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Abstract

Vector representation of words improves
performance in various NLP tasks, but the
high-dimensional word vectors are very
difficult to interpret. We apply several ro-
tation algorithms to the vector representa-
tion of words to improve the interpretabil-
ity. Unlike previous approaches that in-
duce sparsity, the rotated vectors are in-
terpretable while preserving the expressive
performance of the original vectors. Fur-
thermore, any pre-built word vector repre-
sentation can be rotated for improved in-
terpretability. We apply rotation to skip-
grams and glove and compare the expres-
sive power and interpretability with the
original vectors and the sparse overcom-
plete vectors. The results show that the ro-
tated vectors outperform the original and
the sparse overcomplete vectors for inter-
pretability and expressiveness tasks.

1 Introduction

Vector representations of words contain rich se-
mantic and syntactic information and thus improve
the performance of numerous natural language
processing tasks. The vectors also play a basic role
as an embedding layer in deep learning models for
NLP, affecting the expressive performance of the
model (Iyyer et al., 2014; Tai et al., 2015; Yang
et al., 2016). However, the many dimensions com-
prising the vector representation are not amenable
to interpretation.

Previous research on vector representation of
words has proposed improving interpretability
while keeping the expressive performance by in-
ducing sparsity in word vector dimensions (Mur-
phy et al., 2012; Fyshe et al., 2014). Recent re-
search has proposed to build sparse vector repre-

sentations from a large corpus and added the non-
negativity constraint using improved projected
gradient (Luo et al., 2015), while (Sun et al., 2016)
learns l1-regularised vectors. But, these models
cannot be learned over pre-trained word vectors
based on skip-gram (Mikolov et al., 2013) or glove
(Pennington et al., 2014) which are widely used.
Faruqui et al. proposes an alternative approach to
stand-alone models by forming sparse representa-
tions based on the pre-trained models. To do this,
they use overcomplete vectors, which are much
higher in dimensionality than the original vectors.

Unlike these sparsity-inducing approaches, we
construct an interpretable word vector representa-
tion by using the pre-trained word vectors as in-
put and using a basis rotation algorithm from the
Exploratory Factor Analysis (EFA) literature used
in developing psychological scales (Osborne and
Costello, 2009). Like the word vector representa-
tion, every single item in the scale is represented as
a numeric vector in the latent factor space. The set
of item vectors are represented in a factor loading
matrix, and the matrix is rotated such that the fac-
tors (i.e., dimensions) become interpretable. The
rotation achieves a Simple Structure (Thurstone,
1947) through minimizing the row and the column
complexity of the matrix (Crawford and Ferguson,
1970). We elaborate on this process in the next
section. As in EFA, we rotate the word vector rep-
resentation matrix to obtain dimension-wise inter-
pretability while retaining the number of dimen-
sions the same. For example, Figure 1 shows the
rotated skip-gram vectors for two groups of words.
These words are top five words of two dimensions
from rotated Word2Vec.

Our main contribution is applying the matrix
rotation algorithm from psychometric analysis to
word vector representation models to improve the
interpretability of the vector. This approach gives
an answer to the question why and how word vec-
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(a) SG word projected to {a1,a2} and visualization of the vectors in 300 dimensions
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(b) Rotated word vectors in {aR
1 ,aR

2 } and visualization of the vectors in 300 dimensions

Figure 1: Overview of rotating word vectors dimensions. We plot (a) unrotated and (b) rotated skip-
gram word vectors in 2-D projected embedding space using PCA (left), and visualization of the vectors
in original 300 dimensional space (right). Colors of words indicates the meaning of countries (Red)
and positions (Blue). As in (b), after the dimensions are rotated, interpretability for each dimensions is
improved having meaning of countries and positions.

tor representations work well by revealing a hid-
den structure of the original word vectors. That is,
it is meaningful to transform the hard-to-interpret
dimensions of the pre-built word vectors, which
are widely used, to more interpretable vectors. We
also show that the rotated vectors retain their effec-
tiveness with respect to downstream tasks without
re-building the vector representations.

Our method can be applied to any type of word
vectors as a post-processing method such that it
does not require a large corpus to be trained. In
addition, it does not require additional number of
dimensions so it does not increase the complexity
of the model. Furthermore, we explore the charac-
teristics of the rotated word vectors.

2 Factor Rotation

We take the rotation algorithm from the ex-
ploratory factor analysis (EFA) conducted to ver-
ify the construct validity of the psychological scale
in development. For example, when validating a

scale measuring respondents’ latent factors, such
as “Engineering problem solving” and “Interest in
engineering”, items should be similar within a fac-
tor, and distinguished between factors. As shown
in Table 1, EFA projects every item into the latent
factor space as an unrotated factor loading matrix.
However, since it is unclear what the factor means,
factor rotation is applied to the matrix that pro-
duces the rotated factor loading matrix which en-
hances the interpretability of the dimensions (Os-
borne, 2015).

2.1 Rotating Factors

The rotation algorithm transforms factor loading
matrix to the simple structure which is much eas-
ier to interpret (Thurstone, 1947). It involves post-
multiplication of a p × m input matrix A by an
m × m square matrix T , to compute the rotated
matrix Λ,

Λ = AT (1)
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Latent
Factors Items

Unrotated
Factor Matrix

Rotated
Factor Matrix

Factor 1 Factor 2 Factor 1 Factor 2

Engineering
Problem
Solving

How well did you feel prepared for:
(1) Defining what the problem really is .759 -.389 .830 .153
(2) Thinking up potential solutions to the problem .784 -.392 .861 .157
(3) Detailing how to implement the solution to the problem .798 -.416 .888 .146

Interest in
Engineering

(1) I find many topics in engineering to be interesting .630 .521 .194 .793
(2) Solving engineering problems is interesting to me .660 .630 .149 .901
(3) Engineering fascinates me .669 .627 .158 .906

Table 1: An example of the factor rotation process to verify the construct validity of the psychological
scale and its intended latent factor (left) in development. Items and loadings are from (Osborne, 2015).

which minimizes the cost function f(Λ), also
known as the rotation criterion. The function min-
imizes the complexity of the matrix, to make the
rotated matrix have a few large values in a row or
a column.

Minimizing the complexity allows non-binary
values in the vector, and thus a more complex so-
lution that the perfect simple structure. This is a
more realistic solution since a solution with binary
vectors may be misleading in representing the fac-
tor of interest (Yates, 1988; Browne, 2001). More
details are described in the next subsection.

The intuition behind this approach is that induc-
ing interpretability by factor rotation reforms the
word embedding matrix to have a simple struc-
ture by linear transformation. It encourages each
word vector (row) and dimension (column) to have
a few large values, leading to more interpretable
dimensions as shown in Fig 1.

2.2 Crawford-Ferguson Rotation Family

The rotation criterion introduced in Crawford and
Ferguson is a family of complexity functions as
follows:

f(Λ) = (1− κ) Σp
i=1Σm

j=1Σm
l 6=j,l=1λ

2
ijλ

2
il

+ κ Σm
j=1Σp

i=1Σm
l 6=i,l=1λ

2
ijλ

2
lj

(2)

where λij is an element of Λ. The first term rep-
resents the row (item) complexity, and the sec-
ond term represents the column (factor) complex-
ity. The ratio between the two is adjusted by the
parameter κ (0 ≤ k ≤ 1). The criterion is a
generalized version of the widely used criteria,
the orthomax family (Harman, 1960) which in-
cludes quartimax (Carroll, 1953; Ferguson, 1954;
Neuhaus and Wrigley, 1954), varimax (Kaiser,
1958), and direct quartimin (Carroll, 1960). It
effectively reflects the simple structure as well
(Browne, 2001). In this work, we apply the fol-

Quartimax Varimax Parsimax FacParsim

κ 0
1

p

m− 1

p+m− 2
1

Table 2: Representative κ values used. As (Sass
and Schmitt, 2010), we use 4 criterion referred
to as CF-Quartimax, CF-Varimax, CF-Parsimax,
CF-FacParsim. We omit ’CF-’ for simplicity and
do not separate the name of the kappa condition
whether it is orthogonal or oblique. FacParsim
stands for factor parsimony.

lowing representative κ values in Table 2 (Sass and
Schmitt, 2010).

In addition, the constraints for the rotation ma-
trix T can be applied in general. We can catego-
rize the rotation as orthogonal and oblique based
on the constraint. Orthogonal rotation assumes the
correlation between the rotated dimensions is zero.
Hence, the matrix should be an orthogonal matrix
that with m(m− 1)/2 constraints, satisfies:

T ′T = I (3)

Oblique rotations allow the correlation between
dimension to be non-zero, resulting in m con-
straints satisfying:

diag(T−1T−1′
) = I (4)

The solution for the input matrix is computed by
using the gradient projection algorithm (Jennrich,
2001, 2002). The algorithm minimizes equation 2
while satisfying the constraints of the rotation ma-
trix.

3 Experimental Settings

We choose the Wikipedia English articles1 to train
the word vector models. The corpus contains 5.3M
articles, 83M sentences and 1,676M tokens. For

1https://dumps.wikimedia.org/enwiki/20170120/
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preprocessing, we leave only the alphanumeric to-
kens and apply lowercase to all words. Then we
remove the words with frequency less than 50, and
the size of the remaining vocabulary is 306,491.

We train skip-gram2 (Mikolov et al., 2013) and
glove3 (Pennington et al., 2014) based on the cor-
pus by using existing implementations. We set the
window size to 5 for both skip-gram and glove. We
set the number of negative samples to 5 and the
number of dimensions to 300. We use the default
values for the other hyperparameters. The size of
the resulting word vector matrix is (306,491, 300).

We compare our model with two baseline mod-
els: sparse overcomplete vector representations
(SOV) and the non-negative version of the SOV.
We set the hyperparameters of these models as
λ = .5, τ = 10−5, K = 3000 for SG, and
λ = 1.0, τ = 10−5, K = 3000 for Glove
(Faruqui et al., 2015). We excluded methods as
baselines that construct interpretable word vectors
using huge training corpora because our method
works with pre-trained vectors.

We apply four rotation algorithms for each or-
thogonal and oblique rotation, listed in Table 2.
Since we have two original word vector represen-
tations, we have 16 (4 x 2 x 2) rotated vectors in
total. We implement the algorithm through Tensor-
Flow (Abadi et al., 2016), and it is publicly avail-
able on GitHub4.

4 Interpretability

In this section, we show how the rotation of word
vectors results in improved dimension-wise inter-
pretability using the word intrusion task. (Murphy
et al., 2012; Faruqui et al., 2015; Sun et al., 2016).

4.1 Word Intrusion

Word intrusion task seeks to measure the semantic
coherence of a set of words. For example, consider
a set of words consists of (‘daughter’, ‘wife’, ‘sis-
ter’, ‘mother’, ‘son’) and add an ‘intruder’ word
(‘bigram’) to the set. Since the words except in-
truder has similar meanings to each other, we can
easily pick out the intruder to conclude that the
five words are sharing coherent meanings.

We apply this task to measure interpretability
of every word vector dimensions. If we choose
the words with the highest embedding values for

2https://radimrehurek.com/gensim
3https://nlp.stanford.edu/projects/glove
4https://github.com/SungjoonPark/factor rotation

each of the dimensions (top words for that dimen-
sion) and add an random (intruder) word and see
whether the intruder can be easily identified, then
we can conclude the dimension is semantically co-
herent. In this way, we can measure the extent of
interpretability of a dimension in vector represen-
tations by this task. Note that we pick top words
for a dimension by looking only for the value of
that dimension, ignoring values in the other di-
mensions.

Specifically, we first choose the top five words
in each dimension, and then we choose an intruder
word based on two criteria: 1) it is in the lower
half of that dimension, and 2) it is in the top 10%
in some other dimension. Also, we follow the set-
tings of the measure (k = 5, top 10%) from pre-
vious works. We see similar results when we run
experiments with larger k. (Murphy et al., 2012;
Sun et al., 2016)

In the standard word intrusion task, human eval-
uators pick out the intruder words, and the results
report the accuracy of the evaluators (Chang et al.,
2009). But this approach would be impractical to
use for all experimental conditions with 300 di-
mensions and the baselines, so we use the follow-
ing distance ratio (DR) metric as an alternative ap-
proach in (Sun et al., 2016) with slight modifica-
tions. Another advantage of our metric is that it
can be used to quantify the distance between the
intruder and the non-intruder words. We define the
overall metric as the average of the ratio between
Da

inter and Da
intra over d dimensions as

DRoverall =
1
d

Σd
a=1D

a
inter

Σd
a=1D

a
intra

(5)

where Da
intra is the average distance of every pair

among the top k words in dimension a

Da
intra =

ΣwiΣwjdist(wi, wj)
k(k − 1)

, (6)

and Da
inter is the average distance between the in-

truder word and each of the top k words in dimen-
sion a

Da
inter =

Σwidist(wi, wintruder)
k

. (7)

We define dist(wj , wk) as the cosine distance be-
tween wj and wk. We set k = 5 and repeat this
three times for each dimension a and use the aver-
age to compute DRoverall.
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SG Glove
Original 1.258 1.095
SOV 1.089 1.050
SOV (non-neg) 1.081 1.074
Quartimax (orthogonal) 1.479 1.248
Varimax (orthogonal) 1.477 1.289
Parsimax (orthogonal) 1.596 1.261
FacParsim (orthogonal) 1.300 1.102
Quartimax (oblique) 1.385 1.225
Varimax (oblique) 1.398 1.222
Parsimax (oblique) 1.386 1.174
FacParsim (oblique) 1.145 1.081

Table 3: Overall distance ratio (DRoverall) of
the original, sparse overcomplete vectors, and the
rotated (orthogonal and oblique) vector repre-
sentations. Rotated vectors show improved inter-
pretability over SOV and the original.

4.2 Results

Table 3 shows the results of word intrusion in
terms of the distance ratio metric. Overall, the re-
sults of the rotated vector representations show
improvements over SOV and the original word
vector representations. For skip-grams, orthogonal
parsimax shows the best result while for Glove, or-
thogonal varimax outperforms the others. Among
oblique rotation, varimax and quartimax show bet-
ter performance than factor parsimony.

In general, interpretability varies with different
values of κ. It increases when κ is close to zero
and decreases when κ is close to one, putting more
weight on the column complexity. Also, orthogo-
nal rotation shows better performance than oblique
rotation when κ is controlled.

4.3 Qualitative Examples

We present the top words of five dimensions
for skip-gram and rotated skip-gram (parsimax-
orthogonal) in Table 4. The dimensions shown are
randomly selected for both conditions.

Overall, the top words in each dimension of
skip-gram do not clearly show a common topic
among them. Only a few dimensions out of 300
are interpretable, such as the second row in the ta-
ble which is related to numbers. The overall dis-
tance ratio of the original vectors is slightly higher
than one.

For the rotated word vectors, the top words
show clear semantic coherence. The first row
shows words about social network services, the

Model Topwords

SG

householder, asked, indicted, there, ethnic
score, two, best, three, four
mining, footballer, population, laps, settled
density, census, fourier, editor, photos
money, toured, season, announced, banned

Rot.
SG

twitter, facebook, youtube, myspace, internet
receptors, receptor, neurons, apoptosis, neuronal
pennsylvania,ohio,maryland,philadelphia,illinois
paintings, portraits, painting, drawings, painter
that, which, when, where, but

Table 4: 5 top words for the original and the ro-
tated skip-gram word representations. The rotated
vectors show common semantic or syntactic co-
herence while the original vectors do not.

second row is about biology, the third row is about
geographical locations in the US, and the fourth is
about paintings. As the last row shows, some of
these dimensions represent syntactic features.

5 Expressive Performance

We evaluate the expressive power of word vec-
tor representations on the following tasks and re-
port Spearman’s correlation coefficient for the first
task, and accuracy for the other tasks. Table 5
shows the results.

5.1 Evaluation

We briefly describe the seven benchmark tasks:
word similarity and semantic/syntactic analogy,
and four classification tasks. For the classification
tasks, we average the word vectors in each training
sentence or phrase to use them as features. SVM
and random forest classifier are trained to predict
the target values, and hyperparameters are tuned
on the validation set.

Word Similarity (Simil.) SimLex-999 (Hill
et al., 2016) presented to evaluate the similarity
of word pairs, rather than relatedness. We compute
the cosine similarity between the given word pairs,
and report the Spearman’s correlation coefficient
as a measure of consistency between the similar-
ity and human ratings.

Semantic and Syntactic Analogies (Analg.
sem, syn). The second and third tasks are word
analogy tasks proposed by (Mikolov et al., 2013).
The semantic task includes 8,869 questions (sem)
and the syntactic task includes 10,675 questions
(syn).

Sentiment Analysis (Sent.) The first classifica-
tion task is sentiment classification on the movie
reviews (Socher et al., 2013). This dataset contains
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#
dims

Simil.
Analg.
(sem)

Analg.
(syn)

Sent. Ques.
Topics
(Sp.)

NP
brckt.

Skip-Gram 300 .374 .668 .652 .741 .920 .960 .812
SOV 3000 .390 .640 .594 .751 .910 .955 .836
SOV (non-neg) 3000 .384 .566 .480 .761 .918 .960 .829
Quartimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Varimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Parsimax (orthogonal) 300 .374 .668 .652 .744 .922 .956 .819
FacParsim (orthogonal) 300 .374 .668 .652 .744 .922 .956 .822
Quartimax (oblique) 300 .422 .673 .624 .755 .932 .955 .820
Varimax (oblique) 300 .422 .673 .624 .755 .932 .955 .820
Parsimax (oblique) 300 .421 .671 .623 .752 .932 .956 .826
FacParsim (oblique) 300 .417 .660 .620 .751 .928 .952 .820

Table 5: Evaluation results of the original skip-gram, sparse overcomplete vectors (SOV), and the rotated
(orthogonal and oblique) word vectors on various tasks. The left three columns show tasks based on
cosine similarity, and the right four columns show classification tasks using average word vectors as
features. Overall, the rotated word vectors show higher or comparable performance to that of the SOV
and the original. We observe a similar pattern in Glove as well.

6,920, 872, 1,821 sentences for training, develop-
ment, and test, respectively. The goal of this task
is to predict positive or negative sentiment of the
reviews.

Question Classification (Ques.) Next, we use
TREC dataset to classify categories of the ques-
tions (Faruqui et al., 2015). We divide the dataset
into 4,952, 500, 500 for training, development, and
test. The dataset has six types of questions includ-
ing about person, location, etc.

Topic Classification (Topics: Sp.) Next, we ob-
tain the 20 newsgroup dataset to classify Sports
(baseball vs. hockey) topics (Yogatama and Smith,
2014; Faruqui et al., 2015). The dataset consists of
958, 239, 796 for training, development, and test.

NP bracketing (NP brckt.) The final task is
classifying noun phrases in terms of bracketing
(Lazaridou et al., 2013; Faruqui et al., 2015). Each
phrase consists of three words, and the task is to
predict the correct bracketing to match the similar
words. We compute the average of NPs and per-
form ten-fold cross-validation over 2,227 phrases.
The classifiers are trained and the hyperparameters
are tuned for every fold.

5.2 Results

Word Similarity and Analogies We observe im-
proved performance of oblique rotation of word
vectors compared to the original and the SOV in
word similarity and semantic analogy tasks. In the
syntactic analogy, orthogonal rotation shows the

same performance as the original. Note that the
orthogonal rotations preserve the cosine-based ex-
pressive performances because the cosine similar-
ity between any two vectors does not change after
the orthogonal rotation.

Classification Tasks The SOV models show
slightly higher performance except the question
classification task. However, we can observe the
rotated word vectors have improved performance
over the original vectors. We observe a similar pat-
tern in Glove as well. In conclusion, the rotated
representations preserve the expressive power of
the original word vectors, and it is quite close
to that of the sparse representation with 10 times
larger dimensionality.

6 Understanding Rotated Word Vectors

In this section, we perform several experiments to
understand the characteristics of the rotated word
vector representations.

6.1 Directionality

One conventional approach to make the word vec-
tors to be more interpretable is by forcing the rep-
resentation to have non-negative values (Faruqui
et al., 2015; Luo et al., 2015). However, the dimen-
sions in the rotated vectors are not non-negative,
spread in both directions. Hence, we investigate
the relationship between the directionality (posi-
tive / negative) and interpretability.
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(A) (B) (C) (D) (E) (F) (G)
Desc
(Hi)

Asc
(Lo)

Cor
(Hi, Lo)

Cor
(abs, DR)

Cor
(abs, intra)

Cor
(abs, inter)

DR
(abs)

Quartimax (orthogonal) 1.479 1.507 -.452*** .843*** -.835*** .204*** 2.045
Varimax (orthogonal) 1.477 1.478 -.431*** .847*** -.840*** .205*** 2.004
Parsimax (orthogonal) 1.596 1.499 -.729*** .845*** -.836*** .216*** 2.442
FacParsim (orthogonal) 1.300 1.309 -.114* .536*** -.549*** .056 1.384
Quartimax (oblique) 1.385 1.464 -.692*** .879*** -.880*** .276*** 1.997
Varimax (oblique) 1.398 1.465 -.684*** .879*** -.878*** .204*** 2.022
Parsimax (oblique) 1.386 1.463 -.696*** .886*** -.883*** .279*** 1.993
FacParsim (oblique) 1.145 1.152 .006 .382*** -.369*** .037 1.171

Table 6: Overall distance ratio based on the top words extracted from the values in word vectors sorted
by descending order (Hi) and ascending order (Lo). Cor(Hi, Lo) is correlation between two distance
ratios based on both directions. Next three columns present correlation between the absolute word vector
values of the top words and distance ratios. The last columns shows selective distance ratio measure. The
results implies generally both direction is interpretable, one direction is more interpretable than the other
within a dimension, and larger absolute value in a dimension means higher interpretability. (* p < .05,
** p < .01, *** p < .001)

Overall Interpretability of both directions
The first two columns (A) and (B) in table 6 show
the overall distance ratio computed over the top
words extracted by descending order and ascend-
ing order, respectively. In other words, (A) refers
to the top words having the highest positive values
in each dimension, while (B) uses the lowest neg-
ative values. Note that we used descending order
in word intrusion task in the previous section.

Interestingly, the overall distance ratios in both
directions are comparable to each other. On av-
erage, both sides of a dimension are more inter-
pretable than the unrotated vector representations
except the oblique factor parsimony rotation.

Interpretability of both directions within a
dimension Next, we compare the interpretability
of both directions within a dimension. We first de-
fine the distance ratio of an individual dimension
a as follows:

DRa =
Da

inter

Da
intra

(8)

We compute the ratio by using top words ex-
tracted from positive and negative directions for
every dimension, and compute Spearman’s corre-
lation of the distance ratio pairs. Table 6 column
(C) shows the results. All of the rotation condi-
tions except the oblique factor parsimony shows
significant (p < .05) negative correlation, mean-
ing that both directions are hard to be highly inter-
pretable within a dimension simultaneously.

Dir. Topwords
+ depends, depend, rely, focused, focuses
- on, upon, onto, again, until
+ years, month, weeks, days, decades
- many, several, ago, numerous, various
+ that, which, when, where, but
- consists, includes, provides, contains, serves
+ criticizes, excelled, tended, much, criticized
- october, july, april, september, june
+ were, hoc, recently, their, had
- largest, oldest, longest, biggest, tallest

Table 7: Examples of top words in both directions.
The words are extracted from a part of the orthog-
onal parsimax rotated skip-gram word vectors.

Case Study We present the top words in both
directions for some dimensions of orthogonal par-
simax rotated word vectors. As shown in table 7,
some dimensions show a relationship between the
opposite directions that they consist of consecu-
tively used words, such as ”rely on”, ”depends
upon”, ”which includes”, ”that contains”, ”many
years”, ”weeks ago”. However, other dimensions
show that one direction is relatively more inter-
pretable than the other direction.

6.2 Selecting the Direction

Next, it is natural to question whether the larger
absolute value in word vectors means higher inter-
pretability, regardless of its directionality. We ver-
ify the relation between them by investigating the
size of the absolute value in a dimension and the
individual distance ratios.
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Relation to distance ratio Table 6 column (D)
presents Spearman’s correlation between individ-
ual distance ratio and the mean absolute vector
value of top words for that dimension. The fifth
column (E) also shows the correlation between the
intra-distance among the top words and the mean
absolute value, and the sixth column (F) is the rela-
tionship of the inter-distance among the top words
and the intruder and the mean absolute value.

Correlation coefficients show that the larger
mean absolute value means higher interpretability
for that dimension. In detail, there exists tenden-
cies that larger mean absolute value of dimension
reduces the intra-distances among the top words
while increasing the inter-distances among the top
words and the intruder.

Overall, we summarize our findings as follows:
1) generally both directions are somewhat inter-
pretable, 2) one direction is usually more inter-
pretable than the other within a dimension, and
3) a larger absolute value in a dimension means
higher interpretability of the dimension.

Selective Distance Ratio We can select a more
interpretable direction for each dimension through
inspecting the mean absolute value of the top
words in both directions. If we choose a direction
that has a larger mean absolute value among the
top words, each dimension should be easier to in-
terpret.

Table 6 column (G) presents this distance ratio
computed on the rotated vectors, resulting in in-
creased distance ratio values. We name this ratio
as the overall selective distance ratio. This mea-
sure could be effectively used when vector repre-
sentation is interpretable in both directions.

6.3 Effect of κ

We explore the effect on performance of the ratio
between the row and the column complexity of the
rotation criteria. As shown in section 4, choosing
an appropriate κ is important for interpretability.

We set the κ value from zero to one and the
numbers divided on a log scale. We run the word
similarity task and the word intrusion to evaluate
the performance. We present Spearman’s correla-
tion and the selective overall distance ratio.

Figure 2 shows that the performance of the sim-
ilarity task tends not to change regardless of κ,
however, the selective distance ratio starts to de-
crease when κ > .01. Considering the ratio be-
tween the number of rows and columns of the
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Figure 2: Spearman’s correlation of the word simi-
larity and the selective distance ratio of word intru-
sion changes over κs, computed over oblique ro-
tated (a) skip-gram and (b) glove vectors. Dashed
line is original performance for each task. Word
similarity does not change regardless of κs, while
the distance ratio falls when κ is larger than 1e-4.

word vector matrix, giving too much weight to
the column complexity results in degraded inter-
pretability.

In our experiments, κ values of the quartimax,
varimax, and parsimax rotation are computed as
0, 3e-06, 1e-04 respectively. Based on the results,
our selection of kappas have shown interpretabil-
ity improvement effectively, compared to factor
parsimony (κ = 1). We observe these tendencies
in orthogonal rotations as well.

6.4 Effect of the Number of Dimensions

To investigate the effect of the number of di-
mensions to interpretability of dimensions, we
also measure the overall distance ratio (DRoverall)
on 50, 100 and 200 dimensions of unrotated
skip-gram and parsimax (orthogonal) and varimax
(oblique) rotated word vectors.

Figure 3 shows the results. For all settings, the
rotated vectors orthogonal (parsimax) and oblique
(varimax) show higher DRoverall score than the
original skip-gram vectors.
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Figure 3: Overall distance ratio (DRoverall) over
word vector dimensions. The rotated vectors
(parsimax-orthogonal and varimax-oblique) show
higherDRoverall score than the original skip-gram
vectors.

7 Related Work

Since distributed representations play an impor-
tant role in various NLP tasks, they are applied to
semantics (Herbelot and Vecchi, 2015; Qiu et al.,
2015; Woodsend and Lapata, 2015), with incor-
porating external information to them (Tian et al.,
2016; Nguyen et al., 2016). In addition, finding in-
terpretable regularities from the representations is
often conducted through non-negative and sparse
coding (Murphy et al., 2012; Faruqui et al., 2015;
Luo et al., 2015; Kober et al., 2016), and regular-
ization (Sun et al., 2016). Instead, our approach is
using rotation, showing better results in terms of
interpretability.

Meanwhile, various rotation methods are pro-
posed such as CF-family (Crawford and Fergu-
son, 1970), Infomax (McKeon, 1968), Minimum
Entropy (Jennrich, 2006), Geomin (Yates, 1988),
procrustues (Hurley and Cattell, 1962), and pro-
max rotation criteria. (Hendrickson and White,
1964). Incorporating prior knowledge about ro-
tated matrix is possible through target rotations
(Harman, 1960; Browne, 1972a,b) are proposed
as well. There are various ways to rotated dimen-
sions, we select a CF-family that covers frequently
used rotation methods in practice.

8 Conclusion and Discussions

In this paper, we applied the rotation algorithm
to improve interpretability of distributed represen-
tation of words. We applied quartimax, varimax,
parsimax and factor parsimony rotation by using
the Crawford-Ferguson rotation criteria, then we
constructed the rotated word vector representa-

tions. We evaluated the expressive performance
and interpretability for the rotated word vectors
by word similarity, analogy, classification, and
word intrusion task. The results show that the ro-
tated word vector representations are highly inter-
pretable with preserving expressive performance.

In addition, we explored the characteristics of
the rotated word vectors: we observed 1) increased
interpretability in both directions and 2) the posi-
tive relation between absolute value of the dimen-
sion and interpretability. Based on these observa-
tions, we proposed the selective distance ratio to
measure and maximize the interpretability when
the vector representation has interpretable mean-
ing in both directions. We expect that the rotation
algorithm can be easily applied to other word vec-
tor representations.

Our results imply that a rotated word vector can
be used to understand what the word vectors are
comprised of. Since a lexicon can be decomposed
into morphemes, a word can have multiple mean-
ing as a polysemy, contain information of syntac-
tic structure in its meaning (Carpenter et al., 1995;
MacDonald et al., 1994; Trueswell et al., 1994), or
it can be divided into a variety of sub-components.
Hence, we can investigate the lexical semantics
of words by exploring the dimensions for which
a word has higher values.

In addition, there are practical implications of
interpreting the dimensions as well. Based on the
meanings, we can remove irrelevant dimensions
for a specific task of interest, in order to secure
more efficient storage of the vectors and decrease
the complexity of downstream NLP models. We
will examine the issues in future work.

We plan to explore following issues. First, we
apply target rotation (Harman, 1960; Browne,
1972a,b) to incorporate prior knowledge when
constructing the rotated word vector representa-
tions. Second, we will investigate the interpretabil-
ity of hidden structures of neural networks for
NLP tasks such as (Yang et al., 2016; Li et al.,
2016), when the rotated word vectors are used as
an embedding layer.
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Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: mapping distributional to model-
theoretic semantic spaces. In Proceedings of
EMNLP.

Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

John R Hurley and Raymond B Cattell. 1962. The pro-
crustes program: Producing direct rotation to test a
hypothesized factor structure. Systems Research and
Behavioral Science, 7(2):258–262.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection
using recursive neural networks. In Proceedings of
ACL.

Robert I Jennrich. 2001. A simple general procedure
for orthogonal rotation. Psychometrika, 66(2):289–
306.

Robert I Jennrich. 2002. A simple general method for
oblique rotation. Psychometrika, 67(1):7–19.

Robert I Jennrich. 2006. Rotation to simple loadings
using component loss functions: The oblique case.
Psychometrika, 71(1):173–191.

Henry F Kaiser. 1958. The varimax criterion for an-
alytic rotation in factor analysis. Psychometrika,
23(3):187–200.

Thomas Kober, Julie Weeds, Jeremy Reffin, and David
Weir. 2016. Improving sparse word representations
with distributional inference for semantic composi-
tion. In Proceedings of EMNLP.

Angeliki Lazaridou, Eva Maria Vecchi, and Marco Ba-
roni. 2013. Fish transporters and miracle homes:
How compositional distributional semantics can
help np parsing. In Proceedings of EMNLP.

Shaohua Li, Tat-Seng Chua, Jun Zhu, and Chunyan
Miao. 2016. Generative topic embedding: a contin-
uous representation of documents. In Proceedings
of ACL.

Hongyin Luo, Zhiyuan Liu, Huan-Bo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In Proceedings of
EMNLP.

Maryellen C MacDonald, Neal J Pearlmutter, and
Mark S Seidenberg. 1994. The lexical nature of syn-
tactic ambiguity resolution. Psychological review,
101(4):676.

JJ McKeon. 1968. Rotation for maximum association
between factors and tests. Unpublished manuscript,
Biometric Laboratory, George Washington Univer-
sity.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS.

410



Brian Murphy, Partha Pratim Talukdar, and Tom
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In Proceddings of COLING.

Jack O Neuhaus and Charles Wrigley. 1954. The quar-
timax method. British Journal of Statistical Psy-
chology, 7(2):81–91.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of ACL.

Jason W Osborne. 2015. What is rotating in ex-
ploratory factor analysis. Practical Assessment, Re-
search & Evaluation, 20(2):2.

Jason W Osborne and Anna B Costello. 2009. Best
practices in exploratory factor analysis: Four recom-
mendations for getting the most from your analysis.
Pan-Pacific Management Review, 12(2):131–146.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP.

Likun Qiu, Yue Zhang, and Yanan Lu. 2015. Syntactic
dependencies and distributed word representations
for chinese analogy detection and mining. In Pro-
ceedings of EMNLP.

Daniel A Sass and Thomas A Schmitt. 2010. A com-
parative investigation of rotation criteria within ex-
ploratory factor analysis. Multivariate Behavioral
Research, 45(1):73–103.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using l1 reg-
ularized online learning. In Proceedings of IJCAI.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of ACL.

Louis Leon Thurstone. 1947. Multiple factor analysis.
University of Chicago Press.

Ran Tian, Naoaki Okazaki, and Kentaro Inui. 2016.
Learning semantically and additively compositional
distributional representations. In Proceedings of
ACL.

John C Trueswell, Michael K Tanenhaus, and Susan M
Garnsey. 1994. Semantic influences on parsing: Use
of thematic role information in syntactic ambigu-
ity resolution. Journal of memory and language,
33(3):285.

Kristian Woodsend and Mirella Lapata. 2015. Dis-
tributed representations for unsupervised semantic
role labeling. In Proceedings of EMNLP.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT.

Allen Yates. 1988. Multivariate exploratory data anal-
ysis: A perspective on exploratory factor analysis.
Suny Press.

Dani Yogatama and Noah A Smith. 2014. Linguistic
structured sparsity in text categorization. In Pro-
ceedings of ACL.

411


