096 85.0 84.5 85.2 83.7

Table 3: Performance of sentence encoder ar-
chitectures on SNLI and (aggregated) transfer
tasks. Dimensions of embeddings were selected
according to best aggregated scores (see Figure 5).

Figure 5: Transfer performance w.r.t. embed-
ding size using the micro aggregation method.

5 Empirical results

In this section, we refer to ”micro” and ”macro”
averages of development set (dev) results on trans-
fer tasks whose metrics is accuracy: we compute a
”macro” aggregated score that corresponds to the
classical average of dev accuracies, and the ”mi-
cro” score that is a sum of the dev accuracies,
weighted by the number of dev samples.

5.1 Architecture impact

Model We observe in Table 3 that different mod-
els trained on the same NLI corpus lead to differ-
ent transfer tasks results. The BiLSTM-4096 with
the max-pooling operation performs best on both
SNLI and transfer tasks. Looking at the micro and
macro averages, we see that it performs signifi-
cantly better than the other models LSTM, GRU,
BiGRU-last, BiLSTM-Mean, inner-attention and
the hierarchical-ConvNet.

Table 3 also shows that better performance on
the training task does not necessarily translate in
better results on the transfer tasks like when com-
paring inner-attention and BiLSTM-Mean for in-
stance.

We hypothesize that some models are likely to
over-specialize and adapt too well to the biases of
a dataset without capturing general-purpose infor-
mation of the input sentence. For example, the
inner-attention model has the ability to focus only
on certain parts of a sentence that are useful for
the SNLI task, but not necessarily for the transfer
tasks. On the other hand, BiLSTM-Mean does not
make sharp choices on which part of the sentence
is more important than others. The difference be-
tween the results seems to come from the different
abilities of the models to incorporate general in-
formation while not focusing too much on specific
features useful for the task at hand.

For a given model, the transfer quality is also
sensitive to the optimization algorithm: when
training with Adam instead of SGD, we observed
that the BiLSTM-max converged faster on SNLI
(5 epochs instead of 10), but obtained worse re-
sults on the transfer tasks, most likely because of
the model and classifier’s increased capability to
over-specialize on the training task.

Embedding size Figure 5 compares the over-
all performance of different architectures, showing
the evolution of micro averaged performance with
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised representation training (unordered sentences)

Unigram-TFIDF 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - - .58/.57
ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43
SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38
SIF (GloVe + WR) - - - - 82.2 - - - 84.6 .69/ -
word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 .65/.64
fastText BOW† 76.5 78.9 91.6 87.4 78.8 81.8 72.4/81.2 0.800 77.9 .63/.62
GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56
GloVe Positional Encoding† 78.3 77.4 91.1 87.1 80.6 83.3 72.5/81.2 0.799 77.9 .51/.54
BiLSTM-Max (untrained)† 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 .44/.45

Supervised representation training
CaptionRep (bow) 61.9 69.3 77.4 70.8 - 72.2 - - - .46/.42
DictRep (bow) 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - - .67/.70
NMT En-to-Fr 64.7 70.1 84.9 81.5 - 82.8 - - .43/.42
Paragram-phrase - - - - 79.7 - - 0.849 83.1 .71/ -
BiLSTM-Max (on SST)† (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 .55/.54
BiLSTM-Max (on SNLI)† 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
BiLSTM-Max (on AllNLI)† 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Supervised methods (directly trained for each task – no transfer)
Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - - -
AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -
TF-KLD - - - - - - 80.4/85.9 - - -
Illinois-LH - - - - - - - - 84.5 -
Dependency Tree-LSTM - - - - - - - 0.868 - -

Table 4: Transfer test results for various architectures trained in different ways. Underlined are
best results for transfer learning approaches, in bold are best results among the models trained in the
same way. † indicates methods that we trained, other transfer models have been extracted from (Hill
et al., 2016). For best published supervised methods (no transfer), we consider AdaSent (Zhao et al.,
2015), TF-KLD (Ji and Eisenstein, 2013), Tree-LSTM (Tai et al., 2015) and Illinois-LH system (Lai and
Hockenmaier, 2014). (*) Our model trained on SST obtained 83.4 for MR and 86.0 for SST (MR and
SST come from the same source), which we do not put in the tables for fair comparison with transfer
methods.

regard to the embedding size.

Since it is easier to linearly separate in high di-
mension, especially with logistic regression, it is
not surprising that increased embedding sizes lead
to increased performance for almost all models.
However, this is particularly true for some mod-
els (BiLSTM-Max, HConvNet, inner-att), which
demonstrate unequal abilities to incorporate more
information as the size grows. We hypothesize
that such networks are able to incorporate infor-
mation that is not directly relevant to the objective
task (results on SNLI are relatively stable with re-
gard to embedding size) but that can nevertheless
be useful as features for transfer tasks.

5.2 Task transfer

We report in Table 4 transfer tasks results for dif-
ferent architectures trained in different ways. We
group models by the nature of the data on which
they were trained. The first group corresponds
to models trained with unsupervised unordered
sentences. This includes bag-of-words mod-
els such as word2vec-SkipGram, the Unigram-
TFIDF model, the Paragraph Vector model (Le
and Mikolov, 2014), the Sequential Denoising
Auto-Encoder (SDAE) (Hill et al., 2016) and the
SIF model (Arora et al., 2017), all trained on the
Toronto book corpus (Zhu et al., 2015). The sec-
ond group consists of models trained with unsu-
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Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Direct supervision of sentence representations
m-CNN (Ma et al., 2015) 38.3 - 81.0 2 27.4 - 79.5 3
m-CNNENS (Ma et al., 2015) 42.8 - 84.1 2 32.6 - 82.8 3
Order-embeddings (Vendrov et al., 2016) 46.7 - 88.9 2 37.9 - 85.9 2
Pre-trained sentence representations
SkipThought + VGG19 (82k) 33.8 67.7 82.1 3 25.9 60.0 74.6 4
SkipThought + ResNet101 (113k) 37.9 72.2 84.3 2 30.6 66.2 81.0 3
BiLSTM-Max (on SNLI) + ResNet101 (113k) 42.4 76.1 87.0 2 33.2 69.7 83.6 3
BiLSTM-Max (on AllNLI) + ResNet101 (113k) 42.6 75.3 87.3 2 33.9 69.7 83.8 3

Table 5: COCO retrieval results. SkipThought is trained either using 82k training samples with VGG19
features, or with 113k samples and ResNet-101 features (our setting). We report the average results on 5
splits of 1k test images.

pervised ordered sentences such as FastSent and
SkipThought (also trained on the Toronto book
corpus). We also include the FastSent variant
“FastSent+AE” and the SkipThought-LN version
that uses layer normalization. We report results
from models trained on supervised data in the third
group, and also report some results of supervised
methods trained directly on each task for compar-
ison with transfer learning approaches.

Comparison with SkipThought The best
performing sentence encoder to date is the
SkipThought-LN model, which was trained on
a very large corpora of ordered sentences. With
much less data (570k compared to 64M sentences)
but with high-quality supervision from the SNLI
dataset, we are able to consistently outperform
the results obtained by SkipThought vectors. We
train our model in less than a day on a single GPU
compared to the best SkipThought-LN network
trained for a month. Our BiLSTM-max trained
on SNLI performs much better than released
SkipThought vectors on MR, CR, MPQA, SST,
MRPC-accuracy, SICK-R, SICK-E and STS14
(see Table 4). Except for the SUBJ dataset, it
also performs better than SkipThought-LN on
MR, CR and MPQA. We also observe by looking
at the STS14 results that the cosine metrics in
our embedding space is much more semantically
informative than in SkipThought embedding
space (pearson score of 0.68 compared to 0.29
and 0.44 for ST and ST-LN). We hypothesize
that this is namely linked to the matching method
of SNLI models which incorporates a notion
of distance (element-wise product and absolute
difference) during training.

NLI as a supervised training set Our findings
indicate that our model trained on SNLI obtains
much better overall results than models trained
on other supervised tasks such as COCO, dictio-
nary definitions, NMT, PPDB (Ganitkevitch et al.,
2013) and SST. For SST, we tried exactly the same
models as for SNLI; it is worth noting that SST is
smaller than NLI. Our representations constitute
higher-quality features for both classification and
similarity tasks. One explanation is that the natu-
ral language inference task constrains the model to
encode the semantic information of the input sen-
tence, and that the information required to perform
NLI is generally discriminative and informative.

Domain adaptation on SICK tasks Our trans-
fer learning approach obtains better results than
previous state-of-the-art on the SICK task - can
be seen as an out-domain version of SNLI - for
both entailment and relatedness. We obtain a pear-
son score of 0.885 on SICK-R while (Tai et al.,
2015) obtained 0.868, and we obtain 86.3% test
accuracy on SICK-E while previous best hand-
engineered models (Lai and Hockenmaier, 2014)
obtained 84.5%. We also significantly outper-
formed previous transfer learning approaches on
SICK-E (Bowman et al., 2015) that used the pa-
rameters of an LSTM model trained on SNLI to
fine-tune on SICK (80.8% accuracy). We hypothe-
size that our embeddings already contain the infor-
mation learned from the in-domain task, and that
learning only the classifier limits the number of
parameters learned on the small out-domain task.

Image-caption retrieval results In Table 5, we
report results for the COCO image-caption re-
trieval task. We report the mean recalls of 5 ran-
dom splits of 1K test images. When trained with
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ResNet features and 30k more training data, the
SkipThought vectors perform significantly better
than the original setting, going from 33.8 to 37.9
for caption retrieval R@1, and from 25.9 to 30.6
on image retrieval R@1. Our approach pushes
the results even further, from 37.9 to 42.4 on cap-
tion retrieval, and 30.6 to 33.2 on image retrieval.
These results are comparable to previous approach
of (Ma et al., 2015) that did not do transfer but di-
rectly learned the sentence encoding on the image-
caption retrieval task. This supports the claim that
pre-trained representations such as ResNet image
features and our sentence embeddings can achieve
competitive results compared to features learned
directly on the objective task.

MultiGenre NLI The MultiNLI corpus
(Williams et al., 2017) was recently released
as a multi-genre version of SNLI. With 433K
sentence pairs, MultiNLI improves upon SNLI
in its coverage: it contains ten distinct genres
of written and spoken English, covering most
of the complexity of the language. We augment
Table 4 with our model trained on both SNLI
and MultiNLI (AllNLI). We observe a significant
boost in performance overall compared to the
model trained only on SLNI. Our model even
reaches AdaSent performance on CR, suggesting
that having a larger coverage for the training task
helps learn even better general representations.
On semantic textual similarity STS14, we are
also competitive with PPDB based paragram-
phrase embeddings with a pearson score of 0.70.
Interestingly, on caption-related transfer tasks
such as the COCO image caption retrieval task,
training our sentence encoder on other genres
from MultiNLI does not degrade the performance
compared to the model trained only SNLI (which
contains mostly captions), which confirms the
generalization power of our embeddings.

6 Conclusion

This paper studies the effects of training sentence
embeddings with supervised data by testing on
12 different transfer tasks. We showed that mod-
els learned on NLI can perform better than mod-
els trained in unsupervised conditions or on other
supervised tasks. By exploring various architec-
tures, we showed that a BiLSTM network with
max pooling makes the best current universal sen-
tence encoding methods, outperforming existing
approaches like SkipThought vectors.

We believe that this work only scratches the sur-
face of possible combinations of models and tasks
for learning generic sentence embeddings. Larger
datasets that rely on natural language understand-
ing for sentences could bring sentence embedding
quality to the next level.
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