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Abstract
Advances in neural variational inference
have facilitated the learning of power-
ful directed graphical models with con-
tinuous latent variables, such as varia-
tional autoencoders. The hope is that
such models will learn to represent rich,
multi-modal latent factors in real-world
data, such as natural language text. How-
ever, current models often assume simplis-
tic priors on the latent variables — such
as the uni-modal Gaussian distribution —
which are incapable of representing com-
plex latent factors efficiently. To over-
come this restriction, we propose the sim-
ple, but highly flexible, piecewise constant
distribution. This distribution has the ca-
pacity to represent an exponential num-
ber of modes of a latent target distribution,
while remaining mathematically tractable.
Our results demonstrate that incorporating
this new latent distribution into different
models yields substantial improvements in
natural language processing tasks such as
document modeling and natural language
generation for dialogue.

1 Introduction

The development of the variational autoencoder
framework (Kingma and Welling, 2014; Rezende
et al., 2014) has paved the way for learning large-
scale, directed latent variable models. This has led
to significant progress in a diverse set of machine
learning applications, ranging from computer vi-
sion (Gregor et al., 2015; Larsen et al., 2016) to
natural language processing tasks (Mnih and Gre-
gor, 2014; Miao et al., 2016; Bowman et al., 2015;

∗The first two authors contributed equally.

Serban et al., 2017b). It is hoped that this frame-
work will enable the learning of generative pro-
cesses of real-world data — including text, audio
and images — by disentangling and representing
the underlying latent factors in the data. How-
ever, latent factors in real-world data are often
highly complex. For example, topics in newswire
text and responses in conversational dialogue of-
ten posses latent factors that follow non-linear
(non-smooth), multi-modal distributions (i.e. dis-
tributions with multiple local maxima).

Nevertheless, the majority of current models as-
sume a simple prior in the form of a multivariate
Gaussian distribution in order to maintain mathe-
matical and computational tractability. This is of-
ten a highly restrictive and unrealistic assumption
to impose on the structure of the latent variables.
First, it imposes a strong uni-modal structure on
the latent variable space; latent variable samples
from the generating model (prior distribution) all
cluster around a single mean. Second, it forces
the latent variables to follow a perfectly symmet-
ric distribution with constant kurtosis; this makes
it difficult to represent asymmetric or rarely occur-
ring factors. Such constraints on the latent vari-
ables increase pressure on the down-stream gen-
erative model, which in turn is forced to carefully
partition the probability mass for each latent factor
throughout its intermediate layers. For complex,
multi-modal distributions — such as the distribu-
tion over topics in a text corpus, or natural lan-
guage responses in a dialogue system — the uni-
modal Gaussian prior inhibits the model’s ability
to extract and represent important latent structure
in the data. In order to learn more expressive latent
variable models, we therefore need more flexible,
yet tractable, priors.

In this paper, we introduce a simple, flexible

422



prior distribution based on the piecewise constant
distribution. We derive an analytical, tractable
form that is applicable to the variational autoen-
coder framework and propose a differentiable
parametrization for it. We then evaluate the ef-
fectiveness of the distribution when utilized both
as a prior and as approximate posterior across
variational architectures in two natural language
processing tasks: document modeling and natu-
ral language generation for dialogue. We show
that the piecewise constant distribution is able to
capture elements of a target distribution that can-
not be captured by simpler priors — such as the
uni-modal Gaussian. We demonstrate state-of-
the-art results on three document modeling tasks,
and show improvements on a dialogue natural lan-
guage generation. Finally, we illustrate qualita-
tively how the piecewise constant distribution rep-
resents multi-modal latent structure in the data.

2 Related Work

The idea of using an artificial neural network to
approximate an inference model dates back to the
early work of Hinton and colleagues (Hinton and
Zemel, 1994; Hinton et al., 1995; Dayan and Hin-
ton, 1996). Researchers later proposed Markov
chain Monte Carlo methods (MCMC) (Neal,
1992), which do not scale well and mix slowly,
as well as variational approaches which require
a tractable, factored distribution to approximate
the true posterior distribution (Jordan et al., 1999).
Others have since proposed using feed-forward in-
ference models to initialize the mean-field infer-
ence algorithm for training Boltzmann architec-
tures (Salakhutdinov and Larochelle, 2010; Oror-
bia II et al., 2015). Recently, the variational
autoencoder framework (VAE) was proposed by
Kingma and Welling (2014) and Rezende et al.
(2014), closely related to the method proposed by
Mnih and Gregor (2014). This framework allows
the joint training of an inference network and a di-
rected generative model, maximizing a variational
lower-bound on the data log-likelihood and facil-
itating exact sampling of the variational posterior.
Our work extends this framework.

With respect to document modeling, neural ar-
chitectures have been shown to outperform well-
established topic models such as Latent Dirich-
let Allocation (LDA) (Hofmann, 1999; Blei et al.,
2003). Researchers have successfully proposed
several models involving discrete latent vari-

ables (Salakhutdinov and Hinton, 2009; Hinton
and Salakhutdinov, 2009; Srivastava et al., 2013;
Larochelle and Lauly, 2012; Uria et al., 2014;
Lauly et al., 2016; Bornschein and Bengio, 2015;
Mnih and Gregor, 2014). The success of such dis-
crete latent variable models — which are able to
partition probability mass into separate regions —
serves as one of our main motivations for investi-
gating models with more flexible continuous latent
variables for document modeling. More recently,
Miao et al. (2016) proposed to use continuous la-
tent variables for document modeling.

Researchers have also investigated latent vari-
able models for dialogue modeling and dialogue
natural language generation (Bangalore et al.,
2008; Crook et al., 2009; Zhai and Williams,
2014). The success of discrete latent variable
models in this task also motivates our investi-
gation of more flexible continuous latent vari-
ables. Closely related to our proposed ap-
proach is the Variational Hierarchical Recur-
rent Encoder-Decoder (VHRED, described below)
(Serban et al., 2017b), a neural architecture with
latent multivariate Gaussian variables.

Researchers have explored more flexible dis-
tributions for the latent variables in VAEs, such
as autoregressive distributions, hierarchical prob-
abilistic models and approximations based on
MCMC sampling (Rezende et al., 2014; Rezende
and Mohamed, 2015; Kingma et al., 2016; Ran-
ganath et al., 2016; Maaløe et al., 2016; Salimans
et al., 2015; Burda et al., 2016; Chen et al., 2017;
Ruiz et al., 2016). These are all complimentary
to our approach; it is possible to combine them
with the piecewise constant latent variables. In
parallel to our work, multiple research groups have
also proposed VAEs with discrete latent variables
(Maddison et al., 2017; Jang et al., 2017; Rolfe,
2017; Johnson et al., 2016). This is a promising
line of research, however these approaches often
require approximations which may be inaccurate
when applied to larger scale tasks, such as docu-
ment modeling or natural language generation. Fi-
nally, discrete latent variables may be inappropri-
ate for certain natural language processing tasks.

3 Neural Variational Models

We start by introducing the neural variational
learning framework. We focus on modeling dis-
crete output variables (e.g. words) in the context
of natural language processing applications. How-
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ever, the framework can easily be adapted to han-
dle continuous output variables.

3.1 Neural Variational Learning

Let w1, . . . , wN be a sequence of N tokens
(words) conditioned on a continuous latent vari-
able z. Further, let c be an additional observed
variable which conditions both z and w1, . . . , wN .
Then, the distribution over words is:

Pθ(w1, . . . , wN |c) =
� N�

n=1

Pθ(wn|w<n, z, c)Pθ(z|c)dz,

where θ are the model parameters. The model first
generates the higher-level, continuous latent vari-
able z conditioned on c. Given z and c, it then gen-
erates the word sequence w1, . . . , wN . For unsu-
pervised modeling of documents, the c is excluded
and the words are assumed to be independent of
each other, when conditioned on z:

Pθ(w1, . . . , wN ) =
� N�

n=1

Pθ(wn|z)Pθ(z)dz.

Model parameters can be learned using the varia-
tional lower-bound (Kingma and Welling, 2014):

log Pθ(w1, . . . , wN |c)
≥ Ez∼Qψ(z|w1,...,wN ,c)[log Pθ(wn|w<n, z, c)]

− KL [Qψ(z|w1, . . . , wN , c)||Pθ(z|c)] , (1)

where we note that Qψ(z|w1, . . . , wN , c) is the
approximation to the intractable, true posterior
Pθ(z|w1, . . . , wN , c). Q is called the encoder,
or sometimes the recognition model or inference
model, and it is parametrized by ψ. The distri-
bution Pθ(z|c) is the prior model for z, where
the only available information is c. The VAE
framework further employs the re-parametrization
trick, which allows one to move the derivative of
the lower-bound inside the expectation. To ac-
complish this, z is parametrized as a transforma-
tion of a fixed, parameter-free random distribu-
tion z = fθ(�), where � is drawn from a ran-
dom distribution. Here, f is a transformation of
�, parametrized by θ, such that fθ(�) ∼ Pθ(z|c).
For example, � might be drawn from a standard
Gaussian distribution and f might be defined as
fθ(�) = µ + σ�, where µ and σ are in the param-
eter set θ. In this case, z is able to represent any
Gaussian with mean µ and variance σ2.

Model parameters are learned by maximizing
the variational lower-bound in eq. (1) using gra-
dient descent, where the expectation is computed
using samples from the approximate posterior.

The majority of work on VAEs propose to
parametrize z as multivariate Gaussian distrib-
tions. However, this unrealistic assumption may
critically hurt the expressiveness of the latent vari-
able model. See Appendix A for a detailed dis-
cussion. This motivates the proposed piecewise
constant latent variable distribution.

3.2 Piecewise Constant Distribution
We propose to learn latent variables by parametriz-
ing z using a piecewise constant probability den-
sity function (PDF). This should allow z to rep-
resent complex aspects of the data distribution in
latent variable space, such as non-smooth regions
of probability mass and multiple modes.

Let n ∈ N be the number of piecewise constant
components. We assume z is drawn from PDF:

P (z) =
1
K

n�
i=1

1� i− 1
n

≤z≤
i

n

�ai, (2)

where 1(x) is the indicator function, which is one
when x is true and otherwise zero. The distribu-
tion parameters are ai > 0, for i = 1, . . . , n. The
normalization constant is:

K =
n�

i=1

Ki, where K0 = 0, Ki =
ai

n
, for i = 1, . . . , n.

It is straightforward to show that a piecewise con-
stant distribution with more than n > 2 pieces
is capable of representing a bi-modal distribution.
When n > 2, a vector z of piecewise constant
variables can represent a probability density with
2|z| modes. Figure 1 illustrates how these variables
help model complex, multi-modal distributions.

In order to compute the variational bound, we
need to draw samples from the piecewise constant
distribution using its inverse cumulative distribu-
tion function (CDF). Further, we need to compute
the KL divergence between the prior and posterior.
The inverse CDF and KL divergence quantities are
both derived in Appendix B. During training we
must compute derivatives of the variational bound
in eq. (1). These expressions involve derivatives
of indicator functions, which have derivatives zero
everywhere except for the changing points where
the derivative is undefined. However, the proba-
bility of sampling the value exactly at its changing
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Figure 1: Joint density plot of a pair of Gaussian
and piecewise constant variables. The horizontal
axis corresponds to z1, which is a univariate Gaus-
sian variable. The vertical axis corresponds to z2,
which is a piecewise constant variable.

point is effectively zero. Thus, we fix these deriva-
tives to zero. Similar approximations are used in
training networks with rectified linear units.

4 Latent Variable Parametrizations

In this section, we develop the parametrization
of both the Gaussian variable and our proposed
piecewise constant latent variable.

Let x be the current output sequence, which the
model must generate (e.g. w1, . . . , wN ). Let c be
the observed conditioning information. If the task
contains additional conditioning information this
will be embedded by c. For example, for dialogue
natural language generation c represents an em-
bedding of the dialogue history, while for docu-
ment modeling c = ∅.

4.1 Gaussian Parametrization
Let µprior and σ2,prior be the prior mean and vari-
ance, and let µpost and σ2,post be the approximate
posterior mean and variance. For Gaussian la-
tent variables, the prior distribution mean and vari-
ances are encoded using linear transformations of
a hidden state. In particular, the prior distribu-
tion covariance is encoded as a diagonal covari-
ance matrix using a softplus function:

µprior = Hprior
µ Enc(c) + bprior

µ ,

σ2,prior = diag(log(1 + exp(Hprior
σ Enc(c) + bprior

σ ))),

where Enc(c) is an embedding of the conditioning
information c (e.g. for dialogue natural language
generation this might, for example, be produced
by an LSTM encoder applied to the dialogue his-
tory), which is shared across all latent variable

dimensions. The matrices H
prior
µ , H

prior
σ and vec-

tors b
prior
µ , b

prior
σ are learnable parameters. For the

posterior distribution, previous work has shown it
is better to parametrize the posterior distribution
as a linear interpolation of the prior distribution
mean and variance and a new estimate of the mean
and variance based on the observation x (Fraccaro
et al., 2016). The interpolation is controlled by
a gating mechanism, allowing the model to turn
on/off latent dimensions:

µpost =(1− αµ)µprior + αµ

�
Hpost

µ Enc(c, x) + bpost
µ

�
,

σ2,post =(1− ασ)σ2,prior

+ ασdiag(log(1 + exp(Hpost
σ Enc(c, x) + bpost

σ ))),

where Enc(c, x) is an embedding of both c and
x. The matrices H

post
µ , H

post
σ and the vectors

b
post
µ , b

post
σ , αµ, ασ are parameters to be learned.

The interpolation mechanism is controlled by αµ

and ασ, which are initialized to zero (i.e. initial-
ized such that the posterior is equal to the prior).

4.2 Piecewise Constant Parametrization
We parametrize the piecewise prior parameters us-
ing an exponential function applied to a linear
transformation of the conditioning information:

a
prior
i = exp(Hprior

a,i Enc(c) + b
prior
a,i ), i = 1, . . . , n,

where matrix H
prior
a and vector b

prior
a are learnable.

As before, we define the posterior parameters as a
function of both c and x:

apost
i = exp(Hpost

a,i Enc(c, x) + bpost
a,i ), i = 1, . . . , n,

where H
post
a and b

post
a are parameters.

5 Variational Text Modeling

We now introduce two classes of VAEs. The mod-
els are extended by incorporating the Gaussian and
piecewise latent variable parametrizations.

5.1 Document Model
The neural variational document model (NVDM)
model has previously been proposed for document
modeling (Mnih and Gregor, 2014; Miao et al.,
2016), where the latent variables are Gaussian.
Since the original NVDM uses Gaussian latent
variables, we will refer to it as G-NVDM. We pro-
pose two novel models building on G-NVDM. The
first model we propose uses piecewise constant la-
tent variables instead of Gaussian latent variables.
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We refer to this model as P-NVDM. The second
model we propose uses a combination of Gaus-
sian and piecewise constant latent variables. The
models sample the Gaussian and piecewise con-
stant latent variables independently and then con-
catenates them together into one vector. We refer
to this model as H-NVDM.

Let V be the vocabulary of document words.
Let W represent a document matrix, where row wi

is the 1-of-|V | binary encoding of the i’th word in
the document. Each model has an encoder com-
ponent Enc(W ), which compresses a document
vector into a continuous distributed representa-
tion upon which the approximate posterior is built.
For document modeling, word order information
is not taken into account and no additional condi-
tioning information is available. Therefore, each
model uses a bag-of-words encoder, defined as a
multi-layer perceptron (MLP) Enc(c = ∅, x) =
Enc(x). Based on preliminary experiments, we
choose the encoder to be a two-layered MLP with
parametrized rectified linear activation functions
(we omit these parameters for simplicity). For the
approximate posterior, each model has the param-
eter matrix W

post
a and vector b

post
a for the piece-

wise latent variables, and the parameter matrices
W

post
µ , W

post
σ and vectors b

post
µ , b

post
σ for the Gaus-

sian means and variances. For the prior, each
model has parameter vector b

prior
a for the piece-

wise latent variables, and vectors b
prior
µ , b

prior
σ for

the Gaussian means and variances. We initialize
the bias parameters to zero in order to start with
centered Gaussian and piecewise constant priors.
The encoder will adapt these priors as learning
progresses, using the gating mechanism to turn
on/off latent dimensions.

Let z be the vector of latent variables sampled
according to the approximate posterior distribu-
tion. Given z, the decoder Dec(w, z) outputs a
distribution over words in the document:

Dec(w, z) =
exp (−wTRz + bw)�
w� exp (−wTRz + bw�)

,

where R is a parameter matrix and b is a parameter
vector corresponding to the bias for each word to
be learned. This output probability distribution is
combined with the KL divergences to compute the
lower-bound in eq. (1). See Appendix C.

Our baseline model G-NVDM is an improve-
ment over the original NVDM proposed by Mnih
and Gregor (2014) and Miao et al. (2016). We
learn the prior mean and variance, while these

were fixed to a standard Gaussian in previous
work. This increases the flexibility of the model
and makes optimization easier. In addition, we
use a gating mechanism for the approximate pos-
terior of the Gaussian variables. This gating mech-
anism allows the model to turn off latent vari-
able (i.e. fix the approximate posterior to equal the
prior for specific latent variables) when computing
the final posterior parameters. Furthermore, Miao
et al. (2016) alternated between optimizing the ap-
proximate posterior parameters and the generative
model parameters, while we optimize all parame-
ters simultaneously.

5.2 Dialogue Model
The variational hierarchical recurrent encoder-
decoder (VHRED) model has previously been pro-
posed for dialogue modeling and natural language
generation (Serban et al., 2017b, 2016a). The
model decomposes dialogues using a two-level hi-
erarchy: sequences of utterances (e.g. sentences),
and sub-sequences of tokens (e.g. words). Let wn

be the n’th utterance in a dialogue with N utter-
ances. Let wn,m be the m’th word in the n’th utter-
ance from vocabulary V given as a 1-of-|V | binary
encoding. Let Mn be the number of words in the
n’th utterance. For each utterance n = 1, . . . , N ,
the model generates a latent variable zn. Condi-
tioned on this latent variable, the model then gen-
erates the next utterance:

Pθ(w1, z1, . . . ,wN , zN ) =
N�

n=1

Pθ(zn|w<n)

×
Mn�
m=1

Pθ(wn,m|wn,<m,w<n, zn),

where θ are the model parameters. VHRED con-
sists of three RNN modules: an encoder RNN,
a context RNN and a decoder RNN. The en-
coder RNN computes an embedding for each ut-
terance. This embedding is fed into the context
RNN, which computes a hidden state summariz-
ing the dialogue context before utterance n: hcon

n−1.
This state represents the additional conditioning
information, which is used to compute the prior
distribution over zn:

Pθ(zn | w<n) = f
prior
θ (zn; hcon

n−1),

where fprior is a PDF parametrized by both θ and
hcon

n−1. A sample is drawn from this distribution:
zn ∼ Pθ(zn|w<n). This sample is given as input
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to the decoder RNN, which then computes the out-
put probabilities of the words in the next utterance.
The model is trained by maximizing the varia-
tional lower-bound, which factorizes into indepen-
dent terms for each sub-sequence (utterance):

log Pθ(w1, . . . ,wN )

≥
N�

n=1

− KL [Qψ(zn | w1, . . . ,wn)||Pθ(zn | w<n)]

+ EQψ(zn|w1,...,wn) [log Pθ(wn | zn,w<n)] ,

where distribution Qψ is the approximate posterior
distribution with parameters ψ, computed simi-
larly as the prior distribution but further condi-
tioned on the encoder RNN hidden state of the
next utterance.

The original VHRED model (Serban et al.,
2017b) used Gaussian latent variables. We re-
fer to this model as G-VHRED. The first model
we propose uses piecewise constant latent vari-
ables instead of Gaussian latent variables. We re-
fer to this model as P-VHRED. The second model
we propose takes advantage of the representation
power of both Gaussian and piecewise constant la-
tent variables. This model samples both a Gaus-
sian latent variable z

gaussian
n and a piecewise la-

tent variable z
piecewise
n independently conditioned

on the context RNN hidden state:

Pθ(zgaussian
n | w<n) = f

prior, gaussian
θ (zgaussian

n ; hcon
n−1),

Pθ(zpiecewise
n | w<n) = f

prior, piecewise
θ (zpiecewise

n ; hcon
n−1),

where fprior, gaussian and fprior, piecewise are PDFs
parametrized by independent subsets of parame-
ters θ. We refer to this model as H-VHRED.

6 Experiments

We evaluate the proposed models on two types
of natural language processing tasks: document
modeling and dialogue natural language genera-
tion. All models are trained with back-propagation
using the variational lower-bound on the log-
likelihood or the exact log-likelihood. We use
the first-order gradient descent optimizer Adam
(Kingma and Ba, 2015) with gradient clipping
(Pascanu et al., 2012)1

Model 20-NG RCV1 CADE

LDA 1058 −− −−
docNADE 896 −− −−
NVDM 836 −− −−
G-NVDM 651 905 339
H-NVDM-3 607 865 258
H-NVDM-5 566 833 294

Table 1: Test perplexities on three document mod-
eling tasks: 20-NewGroup (20-NG), Reuters cor-
pus (RCV1) and CADE12 (CADE). Perplexities
were calculated using 10 samples to estimate the
variational lower-bound. The H-NVDM models
perform best across all three datasets.

6.1 Document Modeling

Tasks We use three different datasets for docu-
ment modeling experiments. First, we use the
20 News-Groups (20-NG) dataset (Hinton and
Salakhutdinov, 2009). Second, we use the Reuters
corpus (RCV1-V2), using a version that con-
tained a selected 5,000 term vocabulary. As
in previous work (Hinton and Salakhutdinov,
2009; Larochelle and Lauly, 2012), we transform
the original word frequencies using the equation
log(1 + TF), where TF is the original word fre-
quency. Third, to test our document models on text
from a non-English language, we use the Brazilian
Portuguese CADE12 dataset (Cardoso-Cachopo,
2007). For all datasets, we track the validation
bound on a subset of 100 vectors randomly drawn
from each training corpus.

Training All models were trained using mini-
batches with 100 examples each. A learning rate
of 0.002 was used. Model selection and early stop-
ping were conducted using the validation lower-
bound, estimated using five stochastic samples per
validation example. Inference networks used 100
units in each hidden layer for 20-NG and CADE,
and 100 for RCV1. We experimented with both
50 and 100 latent random variables for each class
of models, and found that 50 latent variables per-
formed best on the validation set. For H-NVDM
we vary the number of components used in the
PDF, investigating the effect that 3 and 5 pieces
had on the final quality of the model. The number

1Code and scripts are available at https://github.
com/ago109/piecewise-nvdm-emnlp-2017
and https://github.com/julianser/
hred-latent-piecewise.
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G-NVDM H-NVDM-3 H-NVDM-5
environment project science
project gov built
flight major high
lab based technology
mission earth world
launch include form
field science scale
working nasa sun
build systems special
gov technical area

Table 2: Word query similarity test on 20 News-
Groups: for the query ‘space”, we retrieve the
top 10 nearest words in word embedding space
based on Euclidean distance. H-NVDM-5 asso-
ciates multiple meanings to the query, while G-
NVDM only associates the most frequent meaning.

of hidden units was chosen via preliminary exper-
imentation with smaller models. On 20-NG, we
use the same set-up as (Hinton and Salakhutdi-
nov, 2009) and therefore report the perplexities of
a topic model (LDA, (Hinton and Salakhutdinov,
2009)), the document neural auto-regressive esti-
mator (docNADE, (Larochelle and Lauly, 2012)),
and a neural variational document model with a
fixed standard Gaussian prior (NVDM, lowest re-
ported perplexity, (Miao et al., 2016)).

Results In Table 1, we report the test docu-
ment perplexity: exp(− 1

D

�
n

1
Ln

log Pθ(xn). We
use the variational lower-bound as an approxima-
tion based on 10 samples, as was done in (Mnih
and Gregor, 2014). First, we note that the best
baseline model (i.e. the NVDM) is more competi-
tive when both the prior and posterior models are
learnt together (i.e. the G-NVDM), as opposed to
the fixed prior of (Miao et al., 2016). Next, we
observe that integrating our proposed piecewise
variables yields even better results in our docu-
ment modeling experiments, substantially improv-
ing over the baselines. More importantly, in the
20-NG and Reuters datasets, increasing the num-
ber of pieces from 3 to 5 further reduces perplex-
ity. Thus, we have achieved a new state-of-the-
art perplexity on 20 News-Groups task and — to
the best of our knowledge – better perplexities on
the CADE12 and RCV1 tasks compared to us-
ing a state-of-the-art model like the G-NVDM. We
also evaluated the converged models using an non-
parametric inference procedure, where a separate

Figure 2: Latent variable approximate poste-
rior means t-SNE visualization on 20-NG for G-
NVDM and H-NVDM-5. Colors correspond to the
topic labels assigned to each document.

approximate posterior is learned for each test ex-
ample in order to tighten the variational lower-
bound. H-NVDM also performed best in this eval-
uation across all three datasets, which confirms
that the performance improvement is due to the
piecewise components. See appendix for details.

In Table 2, we examine the top ten highest
ranked words given the query term “space”, using
the decoder parameter matrix. The piecewise vari-
ables appear to have a significant effect on what is
uncovered by the model.In the case of “space”, the
hybrid with 5 pieces seems to value two senses of
the word–one related to “outer space” (e.g., “sun”,
“world”, etc.) and another related to the dimen-
sions of depth, height, and width within which
things may exist and move (e.g., “area”, “form”,
“scale”, etc.). On the other hand, G-NVDM ap-
pears to only capture the “outer space” sense of

428



Model Activity Entity

HRED 4.77 2.43
G-VHRED 9.24 2.49
P-VHRED 5 2.49
H-VHRED 8.41 3.72

Table 3: Ubuntu evaluation using F1 metrics w.r.t.
activities and entities. G-VHRED, P-VHRED and
H-VHRED all outperform the baseline HRED.
G-VHRED performs best w.r.t. activities and H-
VHRED performs best w.r.t. entities.

the word. More examples are in the appendix.
Finally, we visualized the means of the approx-

imate posterior latent variables on 20-NG through
a t-SNE projection. As shown in Figure 2, both
G-NVDM and H-NVDM-5 learn representations
which disentangle the topic clusters on 20-NG.
However, G-NVDM appears to have more dis-
persed clusters and more outliers (i.e. data points
in the periphery) compared to H-NVDM-5. Al-
though it is difficult to draw conclusions based on
these plots, these findings could potentially be ex-
plained by the Gaussian latent variables fitting the
latent factors poorly.

6.2 Dialogue Modeling

Task We evaluate VHRED on a natural language
generation task, where the goal is to generate re-
sponses in a dialogue. This is a difficult prob-
lem, which has been extensively studied in the
recent literature (Ritter et al., 2011; Lowe et al.,
2015; Sordoni et al., 2015; Li et al., 2016; Ser-
ban et al., 2016a,b). Dialogue response generation
has recently gained a significant amount of atten-
tion from industry, with high-profile projects such
as Google SmartReply (Kannan et al., 2016) and
Microsoft Xiaoice (Markoff and Mozur, 2015).
Even more recently, Amazon has announced the
Alexa Prize Challenge for the research community
with the goal of developing a natural and engaging
chatbot system (Farber, 2016).

We evaluate on the technical support response
generation task for the Ubuntu operating system.
We use the well-known Ubuntu Dialogue Corpus
(Lowe et al., 2015, 2017), which consists of about
1/2 million natural language dialogues extracted
from the #Ubuntu Internet Relayed Chat (IRC)
channel. The technical problems discussed span
a wide range of software-related and hardware-
related issues. Given a dialogue history — such

as a conversation between a user and a technical
support assistant — the model must generate the
next appropriate response in the dialogue. For ex-
ample, when it is the turn of the technical support
assistant, the model must generate an appropriate
response helping the user resolve their problem.

We evaluate the models using the activity- and
entity-based metrics designed specifically for the
Ubuntu domain (Serban et al., 2017a). These
metrics compare the activities and entities in the
model generated responses with those of the ref-
erence responses; activities are verbs referring to
high-level actions (e.g. download, install, unzip)
and entities are nouns referring to technical ob-
jects (e.g. Firefox, GNOME). The more activities
and entities a model response overlaps with the
reference response (e.g. expert response) the more
likely the response will lead to a solution.

Training The models were trained to maxi-
mize the log-likelihood of training examples us-
ing a learning rate of 0.0002 and mini-batches
of size 80. We use a variant of truncated back-
propagation. We terminate the training procedure
for each model using early stopping, estimated
using one stochastic sample per validation exam-
ple. We evaluate the models by generating dia-
logue responses: conditioned on a dialogue con-
text, we fix the model latent variables to their me-
dian values and then generate the response using a
beam search with size 5. We select model hyper-
parameters based on the validation set using the F1
activity metric, as described earlier.

It is often difficult to train generative models
for language with stochastic latent variables (Bow-
man et al., 2015; Serban et al., 2017b). For the
latent variable models, we therefore experiment
with reweighing the KL divergence terms in the
variational lower-bound with values 0.25, 0.50,
0.75 and 1.0. In addition to this, we linearly in-
crease the KL divergence weights starting from
zero to their final value over the first 75000 train-
ing batches. Finally, we weaken the decoder RNN
by randomly replacing words inputted to the de-
coder RNN with the unknown token with 25%
probability. These steps are important for effec-
tively training the models, and the latter two have
been used in previous work by Bowman et al.
(2015) and Serban et al. (2017b).

HRED (Baseline): We compare to the HRED
model (Serban et al., 2016a): a sequence-to-
sequence model, shown to outperform other es-
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tablished models on this task, such as the LSTM
RNN language model (Serban et al., 2017a). The
HRED model’s encoder RNN uses a bidirectional
GRU RNN encoder, where the forward and back-
ward RNNs each have 1000 hidden units. The
context RNN is a GRU encoder with 1000 hidden
units, and the decoder RNN is an LSTM decoder
with 2000 hidden units.2 The encoder and con-
text RNNs both use layer normalization (Ba et al.,
2016).3 We also experiment with an additional
rectified linear layer applied on the inputs to the
decoder RNN. As with other hyper-parameters,
we choose whether to include this additional layer
based on the validation set performance. HRED,
as well as all other models, use a word embedding
dimensionality of size 400.

G-HRED: We compare to G-VHRED, which
is VHRED with Gaussian latent variables (Serban
et al., 2017b). G-VHRED uses the same hyper-
parameters for the encoder, context and decoder
RNNs as the HRED model. The model has 100
Gaussian latent variables per utterance.

P-HRED: The first model we propose is P-
VHRED, which is VHRED model with piecewise
constant latent variables. We use n = 3 number
of pieces for each latent variable. P-VHRED also
uses the same hyper parameters for the encoder,
context and decoder RNNs as the HRED model.
Similar to G-VHRED, P-VHRED has 100 piece-
wise constant latent variables per utterance.

H-HRED: The second model we propose is H-
VHRED, which has 100 piecewise constant (with
n = 3 pieces per variable) and 100 Gaussian la-
tent variables per utterance. H-VHRED also uses
the same hyper-parameters for the encoder, con-
text and decoder RNNs as HRED.

Results: The results are given in Table 3.
All latent variable models outperform HRED w.r.t.
both activities and entities. This strongly suggests
that the high-level concepts represented by the
latent variables help generate meaningful, goal-
directed responses. Furthermore, each type of
latent variable appears to help with a different
aspects of the generation task. G-VHRED per-
forms best w.r.t. activities (e.g. download, install
and so on), which occur frequently in the dataset.

2Since training lasted between 1-3 weeks for each model,
we had to fix the number of hidden units during preliminary
experiments on the training and validation datasets.

3We did not apply layer normalization to the decoder
RNN, because several of our colleagues have found that this
may hurt the performance of generative language models.

This suggests that the Gaussian latent variables
learn useful latent representations for frequent ac-
tions. On the other hand, H-VHRED performs
best w.r.t. entities (e.g. Firefox, GNOME), which
are often much rarer and mutually exclusive in
the dataset. This suggests that the combination of
Gaussian and piecewise latent variables help learn
useful representations for entities, which could
not be learned by Gaussian latent variables alone.
We further conducted a qualitative analysis of the
model responses, which supports these conclu-
sions. See Appendix G.4

7 Conclusions

In this paper, we have sought to learn rich and
flexible multi-modal representations of latent vari-
ables for complex natural language processing
tasks. We have proposed the piecewise constant
distribution for the variational autoencoder frame-
work. We have derived closed-form expressions
for the necessary quantities required for in the au-
toencoder framework, and proposed an efficient,
differentiable implementation of it. We have in-
corporated the proposed piecewise constant dis-
tribution into two model classes — NVDM and
VHRED — and evaluated the proposed models on
document modeling and dialogue modeling tasks.
We have achieved state-of-the-art results on three
document modeling tasks, and have demonstrated
substantial improvements on a dialogue modeling
task. Overall, the results highlight the benefits
of incorporating the flexible, multi-modal piece-
wise constant distribution into variational autoen-
coders. Future work should explore other natural
language processing tasks, where the data is likely
to arise from complex, multi-modal latent factors.
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