Efficient Attention using a Fixed-Size Memory Representation

Denny Britz* and Melody Y. Guan*and Minh-Thang Luong
Google Brain
dennybritz,melodyguan, thangluongl@google.com

Abstract

The standard content-based attention mecha-
nism typically used in sequence-to-sequence
models is computationally expensive as it
requires the comparison of large encoder
and decoder states at each time step. In this
work, we propose an alternative attention
mechanism based on a fixed size memory
representation that is more efficient. Our
technique predicts a compact set of K
attention contexts during encoding and lets
the decoder compute an efficient lookup
that does not need to consult the memory.
‘We show that our approach performs on-par
with the standard attention mechanism while
yielding inference speedups of 20% for
real-world translation tasks and more for
tasks with longer sequences. By visualizing
attention scores we demonstrate that our
models learn distinct, meaningful alignments.

1 Introduction

Sequence-to-sequence models (Sutskever et al.,
2014; Cho et al., 2014) have achieved state of the
art results across a wide variety of tasks, including
Neural Machine Translation (NMT) (Bahdanau et al.,
2014; Wu et al., 2016), text summarization (Rush
et al., 2015; Nallapati et al., 2016), speech recognition
(Chan et al., 2015; Chorowski and Jaitly, 2016), image
captioning (Xu et al., 2015), and conversational
modeling (Vinyals and Le, 2015; Li et al., 2015).
The most popular approaches are based on an
encoder-decoder architecture consisting of two
recurrent neural networks (RNNs) and an attention
mechanism that aligns target to source tokens (Bah-
danau et al., 2014; Luong et al., 2015). The typical
attention mechanism used in these architectures
computes a new attention context at each decoding

“Equal Contribution. Author order alphabetical.

392

step based on the current state of the decoder.
Intuitively, this corresponds to looking at the source
sequence after the output of every single target token.
Inspired by how humans process sentences, we
believe it may be unnecessary to look back at the
entire original source sequence at each step.! We thus
propose an alternative attention mechanism (section 3)
that leads to smaller computational time complexity.
Our method predicts K attention context vectors while
reading the source, and learns to use a weighted av-
erage of these vectors at each step of decoding. Thus,
we avoid looking back at the source sequence once
it has been encoded. We show (section 4) that this
speeds up inference while performing on-par with the
standard mechanism on both toy and real-world WMT
translation datasets. We also show that our mecha-
nism leads to larger speedups as sequences get longer.
Finally, by visualizing the attention scores (section
5), we verify that the proposed technique learns mean-
ingful alignments, and that different attention context
vectors specialize on different parts of the source.

2 Background
2.1 Sequence-to-Sequence Model with Attention

Our models are based on an encoder-decoder archi-
tecture with attention mechanism (Bahdanau et al.,
2014; Luong et al., 2015). An encoder function takes
as input a sequence of source tokens x = (x1,...,Z,)
and produces a sequence of states s=(s1,...,5,,) .The
decoder is an RNN that predicts the probability of a
target sequence y = (y1,...,yr | s). The probability of
each target token y; € {1,...,|V'|} is predicted based
on the recurrent state in the decoder RNN, £;, the pre-
vious words, y;, and a context vector ¢;. The context
vector ¢;, also referred to as the attention vector, is
calculated as a weighted average of the source states.

'Eye-tracking and keystroke logging data from human
translators show that translators generally do not reread previously

translated source text words when producing target text (Carl
etal., 2011).

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 392—400
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics

ci= Zoéij 85 (1)
J
a; =softmax(fyu (hi,s)) 2

Here, fuu(hi, s) is an attention function that
calculates an unnormalized alignment score between
the encoder state s; and the decoder state h;. Variants
of fu used in Bahdanau et al. (2014) and Luong
et al. (2015) are:

vl tanh(Wy[hi,s;]), Bahdanau

a hi) i) =
Jat S]) {hzTWaSj

Luong

where W, and v, are model parameters learned to
predict alignment. Let |S| and |7'| denote the lengths
of the source and target sequences respectively and D
denoate the state size of the encoder and decoder RNN.
Such content-based attention mechanisms result in in-
ference times of O(D?|S||T'|)?, as each context vector
depends on the current decoder state /; and all encoder
states, and requires an O(D?) matrix multiplication.

The decoder outputs a distribution over a
vocabulary of fixed-size |V|:

P(y;ly<ix)=softmax(W|s;;c;]+b) (3)

The model is trained end-to-end by minimizing the
negative log likelihood of the target words using
stochastic gradient descent.

3 Memory-Based Attention Model

Our proposed model is shown in Figure 1. During en-
coding, we compute an attention matrix C' € RE*D,
where K is the number of attention vectors and a
hyperparameter of our method, and D is the dimen-
sionality of the top-most encoder state. This matrix
is computed by predicting a score vector oy € R
at each encoding time step t. C is then a linear
combination of the encoder states, weighted by «:

S|

Cr=> st “)
t=0

oy =softmax(W,s;), 5)

where W, is a parameter matrix in R¥*P.

The computational time complexity for this
operation is O(KD|S|). One can think of C as
compact fixed-length memory that the decoder

% An exception is the dot-attention from Luong et al. (2015),
which is O(D|S||T|), which we discuss further in Section 3.

will perform attention over. In contrast, standard
approaches use a variable-length set of encoder states
for attention. At each decoding step, we similarly
predict K scores 3€ R The final attention context
c is a linear combination of the rows in C' weighted
by the scores. Intuitively, each decoder step predicts
how important each of the K attention vectors is.

K

c=Y BC; ©6)
i=0

B =softmax(Wgsh) ™

Here, h is the current state of the decoder, and W3 is a
learned parameter matrix. Note that we do not access
the encoder states at each decoder step. We simply
take a linear combination of the attention matrix C
pre-computed during encoding - a much cheaper op-
eration that is independent of the length of the source
sequence. The time complexity of this computation
is O(K D|T|) as multiplication with the K attention
matrices needs to happen at each decoding step.
Summing O(KD|S|) from encoding and
O(KDIT|) from decoding, we have a total linear
computational complexity of O(KD(|S| + |T)).
As D is typically very large, 512 or 1024 units in
most applications, we expect our model to be faster
than the standard attention mechanism running in
O(D?|S||T|). For long sequences (as in summariza-
tion, where —S— is large), we also expect our model
to be faster than the cheaper dot-based attention mech-
anism, which needs O(D|S||T|) computation time
and requires encoder and decoder states sizes to match.
We also experimented with using a sigmoid
function instead of the softmax to score the encoder
and decoder attention scores, resulting in 4 possible
combinations. We call this choice the scoring function.
A softmax scoring function calculates normalized
scores, while the sigmoid scoring function results in
unnormalized scores that can be understood as gates.

3.1 Model Interpretations

Our memory-based attention model can be under-
stood intuitively in two ways. We can interpret it as
“predicting” the set of attention contexts produced
by a standard attention mechanism during encoding.
To see this, assume we set K ~|T'|. In this case, we
predict all |T'| attention contexts during the encoding
stage and learn to choose the right one during
decoding. This is cheaper than computing contexts
one-by-one based on the decoder and encoder content.
In fact, we could enforce this objective by first training

393

a) Regular Encoding

seggpan:

| ® 52 iE H END |
Encoder

Decoder

c) Our Encoding

Decoder

Encoder

b) Regular Decoding

d) Our Decoding

1 LOVE
Yt

—

L

hy

S e e el
|ﬁ B iF # END | START | |
Encoder Decoder

LOVE

(28 2 & %
Encoder

END ‘ START | |
Decoder

Figure 1: Memory Attention model architecture. K attention vectors are predicted during encoding, and a
linear combination is chosen during decoding. In our example, K =3.

a regular attention model and adding a regularization
term to force the memory matrix C' to be close to
the 1" x D vectors computed by the standard attention.
We leave it to future work to explore such an objective.

Alternatively, we can interpret our mechanism as
first predicting a compact K X D memory matrix,
a representation of the source sequence, and then
performing location-based attention on the memory
by picking which row of the matrix to attend to.
Standard location-based attention mechanism, by
contrast, predicts a location in the source sequence
to focus on (Luong et al., 2015; Xu et al., 2015).

3.2 Position Encodings (PE)

In the above formulation, the predictions of attention
contexts are symmetric. That is, C; is not forced to
be different from C)j.;. While we would hope for the
model to learn to generate distinct attention contexts,
we now present an extension that pushes the model
into this direction. We add position encodings to the
score matrix that forces the first few context vector
C1,C,... to focus on the beginning of the sequence
and the last few vectors ...,C'x_1,Ck to focus on the
end (thereby encouraging in-between vectors to focus
on the middle).

Explicitly, we multiply the score vector o with

394

position encodings I, € RX:

S|

CPE=Y "aPh, (8)
s=0

o’ = softmax(Wphsoly))

To obtain [, we first calculate a constant matrix L
where we define each element as

Lks:(l—k/K)(l—s/S)—i—%g, (10)
adapting a formula from (Sukhbaatar et al., 2015).
Here, k € {1,2,..., K} is the context vector index
and S is the maximum sequence length across all
source sequences. The manifold is shown graphically
in Figure 2. We can see that earlier encoder states are
upweighted in the first context vectors, and later states
are upweighted in later vectors. The symmetry of the
manifold and its stationary point having value 0.5 both
follow from Eq. 10. The elements of the matrix that
fall beyond the sequence lengths are then masked out
and the remaining elements are renormalized across
the timestep dimension. This results in the jagged

array of position encodings {lxs}.

IOg

Figure 2: Surface for the position encodings.

4 Experiments

4.1 Toy Copying Experiment

Due to the reduction of computational time complex-
ity we expect our method to yield performance gains
especially for longer sequences and tasks where the
source can be compactly represented in a fixed-size
memory matrix. To investigate the trade-off between
speed and performance, we compare our technique
to standard models with and without attention on a
Sequence Copy Task of varying length like in Graves
et al. (2014). We generated 4 training datasets of
100,000 examples and a validation dataset of 1,000 ex-
amples. The vocabulary size was 20. For each dataset,
the sequences had lengths randomly chosen between 0
to L, for L€ {10,50,100,200} unique to each dataset.

4.1.1 Training Setup

All models are implemented using TensorFlow
based on the seq2seq implementation of Britz et al.
(2017)* and trained on a single machine with a
Nvidia K40m GPU. We use a 2-layer 256-unit, a
bidirectional LSTM (Hochreiter and Schmidhuber,
1997) encoder, a 2-layer 256-unit LSTM decoder,
and 256-dimensional embeddings. For the attention
baseline, we use the standard parametrized attention
(Bahdanau et al., 2014). Dropout of 0.2 (0.8 keep
probability) is applied to the input of each cell and
we optimize using Adam (Kingma and Ba, 2014) at
a learning rate of 0.0001 and batch size 128. We train
for at most 200,000 steps (see Figure 3 for sample
learning curves). BLEU scores are calculated on
tokenized data using the multi-bleu.perl script in
Moses.* We decode using beam search with a beam

3http://github.com/google/seq2seq
*http://github.com/moses-smt/mosesdecoder

395

Length | Model | BLEU | Time (s)
20 No Att 99.93 2.03
K=1 99.52 2.12
K=4 99.56 2.25
K=16 | 99.56 2.21
K=32| 99.57 2.59
K=64 | 99.75 2.86
Att 99.98 2.86
50 No Att 97.37 3.90
K=1 98.86 433
K=4 99.95 448
K=16 | 99.96 4.58
K=32| 99.96 5.35
K=64 | 9997 5.84
Att 99.94 6.46
100 No Att 73.99 6.33
K=1 87.42 7.32
K=4 99.81 7.47
K=16 | 99.97 7.50
K=32| 99.99 7.65
K =64 | 100.00 7.77
Att 100.00 11.00
200 No Att 32.64 9.10
K=1 4422 9.30
K=4 98.54 9.49
K=16 | 99.98 9.53
K=32 | 100.00 9.59
K =64 | 100.00 9.78
Att 100.00 14.28

Table 1: BLEU scores and computation times with
varying K and sequence length compared to baseline
models with and without attention.

size of 10 (Wiseman and Rush, 2016).

4.1.2 Results

Table 1 shows the BLEU scores of our model on differ-
ent sequence lengths while varying K. This is a study
of the trade-off between computational time and rep-
resentational power. A large K allows us to compute
complex source representations, while a K of 1 limits
the source representation to a single vector. We can
see that performance consistently increases with K up
to a point that depends on the data length, with longer
sequences requiring more complex representations.
The results with and without position encodings are
almost identical on the toy data. Our technique learns
to fit the data as well as the standard attention mecha-
nism despite having less representational power. Both
beat the non-attention baseline by a significant margin.

K=1
— K=4
K=16
K=32
— K=64
attention
—— no attention

log perplexity
= N
wn =)

=
=}

©
W

o
<)

o
v
o

100 150 200
steps (k)

sigmoid/sigmoid
—— sigmoid/softmax
softmax/sigmoid
—— softmax/softmax

log perplexity

A - - .
100 150 200
steps (k)

(a) Comparison of varying K for copying sequences of length (b) Comparison of sigmoid and softmax functions for choosing the

200 on evaluation data, showing that large K leads to faster

encoder and decoder attention scores on evaluation data, showing

convergence and small K performs similarly to the non-attentional that choice of gating/normalization matters.

baseline.

Figure 3: Training Curves for the Toy Copy task

That we are able to represent the source sequence
with a fixed size matrix with fewer than |S| rows
suggests that traditional attention mechanisms
may be representing the source with redundancies
and wasting computational resources. This makes
intuitive sense for the toy task, which should require
a relatively simple representation.

The last column shows that our technique signif-
icantly speeds up the inference process. The gap in
inference speed increases as sequences become longer.
We measured inference time on the full validation
set of 1,000 examples, not including data loading or
model construction times.

Figure 3a shows the learning curves for sequence
length 200. We see that K =1 is unable to fit the data
distribution, while K € {32,64} fits the data almost as
quickly as the attention-based model. Figure 3b shows
the effect of varying the encoder and decoder scoring
functions between softmax and sigmoid. All combina-
tions manage to fit the data, but some converge faster
than others. In section 5 we show that distinct align-
ments are learned by different function combinations.

4.2 Machine Translation

Next, we explore if the memory-based attention
mechanism is able to fit complex real-world datasets.
For this purpose we use 4 large machine translation
datasets of WMT’17° on the following language
pairs: English-Czech (en-cs, 52M examples), English-
German (en-de, 5.9M examples), English-Finish
(en-fi, 2.6M examples), and English-Turkish (en-tr,
207,373 examples). We used the newly available pre-

Sstatmt.org/wmt17/translation-task html

processed datasets for the WMT’17 task.® Note that
our scores may not be directly comparable to other
work that performs their own data pre-processing. We
learn shared vocabularies of 16,000 subword units
using the BPE algorithm (Sennrich et al., 2016).
We use newstest2015 as a validation set, and report
BLEU on newstest2016.

4.2.1 Training Setup

We use a similar setup to the Toy Copy task, but
use 512 RNN and embedding units, train using 8
distributed workers with 1 GPU each, and train for
at most 1M steps. We save checkpoints every 30
minutes during training, and choose the best based
on the validation BLEU score.

4.2.2 Results

Table 2 compares our approach with and without
position encodings, and with varying values for
hyperparameter K, to baseline models with regular
attention mechanism. Learning curves are shown in
Figure 4. We see that our memory attention model
with sufficiently high K performs on-par with, or
slightly better, than the attention-based baseline model
despite its simpler nature. Across the board, models
with K = 64 performed better than corresponding
models with K = 32, suggesting that using a larger
number of attention vectors can capture a richer under-
standing of source sequences. Position encodings also
seem to consistently improve model performance.
Table 3 shows that our model results in faster de-
coding time even on a complex dataset with a large

®http://data.statmt.org/wmt17/translation-task/preprocessed

396

—— attention
—— K=32 sigmoid/softmax
—— K=64 sigmoid/softmax

log perplexity

0 200 400 600 800
steps (k)

1000

(a) Training curves for en-fi

Figure 4: Comparing training curves for en-fi and en-tr with sigmoid encoder scoring and softmax decoder
scoring and position encoding. Note that en-tr curves converged very quickly.

log perplexity

—— attention
—— K=32 sigmoid/softmax
—— K=64 sigmoid/softmax

50

100
steps (k)

150 200

(b) Training curves for en-tr

Model Dataset | K | en-cs | en-de | en-fi | en-tr
Memory Attention Test 32 | 19.37 | 28.82 | 15.87 -
64 | 19.65 | 29.53 | 16.49 -

Valid 32 1 19.20 | 26.20 | 1590 | 12.94

64 | 19.63 | 26.39 | 16.35 | 13.06
Memory Attention + PE | Test 32| 1945 | 29.53 | 15.86 -
64 | 20.36 | 30.61 | 17.03 -

Valid 32 1 19.35 | 26.22 | 16.31 | 12.97

64 | 19.73 | 27.31 | 1691 | 13.25
Attention Test - 19.19 | 30.99 | 17.34 -

Valid - 18.61 | 28.13 | 17.16 | 13.76

Table 2: BLEU scores on WMT’ 17 translation datasets from the memory attention models and regular attention
baselines. We picked the best out of the four scoring function combinations on the validation set. Note that
en-tr does not have an official test set. Best test scores on each dataset are highlighted.

Model Decoding Time (s)
K=32 26.85
K=64 27.13
Attention 33.28

Table 3: Decoding time, averaged across 10 runs, for
the en-de validation set (2169 examples) with average
sequence length of 35. Results are similar for both
PE and non-PE models.

vocabulary of 16k. We measured decoding time over
the full validation set, not including time used for
model setup and data loading, averaged across 10 runs.
The average sequence length for examples in this data
was 35, and we expect more significant speedups
for tasks with longer sequences, as suggested by our
experiments on toy data. Note that in our NMT ex-

397

amples/experiments, K ~T', but we obtain computa-
tional savings from the fact that K < D. We may be
able to set K < T, as in toy copying, and still get very
good performance in other tasks. For instance, in sum-
marization the source is complex but the representa-
tion of the source required to perform the task is ”’sim-
ple” (i.e. all that is needed to generate the abstract).

Figure 5 shows the effect of using sigmoid and
softmax function in the encoders and decoders. We
found that softmax/softmax consistently performs
badly, while all other combinations perform about
equally well. We report results for the best combi-
nation only (as chosen on the validation set), but we
found this choice to only make a minor difference.

K=64 sigmoid/sigmoid
K=64 sigmoid/softmax
K=64 softmax/sigmoid
8 K=64 softmax/softmax

log perplexity

0 200 400 600 800 1000
steps (k)
Figure 5: Comparing training curves for en-fi for
different encoder/decoder scoring functions for our
models at K =64.

5 Visualizing Attention

A useful property of the standard attention mechanism
is that it produces meaningful alignment between
source and target sequences. Often, the attention
mechanism learns to progressively focus on the
next source token as it decodes the target. These
visualizations can be an important tool in debugging
and evaluating seq2seq models and are often used for
unknown token replacement.

This raises the question of whether or not our
proposed memory attention mechanism also learns
to generate meaningful alignments. Due to limiting
the number of attention contexts to a number that
is generally less than the sequence length, it is not
immediately obvious what each context would learn
to focus on. Our hope was that the model would learn
to focus on multiple alignments at the same time,
within the same attention vector. For example, if the
source sequence is of length 40 and we have K =10
attention contexts, we would hope that C; roughly fo-
cuses on tokens 1 to 4, Cs on tokens 5 to 8, and so on.
Figures 6 and 7 show that this is indeed the case. To
generate this visualization we multiply the attention
scores « and 3 from the encoder and decoder. Figure
8 shows a sample translation task visualization.

Figure 6 suggests that our model learns distinct
ways to use its memory depending on the encoder and
decoder functions. Interestingly, using softmax nor-
malization results in attention maps typical of those de-
rived from using standard attention, i.e. a relatively lin-
ear mapping between source and target tokens. Mean-
while, using sigmoid gating results in what seems to
be a distributed representation of the source sequences
across encoder time steps, with multiple contiguous at-
tention contexts being accessed at each decoding step.

398

6 Related Work

Our contributions build on previous work in making
seq2seq models more computationally efficient.
Luong et al. (2015) introduce various attention mech-
anisms that are computationally simpler and perform
as well or better than the original one presented in
Bahdanau et al. (2014). However, these typically still
require O(D?) computation complexity, or lack the
flexibility to look at the full source sequence. Efficient
location-based attention (Xu et al., 2015) has also
been explored in the image recognition domain.

Wau et al. (2016) presents several enhancements to
the standard seq2seq architecture that allow more effi-
cient computation on GPUs, such as only attending on
the bottom layer. Kalchbrenner et al. (2016) propose
a linear time architecture based on stacked convolu-
tional neural networks. Gehring et al. (2016) also
propose the use of convolutional encoders to speed up
NMT. de Brébisson and Vincent (2016) propose a lin-
ear attention mechanism based on covariance matrices
applied to information retrieval. Raffel et al. (2017)
enable online linear time attention calculation by en-
forcing that the alignment between input and output
sequence elements be monotonic. Previously, mono-
tonic attention was proposed for morphological inflec-
tion generation by Aharoni and Goldberg (2016).

7 Conclusion

In this work, we propose a novel memory-based
attention mechanism that results in a linear compu-
tational time of O(K D(|S|+|T)) during decoding
in seq2seq models. Through a series of experiments,
we demonstrate that our technique leads to consistent
inference speedups as sequences get longer, and
can fit complex data distributions such as those
found in Neural Machine Translation. We show
that our attention mechanism learns meaningful
alignments despite being constrained to a fixed
representation after encoding. We encourage future
work that explores the optimal values of K for
various language tasks and examines whether or not
it is possible to predict K based on the task at hand.
We also encourage evaluating our models on other
tasks that must deal with long sequences but have
compact representations, such as summarization and
question-answering, and further exploration of their
effect on memory and training speed.

c1” c2 " g c3 ca “ | c1” i o c3 | c4
-) ‘
cs c6 c7 cs | cs | cé c7 cs
c9 c10 (il c12 | c9 | cuw | cu c12
C13" o= c14” c15” C16 N c13” l c14” ' c15” C16
(a) softmax normalization functions, no position encoding (b) sigmoid normalization functions, no position encoding

Figure 6: Attention scores at each step of decoding for on a sample from the sequence length 100 toy copy
dataset. Individual attention vectors are highlighted in blue. (y-axis: source tokens; z-axis: target tokens)

10 e K=0 10
K=1
e K=2
8 8
° K=3
6 6
4 4
2 2
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 7: Attention scores at each step of decoding for ' =4 on a sample with sequence length 11. The
subfigure on the left color codes each individual attention vector. (y-axis: source; x-axis: target)

a 2 = c3 c4 cs c6 cN = cs
50
-
a w0
o c1o c1 c12 c13 c14 ;. cls c16 “
- rid .
. = 20
o T
c17 c18 c19 c20 (o3 €22 & c23 c24 1
- . QD 10 20 30 40 0
~
= i
25 g c26 c27 c28 c29 c30 c31 c32

Figure 8: Attention scores at each step of decoding for en-de WMT translation task using model with sigmoid
scoring functions and K = 32. The left subfigure displays each individual attention vector separately while
the right subfigure displays the full combined attention. (y-axis: source; x-axis: target)

399

References

Roee Aharoni and Yoav Goldberg. 2016. Mor-
phological inflection generation with hard
monotonic attention. CoRR abs/1611.01487.

http://arxiv.org/abs/1611.01487.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR abs/1409.0473.
http://arxiv.org/abs/1409.0473.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive Exploration of Neural Machine
Translation Architectures. CoRR abs/1703.03906.
http://arxiv.org/abs/1703.03906.

Michael Carl, Barbara Dragsted, and Arnt Lykke Jakob-
sen. 2011. A taxonomy of human translation styles.
Translation Journal 16(2).

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2015. Listen, attend and spell. CoRR
abs/1508.01211. http://arxiv.org/abs/1508.01211.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In
EMNLP.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration in
sequence to sequence models. CoRR abs/1612.02695.
http://arxiv.org/abs/1612.02695.

Alexandre de Brébisson and Pascal Vincent. 2016. A
cheap linear attention mechanism with fast lookups
and fixed-size representations. CoRR abs/1609.05866.
http://arxiv.org/abs/1609.05866.

Jonas Gehring, Michael Auli, David Grangier, and Yann N.
Dauphin. 2016. A convolutional encoder model for
neural machine translation. CoRR abs/1611.02344.
http://arxiv.org/abs/1611.02344.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. = CoRR abs/1410.5401.
http://arxiv.org/abs/1410.5401.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9(8):1735-
1780.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Adron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine trans-
lation in linear time. CoRR abs/1610.10099.
http://arxiv.org/abs/1610.10099.

Adam:
CoRR

Diederik P. Kingma and Jimmy Ba. 2014.
A method for stochastic optimization.
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objective
function for neural conversation models. CoRR
abs/1510.03055. http://arxiv.org/abs/1510.03055.

400

Minh-Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. CoRR abs/1508.04025.
http://arxiv.org/abs/1508.04025.

Ramesh Nallapati, Bing Xiang, and Bowen
Zhou. 2016. Sequence-to-sequence rnns for
text summarization. CoRR abs/1602.06023.

http://arxiv.org/abs/1602.06023.

Colin Raffel, Thang Luong, Peter J. Liu, Ron J. Weiss,
and Douglas Eck. 2017. Online and linear-time
attention by enforcing monotonic alignments. CoRR
abs/1704.00784. http://arxiv.org/abs/1704.00784.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive
sentence summarization. CoRR abs/1509.00685.
http://arxiv.org/abs/1509.00685.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL.

Sainbayar Sukhbaatar, Arthur Szlam, Jason We-
ston, and Rob Fergus. 2015. Weakly super-
vised memory networks. CoRR abs/1503.08895.
http://arxiv.org/abs/1503.08895.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Oriol Vinyals and Quoc V. Le. 2015. A neural
conversational model. CoRR abs/1506.05869.
http://arxiv.org/abs/1506.05869.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-
search optimization. CoRR abs/1606.02960.
http://arxiv.org/abs/1606.02960.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption genera-
tion with visual attention. CoRR abs/1502.03044.
http://arxiv.org/abs/1502.03044.

