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Abstract

We make distributed stochastic gradient
descent faster by exchanging sparse up-
dates instead of dense updates. Gradi-
ent updates are positively skewed as most
updates are near zero, so we map the
99% smallest updates (by absolute value)
to zero then exchange sparse matrices.
This method can be combined with quan-
tization to further improve the compres-
sion. We explore different configura-
tions and apply them to neural machine
translation and MNIST image classifica-
tion tasks. Most configurations work on
MNIST, whereas different configurations
reduce convergence rate on the more com-
plex translation task. Our experiments
show that we can achieve up to 49% speed
up on MNIST and 22% on NMT without
damaging the final accuracy or BLEU.

1 Introduction

Distributed computing is essential to train large
neural networks on large data sets (Raina et al.,
2009). We focus on data parallelism: nodes jointly
optimize the same model on different parts of the
training data, exchanging gradients and param-
eters over the network. This network commu-
nication is costly, so prior work developed two
ways to approximately compress network traffic:
1-bit quantization (Seide et al., 2014) and sending
sparse matrices by dropping small updates (Strom,
2015; Dryden et al., 2016). These methods were
developed and tested on speech recognition and
toy MNIST systems. In porting these approxima-
tions to neural machine translation (NMT) (Neco
and Forcada, 1996; Bahdanau et al., 2014), we find
that translation is less tolerant to quantization.

440

Throughout this paper, we compare neural ma-
chine translation behavior with a toy MNIST sys-
tem, chosen because prior work used a similar
system (Dryden et al., 2016). NMT parameters
are dominated by three large embedding matrices:
source language input, target language input, and
target language output. These matrices deal with
vocabulary words, only a small fraction of which
are seen in a mini-batch, so we expect skewed gra-
dients. In contrast, MNIST systems exercise ev-
ery parameter in every mini-batch. Additionally,
NMT systems consist of multiple parameters with
different scales and sizes, compared to MNIST’s
3-layers network with uniform size. More for-
mally, gradient updates have positive skewness co-
efficient (Zwillinger and Kokoska, 1999): most
are close to zero but a few are large.

2 Related Work

An orthogonal line of work optimizes the SGD
algorithm and communication pattern. Zinke-
vich et al. (2010) proposed an asynchronous ar-
chitecture where each node can push and pull
the model independently to avoid waiting for the
slower node. Chilimbi et al. (2014) and Recht
et al. (2011) suggest updating the model without
a lock, allowing race conditions. Additionally,
Dean et al. (2012) run multiple minibatches be-
fore exchanging updates, reducing the communi-
cation cost. Our work is a more continuous ver-
sion, in which the most important updates are sent
between minibatches. Zhang et al. (2015) down-
weight gradients based on stale parameters.
Approximate gradient compression is not a new
idea. 1-Bit SGD (Seide et al., 2014), and later
Quantization SGD (Alistarh et al., 2016), work
by converting the gradient update into a 1-bit ma-
trix, thus reducing data communication signifi-
cantly. Strom (2015) proposed threshold quantiza-
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tion, which only sends gradient updates that larger
than a predefined constant threshold. However, the
optimal threshold is not easy to choose and, more-
over, it can change over time during optimization.
Dryden et al. (2016) set the threshold so as to keep
a constant number of gradients each iteration.

3 Distributed SGD
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Figure 1: Distributed SGD architecture with pa-
rameter sharding.

We used distributed SGD with parameter shard-
ing (Dean et al., 2012), shown in Figure 1. Each of
the N workers is both a client and a server. Servers
are responsible for 1/Nth of the parameters.

Clients have a copy of all parameters, which
they use to compute gradients. These gradients
are split into NV pieces and pushed to the appro-
priate servers. Similarly, each client pulls param-
eters from all servers. Each node converses with
all N nodes regarding 1/Nth of the parameters,
so bandwidth per node is constant.

4 Sparse Gradient Exchange

We sparsify gradient updates by removing the R%
smallest gradients by absolute value, dubbing this
Gradient Dropping. This approach is slightly dif-
ferent from Dryden et al. (2016) as we used a sin-
gle threshold based on absolute value, instead of
dropping the positive and negative gradients sepa-
rately. This is simpler to execute and works just as
well.

Small gradients can accumulate over time and
we find that zeroing them damages convergence.
Following Seide et al. (2014), we remember resid-
uals (in our case dropped values) locally and add
them to the next gradient, before dropping again.
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Algorithm 1 Gradient dropping algorithm given
gradient V and dropping rate R.
function GRADDROP(V, R)
V+ = residuals
Select threshold: R% of |V| is smaller
dropped «— 0
dropped[i] «— V[i|Vi : |V[i]| > threshold
residuals < V — dropped
return sparse(dropped)
end function

Gradient Dropping is shown in Algorithm 1.
This function is applied to all data transmissions,
including parameter pulls encoded as deltas from
the last version pulled by the client. To compute
these deltas, we store the last pulled copy server-
side. Synchronous SGD has one copy. Asyn-
chronous SGD has a copy per client, but the server
is responsible for 1/Nth of the parameters for N
clients so memory is constant.

Selection to obtain the threshold is expensive
(Alabi et al., 2012). However, this can be approxi-
mated. We sample 0.1% of the gradient and obtain
the threshold by running selection on the samples.

Parameters and their gradients may not be on
comparable scales across different parts of the
neural network. We can select a threshold locally
to each matrix of parameters or globally for all pa-
rameters. In the experiments, we find that layer
normalization (Lei Ba et al., 2016) makes a global
threshold work, so by default we use layer normal-
ization with one global threshold. Without layer
normalization, a global threshold degrades conver-
gence for NMT. Prior work used global thresholds
and sometimes column-wise quantization.

5 Experiment

We experiment with an image classification task
based on MNIST dataset (LeCun et al., 1998)
and Romanian—English neural machine transla-
tion system.

For our image classification experiment, we
build a fully connected neural network with three
4069-neuron hidden layers. We use AdaGrad with
an initial learning rate of 0.005. The mini-batch
size of 40 is used. This setup is identical to Dry-
den et al. (2016).

Our NMT experiment is based on Sennrich
et al. (2016), which won first place in the 2016
Workshop on Machine Translation. It is based
on an attentional encoder-decoder LSTM with



Drop words/sec images/sec
Ratio (NMT) (MNIST)
0% 13100 2489
90% 14443 3174
99% 14740 3726
99.9% 14786 3921

Table 1: Training speed with various drop ratios.

119M parameters. The default batch size is 80.
We save and validate every 10000 steps. We
pick 4 saved models with the highest validation
BLEU and average them into the final model.
AmuNMT (Junczys-Dowmunt et al., 2016) is used
for decoding with a beam size of 12. Our test
system has PCI Express 3.0 x16 for each of 4
NVIDIA Pascal Titan Xs. All experiments used
asynchronous SGD, though our method applies to
synchronous SGD as well.

5.1 Drop Ratio

To find an appropriate dropping ratio R%, we
tried 90%, 99%, and 99.9% then measured perfor-
mance in terms of loss and classification accuracy
or translation quality approximated by BLEU (Pa-
pineni et al., 2002) for image classification and
NMT task respectively.

Figure 3 shows that the model still learns af-
ter dropping 99.9% of the gradients, albeit with
a worse BLEU score. However, dropping 99%
of the gradient has little impact on convergence
or BLEU, despite exchanging 50x less data with
offset-value encoding. The z-axis in both plots is
batches, showing that we are not relying on speed
improvement to compensate for convergence.

Dryden et al. (2016) used a fixed dropping ratio
of 98.4% without testing other options. Switching
to 99% corresponds to more than a 1.5x reduction
in network bandwidth.

For MNIST, gradient dropping oddly improves
accuracy in early batches. The same is not seen
for NMT, so we caution against interpreting slight
gains on MNIST as regularization.

5.2 Local vs Global Threshold

Parameters may not be on a comparable scale so,
as discussed in Section 4, we experiment with lo-
cal thresholds for each matrix or a global threshold
for all gradients. We also investigate the effect of
layer normalization. We use a drop ratio of 99%
as suggested previously. Based on the results and

442

” 99.9% dr‘op rate ‘
206 [ 99% drop rate —— -
= 90% drop rate ——
&0 baseline
£0.3 ]
g 5
0 — e — N
3000 6000 900
1
<
2096 _
0.94

Batch

Figure 2: MNIST: Training loss and accuracy for
different dropping ratios.
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Figure 3: NMT: Training loss and validation
BLEU for different dropping ratios.

due to the complicated interaction with sharding,
we did not implement locally thresholded pulling,
so only locally thresholded pushing is shown.

The results show that layer normalization has no
visible impact on MNIST. On the other side, our
NMT system performed poorly as, without layer
normalization, parameters are on various scales
and global thresholding underperforms. Further-
more, our NMT system has more parameter cate-
gories compared to MNIST’s 3-layer network.
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Figure 4: MNIST: Comparison of local and global
thresholds with and without layer normalization.
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Figure 5: NMT: Comparison of local and global
thresholds with and without layer normalization.

5.3 Convergence Rate

While dropping gradients greatly reduces the com-
munication cost, it is shown in Table 1 that overall
speed improvement is not significant for our NMT
experiment. For our NMT experiment with 4 Ti-
tan Xs, communication time is only around 13%
of the total training time. Dropping 99% of the
gradient leads to 11% speed improvement. Addi-
tionally, we added an extra experiment of NMT
with batch-size of 32 to give more communication
cost ratio. In this scenario, communication is 17%
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of the total training time and we see a 22% aver-
age speed improvement. For MNIST, communi-
cation is 41% of the total training time and we see
a 49% average speed improvement. Computation
got faster by reducing multitasking.

We investigate the convergence rate: the combi-
nation of loss and speed. For MNIST, we train the
model for 20 epochs as mentioned in Dryden et al.
(2016). For NMT, we tested this with batch sizes
of 80 and 32 and trained for 13.5 hours.
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Figure 6: MNIST classification accuracy over
time.

As shown in Figure 6, our baseline MNIST
experiment reached 99.28% final accuracy, and
reached 99.42% final accuracy with a 99% drop
rate. It also shown that it has better convergence
rate in general with gradient dropping.
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Figure 7: NMT validation BLEU and loss over
time.

Our NMT experiment result is shown in Table
2. Final BLEU scores are essentially unchanged.



Experiment Final Time to reach
%BLEU  33% BLEU

batch-size 80

+ baseline 34.51 2.6 hours

+ 99% grad-drop 34.40 2.7 hours
batch-size 32

+ baseline 34.16 4.2 hours

+ 99% grad-drop 34.08 3.2 hours

Table 2: Summary of BLEU score obtained.

Our algorithm converges 23% faster than the base-
line when the batch size is 32, and nearly the same
with a batch size of 80. This in a setting with fast
communication: 15.75 GB/s theoretical over PCI
express 3.0 x16.

5.4 1-Bit Quantization

We can obtain further compression by applying
1-bit quantization after gradient dropping. Strom
(2015) quantized simply by mapping all surviving
values to the dropping threshold, effectively the
minimum surviving absolute value. Dryden et al.
(2016) took the averages of values being quan-
tized, as is more standard. They also quantized
at the column level, rather than choosing centers
globally. We tested 1-bit quantization with 3 dif-
ferent configurations: threshold, column-wise av-
erage, and global average. The quantization is ap-
plied after gradient dropping with a 99% drop rate,
layer normalization, and a global threshold.

Figure 8 shows that 1-bit quantization slows
down the convergence rate for NMT. This differs
from prior work (Seide et al., 2014; Dryden et al.,
2016) which reported no impact from 1-bit quan-
tization. Yet, we agree with their experiments:
all tested types of quantization work on MNIST.
This emphasizes the need for task variety in ex-
periments.

NMT has more skew in its top 1% gradients, so
it makes sense that 1-bit quantization causes more
loss. 2-bit quantization is sufficient.

6 Conclusion and Future Work

Gradient updates are positively skewed: most are
close to zero. This can be exploited by keeping
99% of gradient updates locally, reducing com-
munication size to 50x smaller with a coordinate-
value encoding.

Prior work suggested that 1-bit quantization can
be applied to further compress the communication.
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Figure 8: Training loss for different quantization
methods.

However, we found out that this is not true for
NMT. We attribute this to skew in the embedding
layers. However, 2-bit quantization is likely to
be sufficient, separating large movers from small
changes. Additionally, our NMT system consists
of many parameters with different scales, thus
layer normalization or using local threshold per-
parameter is necessary. On the hand side, MNIST
seems to work with any configurations we tried.

Our experiment with 4 Titan Xs shows that on
average only 17% of the time is spent communi-
cating (with batch size 32) and we achieve 22%
speed up. Our future work is to test this approach
on systems with expensive communication cost,
such as multi-node environments.
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