
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 433–439
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Learning the Structure of Variable-Order CRFs: a Finite-State
Perspective

Thomas Lavergne and François Yvon
LIMSI, CNRS, Univ. Paris-Sud, Université Paris Saclay

Campus Universitaire, F-91 403 Orsay, France
{lavergne,yvon}@limsi.fr

Abstract

The computational complexity of linear-
chain Conditional Random Fields (CRFs)
makes it difficult to deal with very large
label sets and long range dependencies.
Such situations are not rare and arise
when dealing with morphologically rich
languages or joint labelling tasks. We ex-
tend here recent proposals to consider vari-
able order CRFs. Using an effective finite-
state representation of variable-length de-
pendencies, we propose new ways to per-
form feature selection at large scale and re-
port experimental results where we outper-
form strong baselines on a tagging task.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty
et al., 2001; Sutton and McCallum, 2006) are a
method of choice for many sequence labelling
tasks such as Part of Speech (PoS) tagging, Text
Chunking, or Named Entity Recognition. Linear-
chain CRFs are easy to train by solving a convex
optimization problem, can accomodate rich fea-
ture patterns, and enjoy polynomial exact infer-
ence procedures. They also deliver state-of-the-art
performance for many tasks, sometimes surpass-
ing seq2seq neural models (Schnober et al., 2016).

A major issue with CRFs is the complexity
of training and inference procedures, which are
quadratic in the number of possible output la-
bels for first order models and grow exponen-
tially when higher order dependencies are consid-
ered. This is problematic for tasks such as precise
PoS tagging for Morphologically Rich Languages
(MRLs), where the number of morphosyntactic la-
bels is in the thousands (Hajič, 2000; Müller et al.,
2013). Large label sets also naturally arise when
joint labelling tasks (eg. simultaneous PoS tag-

ging and text chunking) are considered, For such
tasks, processing first-order models is demanding,
and full size higher-order models are out of the
question. Attempts to overcome this difficulty are
based on a greedy approach which starts with first-
order dependencies between labels and iteratively
increases the scope of dependency patterns under
the constraint that a high-order dependency is se-
lected only if it extends an existing lower order
feature (Müller et al., 2013). As a result, fea-
ture selection may only choose only few higher-
order features, motivating the need for an effec-
tive variable-order CRF (voCRF) training proce-
dure (Ye et al., 2009).1 The latest implementation
of this idea (Vieira et al., 2016) relies on (struc-
tured) sparsity promoting regularization (Martins
et al., 2011) and on finite-state techniques, han-
dling high-order features at a small extra cost (see
§ 2). In this approach, the sparse set of label de-
pendency patterns is represented in a finite-state
automaton, which arises as the result of the fea-
ture selection process.

In this paper, we somehow reverse the perspec-
tive and consider VoCRF training mostly as an au-
tomaton inference problem. This leads us to con-
sider alternative techniques for learning the finite-
state machine representing the dependency struc-
ture of sparse VoCRFs (see § 3). Two lines of
enquiries are explored: (a) to take into account
the internal structure of large tag sets in order to
learn better and/or leaner feature sets; (b) to de-
tect unconditional structural dependencies in label
sequences in order to speed-up the discovery of
useful features. These ideas are implemented in 6
feature selection strategies, allowing us to explore
a large set of dependency structures. Relying on
lazy finite-state operations, we train VoCRFs up to
order 5, and achieve PoS tagging performance that

1This is reminiscent of variable order HMMs, introduced
eg. in (Schütze and Singer, 1994; Ron et al., 1996).

433

surpass strong baselines for two MRLs (see § 4).

2 Variable order CRFs

In this section, we recall the basics of CRFs and
VoCRFs and introduce some notations.

2.1 Basics
First-order CRFs use the following model:

pθ(y|x) = Zθ(x)−1 exp(θTF (x,y)) (1)

where x = (x1, . . . , xT) and y = (y1, . . . , yT) are
the input (in X T) and output (in YT) sequences
and Zθ(x) is a normalizer. Each component
Fj(x,y) of the global feature vector decomposes
as a sum of local features

∑T
t=1 fj(yt−1, yt, xt)

and is associated to parameter θj . Local features
typically use binary tests and take the form:

fu,g(yt−1, yt, x, t) = I(yt = u ∧ g(x, t))
fuv,g(yt−1, yt, x, t) = I(yt−1yt = uv ∧ g(x, t))

where I() is an indicator function and g() tests a
local property of x around xt. In this setting, the
number of parameters is |Y|2× |X |train, where |A|
is the cardinality of A and |X |train is the number
of values of g(x, t) observed in the training set.
Even in moderate size applications, the parameter
set can be very large and contain dozen of millions
of features, due to the introduction of sequential
dependencies in the model.

Given N i.i.d. sequences {x(i),y(i)}Ni=1, esti-
mation is based on the minimization of the negated
conditional log-likelihood l(θ). Optimizing this
objective requires to compute its gradient and to
repeatedly evaluate the conditional expectation of
the feature vector. This can be done using a
forward-backward algorithm having a complexity
that grows quadratically with |Y|. l(θ) is usu-
ally complemented with a regularization term so
as to avoid overfitting and stabilize the optimiza-
tion. Common regularizers use the `1- or the `2-
norm of the parameter vector, the former having
the benefit to promote sparsity, thereby perform-
ing automatic feature selection (Tibshirani, 1996).

2.2 Variable order CRFs (VoCRFs)
When the label set is large, many pairs of labels
never occur in the training data and the sparsity
of label ngrams quickly increases with the order p
of the model. In the variable order CRF model,
it is assumed that only a small number of ngrams

Algorithm 1: Building A[W]

W : list of patterns, A[W] initially empty
U = Pref(W)
foreach w ∈ W do

TrieInsert(w,A[W])

// Add missing transitions
foreach u = vy ∈ U do

new FailureTrans(u,LgSuff(v,U))

(out of |Y|p) are associated with a non-zero param-
eter value. Denoting W the set of such ngrams
and w ∈ W , a generic feature function is then
fw,g(w, x, t) = I(yt−s . . . yt = w ∧ g(x, t)).

In (order-p) VoCRFs, the computational cost of
training and inference is proportional to the size of
a finite-state automaton A[W] encoding the pat-
terns in W ,2 which can be much less than |Y|p.
Our procedure for building A[W] is sketched in
Algorithm 1, where TrieInsert inserts a string
in a trie, Pref(W) computes the set of prefixes
of the strings in W ,3 LgSuff(v,U) returns the
longest suffix of v in U , and FailureTrans
is a special ε-transition used only when no la-
belled transition exists (Allauzen et al., 2003).4

Each state (or pattern prefix) v in A[W] is asso-
ciated with a set of feature functions {fu,g,∀u ∈
Suff(v), g}.5 The forward step of the gradient
computation maintains one value α(v, t) per state
and time step, which is recursively accumulated
over all paths ending in v at time t.

The next question is to identify W . The sim-
plest method keeps all the ngrams viewed in train-
ing, additionally filtering rare patterns (Cuong
et al., 2014). However, frequency based feature se-
lection does not take interactions into account and
is not the best solution. Ideally, one would like
to train a complete order-p model with a sparsity
promoting penalty, a technique that only works
for small label sets.6 The greedy algorithm of

2More precisely, Vieira et al. (2016) considerW , the clo-
sure ofW under suffix and last character substitution, which
factors asW = H× Y . The complexity of training depends
on the size of the finite-state automaton representingW .

3A trie has one state for each prefix.
4This was also suggested by Cotterell and Eisner (2015)

as a way to build a more compact pattern automaton.
5Upon reaching a state v, we need to access the features

that fire for that pattern, and also for all its suffixes. Each state
thus stores a set of pattern; each pattern is associated with a
set of tests on the observation (cf. 2.1).

6Recall that the size of parameter set is exponential wrt.
the model order.

434

Schmidt and Murphy (2010); Vieira et al. (2016)
is more scalable: it starts with all unigram patterns
and iteratively growsW by extending the ngrams
that have been selected in the simpler model. At
each round of training, feature selection is per-
formed using a `1 penalty and identifies the pat-
terns that will be further augmented.

3 Learning patterns

We introduce now several alternatives for learning
W . Our motivation for doing so is twofold: (a) to
take the internal structure of large label sets into
account; (b) to identify more abstract patterns in
label sequences, possibly containing gaps or iter-
ations, which could yield smaller A[W]. As dis-
cussed below, both motivations can be combined.

3.1 Greedy `1
The greedy strategy iteratively grows patterns up
to order p. Considering all possible unigram and
bigram patterns, we train a sparse model to select
a first set of useful bigrams. In subsequent iter-
ations, each pattern w selected at order k is ex-
tended in all possible ways to specify the pattern
set at order k+1, which will be filtered during the
next training round. This approach is close, yet
simpler, than the group lasso approach of Vieira
et al. (2016) and experimentally yields slightly
smaller pattern sets (see Table 2). This is because
we do not enforce closure under last-character re-
placement: once pattern w is pruned, longer pat-
terns ending in w are never considered.7

3.2 Component-wise training

Large tag sets often occur in joint tasks, where
multiple levels of information are encoded in one
compound tag. For instance, the fine grain labels
in the Tiger corpus (Brants et al., 2002) combine
PoS and morphological information in tags such
as NN.Dat.Sg.Fem for a feminine singular da-
tive noun. In the sequel, we refer to each piece
of information as a tag component. We assume
that all tags contain the same components, using
a “non-applicable” value whenever needed. Us-
ing features that test arbitrary combinations of tag
components would make feature selection much
more difficult, as the number of possible patterns
grows combinatorially with the number of compo-
nents. We keep things simple by allowing features
to only evaluate one single component at a time:

7cf. the discussion in (Vieira et al., 2016, § 4).

this allows us to identify dependencies of different
orders for each component.

Assuming that each tag y contains K compo-
nents y = [z1, z2 . . . , zK], with zk ∈ Yk, W is
then computed as in § 3.1, except that we now con-
sider one distinct set of patternsWk for each com-
ponent k. At each training round, each set Wk is
extended and pruned independently from the oth-
ers. Note that all these automata are trained simul-
taneously using a common set of features. This
process results in K automata, which are inter-
sected on the fly8 using “lazy” composition. In
our experiments, we also consider the case where
we additionally combine the automaton represent-
ing complete tag sequences: this has the benefi-
cial effect to restrict the combinations of subtags
to values that actually exist in the data.

3.3 Pruned language models
Another approach for computingW assumes that
useful dependencies between tags can be iden-
tified using an auxiliary language model (LM)
trained without paying any attention to observa-
tion sequences. A pattern w will then be deemed
useful for the labelling task only if w is a useful
history in a LM of tag sequences. This strategy
was implemented by first training a compact p-
gram LM with entropy pruning9 (Stolcke, 1998)
and including all the surviving histories inW . In
a second step, we train the complete CRF as usual,
with all observation features and `1 penalty to fur-
ther prune the parameter set.

cz de
train set 38,727 40,474
development set 5,228 5,000
test set 4,213 5,000
PoS 12 54
attributes 13 8
full tags 1,924 781

Table 1: Corpus description

3.4 Maximum entropy language models
Another technique, which combines the two pre-
vious ideas, relies on Maximum Entropy LMs

8Formally, each A[Wk] has transitions labelled with ele-
ments ofYk; lazy intersection operates on “generalized” tran-
sitions, where each label z is replaced with [?, . . . , z, . . . , ?],
where ? matches any symbol. A[W] is the intersection⋂

k A[Wk] and is labelled with completely specified tags.
9Starting with a full back-off n-gram language model, this

approach discards n-grams if their removal causes a suffi-
ciently small drop in cross-entropy. We used the implemen-
tation of Stolcke (2002).

435

(MELMs) (Rosenfeld, 1996). MELMs decom-
pose the probabililty of a sequence y1 . . . yT using
the chain rule, where each term pλ(yt|y<t) is a lo-
cally normalized exponential model including all
possible ngram features up to order p:

p(yt|y<t;λ) = Z(λ)−1 expλTG(y1 . . . yt)

In contrast to globally normalized models, the
complexity of training remains linear wrt. |Y|, ir-
respective of p. It it also straightforward both to
(a) use a `1 penalty to perform feature selection;
(b) include features that only test specific compo-
nents of a complex tag. For an order p model, our
feature functions evaluate all n-grams (for n ≤ p)
of complete tags or of one specific component:

Gw(y1, . . . , yt) =I(yt−n+1 . . . yt = w)
Gu(y1, . . . , yt) =I(zk,t−n+1 . . . zk,t = u)

Once a first round of feature selection has been
performed,10 we compute A[W] as explained
above. The last step of training reintroduces the
observations and estimates the CRF paramaters. A
variant of this approach adds extra gappy features
to the n-gram features. Gappy features at order
p test whether some label u occurs in the remote
past anywhere between position t − p + 111 and
t− n. They take the following form:

Gw,u(y1, . . . , yt) =I(yt−n+1 . . . yt = w∧
u ∈ {yt−p+1 . . . yt−n}),

and likewise for features testing components.

4 Experiments

4.1 Training protocol

The following protocol is used throughout: (a)
identifyW (§3) - note that this may imply to tune a
regularization parameter; (b) train a full model (in-
cluding tests on the observations for each pattern
inW) using `1 regularization and a very small `2
term to stabilize convergence. The best regulariza-
tion in (a) and (b) is selected on development data
and targets either perplexity (for LMs) or label ac-
curacy (for CRFs).

10As the LM building step only look at labels, we tune
the regularization to optimize the perplexity of the LM on a
development set.

11We use p = 6 in our experiments.

4.2 Datasets and Features

Experiments are run on two MRLs: for Czech, we
use the CoNLL 2009 data set (Hajič et al., 2009)
and for German, the Tiger Treebank with the split
of Fraser et al. (2013)). Both datasets include rich
morphological attributes (cf. Table 1).

All the patterns inW are combined with lexical
features testing the current word xt, its prefixes
and suffixes of length 1 to 4, its capitalization and
the presence of digit or punctuation symbols. Ad-
ditional contextual features also test words in a lo-
cal window around position t. These tests greatly
increase the feature count and are not provided for
all label patterns: for unigram patterns, we test the
presence of all unigrams and bigrams of words in
a window of 5 words; for bigrams patterns we only
test for all unigrams in a window of 3 words. Con-
textual features are not used for larger patterns.

4.3 Results

We consider several baselines: Maxent and
MEMM models, neither of which considers la-
bel dependencies in training, a linear chain CRF12

and our own implementation of the group lasso of
Vieira et al. (2016). For the latter, we contrast two
setups: one where each pattern inW gives rise to
one single feature, and one where it is conjoined
with tests on the observation.13 All scores in Ta-
ble 2 are label accuracies on unseen test data.

As expected, Maxent and MEMM are outper-
formed by almost all variants of CRFs, and their
scores are only reported for completeness. Group
lasso results demonstrate the effectiveness of
using contextual information with high order fea-
tures: the gain is ≈ 0.7 points for both languages
and all values of p. Greedy `1 achieves accu-
racy results similar to group lasso, suggest-
ing that `1 penalty alone is effective to select high-
order features. It also yields slighly smaller mod-
els and very comparable training time across the
board: indeed, greedy parameter selection strate-
gies imply multiple rounds of training which are
overall quite costly, due to the size of the full la-
bel set. Testing individual subtags (§ 3.2) results
in a slight improvement (≈+0.3) in accuracy over
Greedy `1. When using an additional automata
for the full tag, we get a larger gain of≈ 0.6 points
for Czech, slightly less for German: including a
model for complete tags also prevents to gener-

12Using the implementation of Lavergne et al. (2010).
13As suggested by the authors themselves in fn 4.

436

cz de
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

90.01% 91.12% 91.17% 91.14% 85.62% 85.84% 85.96% 86.02%
Maxent 1924 1924 1924 1924 781 781 781 781

191min 219min 286min 349min 142min 193min 252min 297min
90.96% 92.09% 92.13% 92.12% 86.48% 86.88% 87.13% 87.19%

MEMM 1924 1924 1924 1924 781 781 781 781
191min 219min 286min 349min 142min 193min 252min 297min
91.93% 86.95%

Linear Chain CRF 3.7e6 – – – 6.1e5 – – –
657min 447min
91.91% 92.27% 92.41% 86.92% 87.24% 87.48%

Group lasso 9.6e5 4.3e7 1.2e8 – 1.8e5 9.2e6 5.4e7 –
421min 1656min 3067min 305min 1134min 2101min
92.51% 92.95% 93.03% 87.48% 87.92% 87.96%

Group lasso + ctx 9.2e5 4.1e7 1.2e8 – 1.7e5 7.8e6 5.3e7 –
520min 1632min 3285min 349min 1218min 2398min
92.47% 92.94% 93.01% 87.43% 87.87% 87.96%

Greedy `1 8.4e5 4.1e7 1.1e8 – 1.7e5 7.1e6 5.0e7 –
462min 1759min 3300min 340min 1239min 2357min
92.76% 93.24% 93.36% 93.28% 87.47% 88.16% 88.26% 88.29%

Component-wise 6.2e4 2.8e5 8.2e5 3.7e6 2.4e4 7.2e4 3.7e5 1.4e6
247min 370min 1179min 2224min 173min 268min 836min 1483min

Component-wise
+ Full

92.97% 93.41% 93.69% 93.65% 87.39% 88.36% 88.59% 88.60%
8.7e5 2.8e7 8.3e7 4.6e8 1.4e5 5.2e6 2.1e7 1.3e8

463min 1569min 3162min 4321min 311min 1097min 2181min 3249min
92.98% 93.27% 93.51% 93.53% 87.43% 88.12% 88.25% 88.21%

Pruned LM 3.2e5 8.2e6 1.1e7 8.6e7 1.3e5 8.9e5 9.1e6 5.3e7
233min 487min 1210min 2519min 163min 372min 896min 1894min
93.02% 93.33% 93.81% 93.63% 87.41% 88.61% 88.76% 88.74%

MELM 4.6e5 1.7e7 2.3e7 1.4e8 1.4e5 2.9e6 1.4e7 9.8e7
303min 545min 1478min 2559min 206min 407min 1063min 1924min
93.52% 93.68% 93.79% 88.38% 88.70% 88.78%

MELM + Gaps 4.5e5 1.5e7 1.9e7 – 1.4e5 2.3e6 1.1e7 –
289min 658min 1751min 217min 439min 1297min

Table 2: Experimental results. Each cell reports accuracy, number of states in A[W] and total training
time. Group lasso is our reimplementation of Vieira et al. (2016) (+Ctx = +context features) ; Greedy
`1 is described in section 3.1, Component-wise is the decomposition approach of § 3.2, PrunedLM and
MELM (+Gaps) were described in § 3.3 and § 3.4.

ate invalid combinations of subtags. These models
represent different tradeoffs between accuracy and
training time: the 4-gram Component-wise ex-
periment only took 14 hrs to complete on German
data and outperforms the corresponding Greedy
`1 setup while containing approximately 100 times
less features. Component-wise+Full is more
comparable in size and training time to Greedy
`1, but yields a larger improvement in perfor-
mance. The last sets of experiments with LMs
yields even better operating points, as the first
stage of pattern selection is performed with a
cheap model. They are our best trade-off to date,
yielding the best performance for all values of p.

5 Conclusion

In this work, we have explored ways to take advan-
tage of the flexibility offered by implementations
of VoCRFs based on finite-state techniques. We

have proposed strategies to include tests on sub-
parts of complex tags, as well as to select useful
label patterns with auxiliary unconditional LMs.
Experiments with two MRLs with large tagsets
yielded consistent improvements (≈ +0.8 points)
over strong baselines. They offer new perspectives
to perform feature selection in high order CRFs.
In our future work, we intend to also explore how
to complement `1 penalties with terms penalizing
more explicitely the processing time; we also wish
to study how these ideas can be used in combina-
tion with neural models.

Acknowledgements

The authors wish to thank the reviewers for their
useful comments and suggestions. This work has
been partly funded by the European Union’s Hori-
zon 2020 research and innovation programme un-
der grant agreement No. 645452 (QT21).

437

References
Cyril Allauzen, Mehryar Mohri, and Brian Roark.

2003. Generalized algorithms for constructing sta-
tistical language models. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Sapporo, Japan, pages 40–47.
https://doi.org/10.3115/1075096.1075102.

Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Comput.
Linguist. 22(1):39–71.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Proceedings of the workshop on tree-
banks and linguistic theories. pages 24–41.

Ryan Cotterell and Jason Eisner. 2015. Penalized
expectation propagation for graphical mod-
els over strings. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association
for Computational Linguistics, pages 932–942.
https://doi.org/10.3115/v1/N15-1094.

Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2014. Conditional Ran-
dom Field with High-order Dependencies for
Sequence Labeling and Segmentation. Jour-
nal of Machine Learning Research 15:981–1009.
http://jmlr.org/papers/v15/cuong14a.html.

Alexander Fraser, Helmut Schmid, Richárd Farkas,
Renjing Wang, and Hinrich Schütze. 2013. Knowl-
edge sources for constituent parsing of german, a
morphologically rich and less-configurational lan-
guage. CL 39(1):57–85.

Jan Hajič. 2000. Morphological tagging: Data vs. dic-
tionaries. In Proceedings of the 1st North American
chapter of the Association for Computational Lin-
guistics conference. Seattle, WA, pages 94–101.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martí, Lluís
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task. CoNLL ’09, pages
1–18.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA, Williamstown, MA,
(ICML’01), pages 282–289.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Pro-
ceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics. Uppsala, Swe-
den, pages 504–513.

Andre Martins, Noah Smith, Mario Figueiredo, and
Pedro Aguiar. 2011. Structured sparsity in struc-
tured prediction. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing. pages 1500–1511.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal,
EMNLP’15, pages 2268–2274.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morpholog-
ical tagging. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Seattle, Washington, USA, EMNLP’15,
pages 322–332.

Chris Pal, Charles Sutton, and Andrew McCal-
lum. 2006. Sparse forward-backward using min-
imum divergence beams for fast training of con-
ditional random fields. In 2006 IEEE Interna-
tional Conference on Acoustics Speech and Sig-
nal Processing Proceedings. volume 5, pages V–V.
https://doi.org/10.1109/ICASSP.2006.1661342.

Dana Ron, Yoram Singer, and Naftali Tishby. 1996.
The power of amnesia: Learning probabilistic au-
tomata with variable memory length. Machine
Learning 25(2-3):117–149.

Ronald Rosenfeld. 1996. A maximum entropy ap-
proach to adaptive statistical learning modeling.
Computer, Speech and Language 10:187 – 228.

Mark W. Schmidt and Kevin P. Murphy. 2010. Convex
structure learning in log-linear models: Beyond pair-
wise potentials. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics,. Chia Laguna Resort, Sardinia, Italy, AIS-
TATS, pages 709–716.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 1703–
1714.

Hinrich Schütze and Yoram Singer. 1994. Part-of-
speech tagging using a variable memory Markov
model. In Proceedings of the 32nd Annual Meet-
ing of the Association for Computational Linguis-
tics. Las Cruces, New Mexico, pages 181–187.

438

Nobuyuki Shimizu and Andrew Haas. 2006. Exact de-
coding for jointly labeling and chunking sequences.
In Proceedings of COLING/ACL. pages 763–770.

Noah A. Smith, David A. Smith, and Roy W. Tromble.
2005. Context-based morphological disambiguation
with random fields. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Process-
ing. Vancouver, British Columbia, Canada, pages
475–482.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proc. DARPA Broad-
cast News Transcription and Understanding Work-
shop. Lansdowne, VA, pages 270–274.

Andreas Stolcke. 2002. SRILM – an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Langage Processing
(ICSLP). Denver, CO, volume 2, pages 901–904.

Charles Sutton and Andrew McCallum. 2006. An in-
troduction to conditional random fields for relational
learning. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning. The
MIT Press, Cambridge, MA.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society B 58(1):267–288.

Kristina Toutanova and Colin Cherry. 2009. A global
model for joint lemmatization and part-of-speech
prediction. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP. Associa-
tion for Computational Linguistics, pages 486–494.
http://aclweb.org/anthology/P09-1055.

Tim Vieira, Ryan Cotterell, and Jason Eisner. 2016.
Speed-accuracy tradeoffs in tagging with variable-
order crfs and structured sparsity. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. EMNLP, pages 1973–
1978.

Nan Ye, Wee S. Lee, Hai L. Chieu, and Dan Wu. 2009.
Conditional random fields with high-order features
for sequence labeling. In Y. Bengio, D. Schu-
urmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 22. Curran Associates, Inc.,
pages 2196–2204. http://papers.nips.cc/paper/3815-
conditional-random-fields-with-high-order-
features-for-sequence-labeling.pdf.

439

