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Abstract

This work presents a general unsuper-
vised learning method to improve the ac-
curacy of sequence to sequence (seq2seq)
models. In our method, the weights of
the encoder and decoder of a seq2seq
model are initialized with the pretrained
weights of two language models and then
fine-tuned with labeled data. We ap-
ply this method to challenging bench-
marks in machine translation and abstrac-
tive summarization and find that it sig-
nificantly improves the subsequent super-
vised models. Our main result is that
pretraining improves the generalization of
seq2seq models. We achieve state-of-the-
art results on the WMT English→German
task, surpassing a range of methods us-
ing both phrase-based machine transla-
tion and neural machine translation. Our
method achieves a significant improve-
ment of 1.3 BLEU from the previous best
models on both WMT’14 and WMT’15
English→German. We also conduct hu-
man evaluations on abstractive summa-
rization and find that our method outper-
forms a purely supervised learning base-
line in a statistically significant manner.

1 Introduction

Sequence to sequence (seq2seq) models
(Sutskever et al., 2014; Cho et al., 2014;
Kalchbrenner and Blunsom, 2013; Allen, 1987;
Ñeco and Forcada, 1997) are extremely effective
on a variety of tasks that require a mapping
between a variable-length input sequence to
a variable-length output sequence. The main
weakness of sequence to sequence models, and
deep networks in general, lies in the fact that they

can easily overfit when the amount of supervised
training data is small.

In this work, we propose a simple and effec-
tive technique for using unsupervised pretraining
to improve seq2seq models. Our proposal is to
initialize both encoder and decoder networks with
pretrained weights of two language models. These
pretrained weights are then fine-tuned with the la-
beled corpus. During the fine-tuning phase, we
jointly train the seq2seq objective with the lan-
guage modeling objectives to prevent overfitting.

We benchmark this method on machine trans-
lation for English→German and abstractive sum-
marization on CNN and Daily Mail articles. Our
main result is that a seq2seq model, with pre-
training, exceeds the strongest possible baseline
in both neural machine translation and phrase-
based machine translation. Our model obtains
an improvement of 1.3 BLEU from the previ-
ous best models on both WMT’14 and WMT’15
English→German. On human evaluations for ab-
stractive summarization, we find that our model
outperforms a purely supervised baseline, both in
terms of correctness and in avoiding unwanted
repetition.

We also perform ablation studies to understand
the behaviors of the pretraining method. Our study
confirms that among many other possible choices
of using a language model in seq2seq with atten-
tion, the above proposal works best. Our study
also shows that, for translation, the main gains
come from the improved generalization due to the
pretrained features. For summarization, pretrain-
ing the encoder gives large improvements, sug-
gesting that the gains come from the improved op-
timization of the encoder that has been unrolled
for hundreds of timesteps. On both tasks, our pro-
posed method always improves generalization on
the test sets.

383



A B C <EOS> W X Y Z

W X Y Z <EOS>

Embedding

First RNN Layer

Softmax

Second RNN Layer

Figure 1: Pretrained sequence to sequence model. The red parameters are the encoder and the blue
parameters are the decoder. All parameters in a shaded box are pretrained, either from the source side
(light red) or target side (light blue) language model. Otherwise, they are randomly initialized.

2 Methods

In the following section, we will describe our basic
unsupervised pretraining procedure for sequence
to sequence learning and how to modify sequence
to sequence learning to effectively make use of the
pretrained weights. We then show several exten-
sions to improve the basic model.

2.1 Basic Procedure

Given an input sequence x1, x2, ..., xm and an
output sequence yn, yn−1, ..., y1, the objective of
sequence to sequence learning is to maximize the
likelihood p(yn, yn−1, ..., y1|x1, x2, ..., xm).
Common sequence to sequence learn-
ing methods decompose this objective
as p(yn, yn−1, ..., y1|x1, x2, ..., xm) =∏n

t=1 p(yt|yt−1, ..., y1;x1, x2, ..., xm).
In sequence to sequence learning, an RNN en-

coder is used to represent x1, ..., xm as a hidden
vector, which is given to an RNN decoder to pro-
duce the output sequence. Our method is based
on the observation that without the encoder, the
decoder essentially acts like a language model on
y’s. Similarly, the encoder with an additional out-
put layer also acts like a language model. Thus it
is natural to use trained languages models to ini-
tialize the encoder and decoder.

Therefore, the basic procedure of our approach
is to pretrain both the seq2seq encoder and de-
coder networks with language models, which can
be trained on large amounts of unlabeled text data.
This can be seen in Figure 1, where the parame-
ters in the shaded boxes are pretrained. In the fol-
lowing we will describe the method in detail using

machine translation as an example application.

First, two monolingual datasets are collected,
one for the source side language, and one for the
target side language. A language model (LM) is
trained on each dataset independently, giving an
LM trained on the source side corpus and an LM
trained on the target side corpus.

After two language models are trained, a multi-
layer seq2seq model M is constructed. The em-
bedding and first LSTM layers of the encoder and
decoder are initialized with the pretrained weights.
To be even more efficient, the softmax of the de-
coder is initialized with the softmax of the pre-
trained target side LM.

2.2 Monolingual language modeling losses

After the seq2seq model M is initialized with the
two LMs, it is fine-tuned with a labeled dataset.
However, this procedure may lead to catastrophic
forgetting, where the model’s performance on the
language modeling tasks falls dramatically after
fine-tuning (Goodfellow et al., 2013). This may
hamper the model’s ability to generalize, espe-
cially when trained on small labeled datasets.

To ensure that the model does not overfit the la-
beled data, we regularize the parameters that were
pretrained by continuing to train with the monolin-
gual language modeling losses. The seq2seq and
language modeling losses are weighted equally.

In our ablation study, we find that this technique
is complementary to pretraining and is important
in achieving high performance.
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2.3 Other improvements to the model
Pretraining and the monolingual language model-
ing losses provide the vast majority of improve-
ments to the model. However in early experimen-
tation, we found minor but consistent improve-
ments with two additional techniques: a) residual
connections and b) multi-layer attention (see Fig-
ure 2).
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Figure 2: Two small improvements to the baseline
model: (a) residual connection, and (b) multi-layer
attention.

Residual connections: As described, the input
vector to the decoder softmax layer is a random
vector because the high level (non-first) layers of
the LSTM are randomly initialized. This intro-
duces random gradients to the pretrained param-
eters. To avoid this, we use a residual connection
from the output of the first LSTM layer directly to
the input of the softmax (see Figure 2-a).

Multi-layer attention: In all our models, we use
an attention mechanism (Bahdanau et al., 2015),
where the model attends over both top and first
layer (see Figure 2-b). More concretely, given a
query vector qt from the decoder, encoder states
from the first layer h1

1, . . . , h
1
T , and encoder states

from the last layer hL
1 , . . . , h

L
T , we compute the at-

tention context vector ct as follows:

αi =
exp(qt · hN

i )∑T
j=1 exp(qt · hN

j )
c1t =

T∑
i=1

αih
1
i

cNt =
T∑

i=1

αih
N
i ct = [c1t ; c

N
t ]

3 Experiments

In the following section, we apply our approach
to two important tasks in seq2seq learning: ma-

chine translation and abstractive summarization.
On each task, we compare against the previous
best systems. We also perform ablation experi-
ments to understand the behavior of each compo-
nent of our method.

3.1 Machine Translation

Dataset and Evaluation: For machine trans-
lation, we evaluate our method on the WMT
English→German task (Bojar et al., 2015). We
used the WMT 14 training dataset, which is
slightly smaller than the WMT 15 dataset. Be-
cause the dataset has some noisy examples, we
used a language detection system to filter the
training examples. Sentences pairs where ei-
ther the source was not English or the target
was not German were thrown away. This re-
sulted in around 4 million training examples.
Following Sennrich et al. (2015a), we use sub-
word units (Sennrich et al., 2015b) with 89500
merge operations, giving a vocabulary size around
90000. The validation set is the concatenated new-
stest2012 and newstest2013, and our test sets are
newstest2014 and newstest2015. Evaluation on
the validation set was with case-sensitive BLEU
(Papineni et al., 2002) on tokenized text using
multi-bleu.perl. Evaluation on the test
sets was with case-sensitive BLEU on detokenized
text using mteval-v13a.pl. The monolingual
training datasets are the News Crawl English and
German corpora, each of which has more than a
billion tokens.

Experimental settings: The language models
were trained in the same fashion as (Jozefowicz
et al., 2016) We used a 1 layer 4096 dimensional
LSTM with the hidden state projected down to
1024 units (Sak et al., 2014) and trained for one
week on 32 Tesla K40 GPUs. Our seq2seq model
was a 3 layer model, where the second and third
layers each have 1000 hidden units. The monolin-
gual objectives, residual connection, and the mod-
ified attention were all used. We used the Adam
optimizer (Kingma and Ba, 2015) and train with
asynchronous SGD on 16 GPUs for speed. We
used a learning rate of 5e-5 which is multiplied
by 0.8 every 50K steps after an initial 400K steps,
gradient clipping with norm 5.0 (Pascanu et al.,
2013), and dropout of 0.2 on non-recurrent con-
nections (Zaremba et al., 2014). We used early
stopping on validation set perplexity. A beam size
of 10 was used for decoding. Our ensemble is con-
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BLEU
System ensemble? newstest2014 newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 23.7
Supervised NMT (Jean et al., 2015) single - 22.4
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016) ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 24.3
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

Table 1: English→German performance on WMT test sets. Our pretrained model outperforms all other
models. Note that the model without pretraining uses the LM objective.
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Figure 3: English→German ablation study measuring the difference in validation BLEU between various
ablations and the full model. More negative is worse. The full model uses LMs trained with monolingual
data to initialize the encoder and decoder, plus the language modeling objective.

structed with the 5 best performing models on the
validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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ing, we interpret the findings of the study. Note
that some findings are specific to the translation
task.

Given the results from the ablation study, we
can make the following observations:

• Only pretraining the decoder is better than
only pretraining the encoder: Only pretrain-
ing the encoder leads to a 1.6 BLEU point
drop while only pretraining the decoder leads
to a 1.0 BLEU point drop.

• Pretrain as much as possible because the ben-
efits compound: given the drops of no pre-
training at all (−2.0) and only pretraining the
encoder (−1.6), the additive estimate of the
drop of only pretraining the decoder side is
−2.0 − (−1.6) = −0.4; however the actual
drop is−1.0 which is a much larger drop than
the additive estimate.

• Pretraining the softmax is important: Pre-
training only the embeddings and first LSTM
layer gives a large drop of 1.6 BLEU points.

• The language modeling objective is a strong
regularizer: The drop in BLEU points of pre-
training the entire model and not using the
LM objective is as bad as using the LM ob-
jective without pretraining.

• Pretraining on a lot of unlabeled data is es-
sential for learning to extract powerful fea-
tures: If the model is initialized with LMs
that are pretrained on the source part and
target part of the parallel corpus, the drop
in performance is as large as not pretrain-
ing at all. However, performance remains
strong when pretrained on the large, non-
news Wikipedia corpus.

To understand the contributions of unsuper-
vised pretraining vs. supervised training, we track
the performance of pretraining as a function of
dataset size. For this, we trained a a model with
and without pretraining on random subsets of the
English→German corpus. Both models use the
additional LM objective. The results are summa-
rized in Figure 4. When a 100% of the labeled
data is used, the gap between the pretrained and
no pretrain model is 2.0 BLEU points. However,
that gap grows when less data is available. When
trained on 20% of the labeled data, the gap be-
comes 3.8 BLEU points. This demonstrates that

the pretrained models degrade less as the labeled
dataset becomes smaller.
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Figure 4: Validation performance of pretraining
vs. no pretraining when trained on a subset of the
entire labeled dataset for English→German trans-
lation.

3.2 Abstractive Summarization

Dataset and Evaluation: For a low-resource
abstractive summarization task, we use the
CNN/Daily Mail corpus from (Hermann et al.,
2015). Following Nallapati et al. (2016), we mod-
ify the data collection scripts to restore the bullet
point summaries. The task is to predict the bullet
point summaries from a news article. The dataset
has fewer than 300K document-summary pairs. To
compare against Nallapati et al. (2016), we used
the anonymized corpus. However, for our abla-
tion study, we used the non-anonymized corpus.1

We evaluate our system using full length ROUGE
(Lin, 2004). For the anonymized corpus in par-
ticular, we considered each highlight as a sepa-
rate sentence following Nallapati et al. (2016). In
this setting, we used the English Gigaword cor-
pus (Napoles et al., 2012) as our larger, unlabeled
“monolingual” corpus, although all data used in
this task is in English.

Experimental settings: We use subword units
(Sennrich et al., 2015b) with 31500 merges, re-
sulting in a vocabulary size of about 32000. We
use up to the first 600 tokens of the document and

1We encourage future researchers to use the non-
anonymized version because it is a more realistic summa-
rization setting with a larger vocabulary. Our numbers on
the non-anonymized test set are 35.56 ROUGE-1, 14.60
ROUGE-2, and 25.08 ROUGE-L. We did not consider high-
lights as separate sentences.
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System ROUGE-1 ROUGE-2 ROUGE-L
Seq2seq + pretrained embeddings (Nallapati et al., 2016) 32.49 11.84 29.47
+ temporal attention (Nallapati et al., 2016) 35.46 13.30 32.65
Pretrained seq2seq 32.56 11.89 29.44

Table 2: Results on the anonymized CNN/Daily Mail dataset.
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Figure 5: Summarization ablation study measuring the difference in validation ROUGE between various
ablations and the full model. More negative is worse. The full model uses LMs trained with unlabeled
data to initialize the encoder and decoder, plus the language modeling objective.

predict the entire summary. Only one language
model is trained and it is used to initialize both
the encoder and decoder, since the source and tar-
get languages are the same. However, the encoder
and decoder are not tied. The LM is a one-layer
LSTM of size 1024 trained in a similar fashion to
Jozefowicz et al. (2016). For the seq2seq model,
we use the same settings as the machine transla-
tion experiments. The only differences are that
we use a 2 layer model with the second layer hav-
ing 1024 hidden units, and that the learning rate is
multiplied by 0.8 every 30K steps after an initial
100K steps.

Results: Table 2 summarizes our results on the
anonymized version of the corpus. Our pretrained
model is only able to match the previous base-
line seq2seq of Nallapati et al. (2016). Inter-
estingly, they use pretrained word2vec (Mikolov
et al., 2013) vectors to initialize their word em-

beddings. As we show in our ablation study, just
pretraining the embeddings itself gives a large im-
provement. Furthermore, our model is a unidirec-
tional LSTM while they use a bidirectional LSTM.
They also use a longer context of 800 tokens,
whereas we used a context of 600 tokens due to
GPU memory issues.

Ablation study: We performed an ablation
study similar to the one performed on the ma-
chine translation model. The results are re-
ported in Figure 5. Here we report the drops on
ROUGE-1, ROUGE-2, and ROUGE-L on the non-
anonymized validation set.

Given the results from our ablation study, we
can make the following observations:

• Pretraining appears to improve optimiza-
tion: in contrast with the machine translation
model, it is more beneficial to only pretrain
the encoder than only the decoder of the sum-
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marization model. One interpretation is that
pretraining enables the gradient to flow much
further back in time than randomly initialized
weights. This may also explain why pretrain-
ing on the parallel corpus is no worse than
pretraining on a larger monolingual corpus.

• The language modeling objective is a strong
regularizer: A model without the LM objec-
tive has a significant drop in ROUGE scores.

Human evaluation: As ROUGE may not be
able to capture the quality of summarization, we
also performed a small qualitative study to un-
derstand the human impression of the summaries
produced by different models. We took 200 ran-
dom documents and compared the performance of
a pretrained and non-pretrained system. The doc-
ument, gold summary, and the two system out-
puts were presented to a human evaluator who was
asked to rate each system output on a scale of 1-5
with 5 being the best score. The system outputs
were presented in random order and the evaluator
did not know the identity of either output. The
evaluator noted if there were repetitive phrases or
sentences in either system outputs. Unwanted rep-
etition was also noticed by Nallapati et al. (2016).

Table 3 and 4 show the results of the study. In
both cases, the pretrained system outperforms the
system without pretraining in a statistically signif-
icant manner. The better optimization enabled by
pretraining improves the generated summaries and
decreases unwanted repetition in the output.

NP > P NP = P NP < P
29 88 83

Table 3: The count of how often the no pretrain
system (NP) achieves a higher, equal, and lower
score than the pretrained system (P) in the side-by-
side study where the human evaluator gave each
system a score from 1-5. The sign statistical test
gives a p-value of < 0.0001 for rejecting the null
hypothesis that there is no difference in the score
obtained by either system.

4 Related Work

Unsupervised pretraining has been intensively
studied in the past years, most notably is the work
by Dahl et al. (2012) who found that pretraining
with deep belief networks improved feedforward

No pretrain
No repeats Repeats

Pretrain
No repeats 67 65

Repeats 24 44

Table 4: The count of how often the pretrain and
no pretrain systems contain repeated phrases or
sentences in their outputs in the side-by-side study.
McNemar’s test gives a p-value of < 0.0001 for
rejecting the null hypothesis that the two systems
repeat the same proportion of times. The pre-
trained system clearly repeats less than the system
without pretraining.

acoustic models. More recent acoustic models
have found pretraining unnecessary (Xiong et al.,
2016; Zhang et al., 2016; Chan et al., 2015), prob-
ably because the reconstruction objective of deep
belief networks is too easy. In contrast, we find
that pretraining language models by next step pre-
diction significantly improves seq2seq on chal-
lenging real world datasets.

Despite its appeal, unsupervised learning has
not been widely used to improve supervised train-
ing. Dai and Le (2015); Radford et al. (2017) are
amongst the rare studies which showed the ben-
efits of pretraining in a semi-supervised learning
setting. Their methods are similar to ours except
that they did not have a decoder network and thus
could not apply to seq2seq learning. Similarly,
Zhang and Zong (2016) found it useful to add an
additional task of sentence reordering of source-
side monolingual data for neural machine transla-
tion. Various forms of transfer or multitask learn-
ing with seq2seq framework also have the flavors
of our algorithm (Zoph et al., 2016; Luong et al.,
2015; Firat et al., 2016).

Perhaps most closely related to our method is
the work by Gulcehre et al. (2015), who combined
a language model with an already trained seq2seq
model by fine-tuning additional deep output lay-
ers. Empirically, their method produces small im-
provements over the supervised baseline. We sus-
pect that their method does not produce significant
gains because (i) the models are trained indepen-
dently of each other and are not fine-tuned (ii) the
LM is combined with the seq2seq model after the
last layer, wasting the benefit of the low level LM
features, and (iii) only using the LM on the de-
coder side. Venugopalan et al. (2016) addressed (i)
but still experienced minor improvements. Using
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pretrained GloVe embedding vectors (Pennington
et al., 2014) had more impact.

Related to our approach in principle is the work
by Chen et al. (2016) who proposed a two-term,
theoretically motivated unsupervised objective for
unpaired input-output samples. Though they did
not apply their method to seq2seq learning, their
framework can be modified to do so. In that case,
the first term pushes the output to be highly prob-
able under some scoring model, and the second
term ensures that the output depends on the input.
In the seq2seq setting, we interpret the first term
as a pretrained language model scoring the out-
put sequence. In our work, we fold the pretrained
language model into the decoder. We believe that
using the pretrained language model only for scor-
ing is less efficient that using all the pretrained
weights. Our use of labeled examples satisfies the
second term. These connections provide a theoret-
ical grounding for our work.

In our experiments, we benchmark our method
on machine translation, where other unsupervised
methods are shown to give promising results (Sen-
nrich et al., 2015a; Cheng et al., 2016). In back-
translation (Sennrich et al., 2015a), the trained
model is used to decode unlabeled data to yield
extra labeled data. One can argue that this method
may not have a natural analogue to other tasks
such as summarization. We note that their tech-
nique is complementary to ours, and may lead
to additional gains in machine translation. The
method of using autoencoders in Cheng et al.
(2016) is promising, though it can be argued that
autoencoding is an easy objective and language
modeling may force the unsupervised models to
learn better features.

5 Conclusion

We presented a novel unsupervised pretraining
method to improve sequence to sequence learning.
The method can aid in both generalization and op-
timization. Our scheme involves pretraining two
language models in the source and target domain,
and initializing the embeddings, first LSTM lay-
ers, and softmax of a sequence to sequence model
with the weights of the language models. Using
our method, we achieved state-of-the-art machine
translation results on both WMT’14 and WMT’15
English to German. A key advantage of this tech-
nique is that it is flexible and can be applied to a
large variety of tasks.
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