
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 349–362
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Learning What’s Easy: Fully Differentiable Neural Easy-First Taggers

André F. T. Martins
Unbabel

& Instituto de Telecomunicações
Lisbon, Portugal

andre.martins@unbabel.com

Julia Kreutzer∗
Computational Linguistics

Heidelberg University, Germany
kreutzer@cl.uni-heidelberg.de

Abstract

We introduce a novel neural easy-first de-
coder that learns to solve sequence tag-
ging tasks in a flexible order. In con-
trast to previous easy-first decoders, our
models are end-to-end differentiable. The
decoder iteratively updates a “sketch” of
the predictions over the sequence. At its
core is an attention mechanism that con-
trols which parts of the input are strategi-
cally the best to process next. We present
a new constrained softmax transformation
that ensures the same cumulative attention
to every word, and show how to efficiently
evaluate and backpropagate over it. Our
models compare favourably to BILSTM
taggers on three sequence tagging tasks.

1 Introduction

In the last years, neural models have led to ma-
jor advances in several structured NLP problems,
including sequence tagging (Plank et al., 2016;
Lample et al., 2016), sequence-to-sequence pre-
diction (Sutskever et al., 2014), and sequence-to-
tree (Dyer et al., 2015). Part of the success comes
from clever architectures such as (bidirectional)
long-short term memories (BILSTMs; Hochreiter
and Schmidhuber (1997); Graves et al. (2005))
and attention mechanisms (Bahdanau et al., 2015),
which are able to select the pieces of context rele-
vant for prediction.

A noticeable aspect about many of the systems
above is that they typically decode from left to
right, greedily or with a narrow beam. While
this is computationally convenient and reminis-
cent of the way humans process spoken language,
the combination of unidirectional decoding and

∗This research was partially carried out during an in-
ternship at Unbabel.

greediness leads to error propagation and subopti-
mal classification performance. This can partly be
mitigated by globally normalized models (Andor
et al., 2016) and imitation learning (Daumé et al.,
2009; Ross et al., 2011; Bengio et al., 2015), how-
ever these techniques still have a left-to-right bias.

Easy-first decoders (Tsuruoka and Tsujii,
2005; Goldberg and Elhadad, 2010, §2) are an in-
teresting alternative: instead of a fixed decoding
order, these methods schedule their own actions
by prefering “easier” decisions over more diffi-
cult ones. A disadvantage is that these models
are harder to learn, due to the factorial number of
orderings leading to correct predictions. Usually,
gradients are not backpropagated over this combi-
natorial latent space (Kiperwasser and Goldberg,
2016a), or a separate model is used to determine
the easiest next move (Clark and Manning, 2016).

In this paper, we develop novel, fully differen-
tiable, neural easy-first sequence taggers (§3).
Instead of taking discrete actions, our decoders use
an attention mechanism to decide (in a soft man-
ner) which word to focus on for the next tagging
decision. Our models are able to learn their own
sense of “easiness”: the words receiving focus
may not be the ones the model is most confident
about, but the best to avoid error propagation in the
long run. To make sure that all words receive the
same cumulative attention, we further contribute
with a new constrained softmax transformation
(§4). This transformation extends the softmax by
permitting upper bound constraints on the amount
of probability a word can receive. We show how
to evaluate this transformation and backpropagate
its gradients.

We run experiments in three sequence tagging
tasks: multilingual part-of-speech (POS) tagging,
named entity recognition (NER), and word-level
quality estimation (§5). We complement our find-
ings with a visual analysis of the attention distribu-

349



Algorithm 1 Easy-First Sequence Tagging

Input: input sequence x1:L

Output: tagged sequence ŷ1:L
1: initialize B = S = ∅
2: while B 6= {1, . . . , L} do
3: for each non-covered position i /∈ B do
4: compute scores f(i, yi;x1:L,S), ∀yi

5: end for
6: (j, ŷj) = argmaxi,yi

f(i, yi;x1:L,S)

7: S ← S ∪ {(j, ŷj)}, B ← B ∪ {j}
8: end while

tions produced by the decoder, to help understand
what tagging decisions the model finds the easiest.

2 Easy-First Decoders

The idea behind easy-first decoding is to perform
“easier” and less risky decisions before commit-
ting to more difficult ones (Tsuruoka and Tsu-
jii, 2005; Goldberg and Elhadad, 2010; Ma et al.,
2013). Alg. 1 shows the overall procedure for a
sequence tagging problem (the idea carries out to
other structured problems). Let x1:L be an input
sequence (e.g. words in a sentence) and y1:L be
the corresponding tag sequence (e.g. their POS
tags). The algorithm assigns tags one position i
at the time, maintaining a set B of covered po-
sitions. It also maintains a set S of pairs (i, ŷi),
storing the tags that have already been predicted at
those positions. We can regard this set as a sketch
of the output sequence, built incrementally while
the algorithm is executed. At each time step, the
model computes a score f(i, yi;x1:L,S) for each
position i /∈ B and each candidate tag yi, taking
into account the current “sketch” S, which pro-
vides useful contextual information. The “easiest”
position and the corresponding tag are then jointly
obtained by maximizing this score (line 6). The al-
gorithm terminates when all positions are covered.

Previous work has trained easy-first systems
with variants of the perceptron algorithm (Gold-
berg and Elhadad, 2010; Ma et al., 2013) or with
a gradient-based method (Kiperwasser and Gold-
berg, 2016a)—but without backpropagating infor-
mation about the best ordering chosen by the algo-
rithm (only tag mistakes). In fact, doing so directly
would be hard, since the space of possible order-
ings is combinatorial—the argmax in line 6 is not
continuous, let alone differentiable. In the next
section, we introduce a fully differentiable easy-
first system that sidesteps this problem by working
with a “continuous” space of actions.

Figure 1: A neural easy-first system applied to
a POS tagging problem. Given the current in-
put/sketch representation, an attention mechanism
decides where to focus (see bar plot) and is used
to generate the next sketch. Right: A sequence of
sketches (Sn)Nn=1 generated along the way.

3 Neural Easy-First Sequence Taggers

Let ∆L−1 := {α ∈ RL |1>α = 1,α ≥ 0} be
the probability simplex. Our neural easy-first de-
coders depart from Alg. 1 in the following key
points:

• Instead of picking the position with the largest
score at each step (line 6 in Alg. 1), we compute
a (continuous) attention distribution α ∈ ∆L−1

over word positions.

• Instead of a set of covered positionsB, we main-
tain a (continuous) cumulative attention vec-
tor β ∈ RL (ideally in [0, 1]L) over the L posi-
tions in the sequence.

• The sketch set S is replaced by a sketch ma-
trix S ∈ RDs×L, whose columns are Ds-
dimensional vector representations of the output
labels to be predicted.

The high-level procedure is shown in Figure 1. We
describe two models that implement this proce-
dure: a single-state model and a full-state model.
They differ in the way they update the sketch ma-
trix: the single-state model applies a rank-one up-
date, while the full-state model does a full update.

3.1 Single-State Model (NEF-S)

Let concat(x1, . . . ,xK) ∈ R
∑K

k=1Dk be the con-
catenation of the vectors xk ∈ RDk . We use the
shorthand affine(x) := Wx+b to denote an affine
transformation of x, where W is a weight matrix
and b is a bias vector.

Alg. 2 shows the overall procedure. We start
by encoding the input sequence x1:L as a matrix

350



Algorithm 2 Neural Easy-First Sequence Tagging

Input: input sequence x1:L, sketch steps N
Output: tagged sequence ŷ1:L
1: initialize β0 = 0 and s0

i = 0, ∀i ∈ [L]
2: encode sequence as [h1, . . . ,hL]
3: for n = 1, 2, . . . , N do
4: for each position i ∈ [L] do
5: compute cn

i and zn
i (Eqs. 1–2)

6: end for
7: compute attention αn = ρ(zn;βn−1)
8: for each position i ∈ [L] do
9: refine sketch sn

i from αn
i and cn

i , via Eq. 4 (single-
state) or Eq. 7 (full-state)

10: end for
11: βn = βn−1 +αn

12: end for
13: for each position i ∈ [L] do
14: pi = softmax(affine(concat(hi, s

N
i )))

15: predict ŷi = argmaxyi
pi(yi)

16: end for

H = [h1, . . . ,hL] ∈ RDh×L (line 2). Our model
is completely agnostic about this encoding step. In
our experiments, we compute H by composing a
lookup embedding layer with a BILSTM (Hochre-
iter and Schmidhuber, 1997; Graves et al., 2005),
as this strategy was successful in similar structured
prediction tasks. However, other choices are pos-
sible, for example using convolutional layers.

As stated above, our algorithm maintains a cu-
mulative attention vector β ∈ RL and a sketch
matrix S ∈ RDs×L, both with all entries initial-
ized to zero. It then performs N sketching steps,
which progressively refine this sketch matrix, pro-
ducing versions S1, . . . ,SN . At the nth step, the
following operations are performed:

Input-Sketch Contextual Representation. For
each word i ∈ [L], we compute a state cni sum-
marizing the surrounding local information about
other words and sketches. We use a simple vector
concatenation over a w-wide context window:

cni = concat(hi−w, . . . ,hi+w, sn−1
i−w , . . . , s

n−1
i+w),

(1)
where we denote by sn−1

j the jth column of Sn−1.
The intuition is that the current sketches pro-
vide valuable information about the neighboring
words’ predictions that can influence the predic-
tion for the ith word. In the vanilla easy-first algo-
rithm, this was assumed in the score computation
(line 4 of Alg. 1).

Attention Mechanism. We then use an attention
mechanism to decide what is the “best” word to
focus on next. This is done in a similar way as the
feedforward attention proposed by Bahdanau et al.

(2015). We first compute a score for each word
i ∈ [L] based on its contextual representation,

zni = v>tanh(affine(cni )), (2)

where v ∈ RDz is a model parameter. Then, we
aggregate these scores in a vector zn ∈ RL and
apply a transformation ρ to map them to a proba-
bility distribution αn ∈ ∆L−1 (optionally taking
into account the past cumulative attention βn−1):

αn = ρ(zn;βn−1). (3)

The “standard” choice for ρ is the softmax trans-
formation. However, in this work, we consider
other possible transformations (to be described in
§4). After this, the cumulative attention is updated
via βn = βn−1 +αn.

Sketch Generation. Now that we have a distri-
butionαn ∈ ∆L−1 over word positions, it remains
to generate a sketch for those words. We first com-
pute a single-state vector representation of the en-
tire sentence c̄n =

∑L
i=1 α

n
i c

n
i as the weighted

average of the word states defined in Eq. 1. Then,
we update each column of the sketch matrix as:1

sni = sn−1
i +αni ·tanh(affine(c̄n)), ∀i ∈ [L]. (4)

The intuition for this update is the following: in
the extreme case where the attention distribution is
peaked on a single word (say, the kth word, αn =
ek), we obtain c̄n = cnk and the sketch update only
affects that word, i.e.,

sni =
{
sn−1
i + tanh(affine(cnk)) if i = k

sn−1
i if i 6= k.

(5)
This is similar to the sketch update in the original
easy-first algorithm (line 7 in Alg. 1).

The three operations above are repeated N
times (or “sketch steps”). The standard choice is
N = L (one step per word), which mimics the
vanilla easy-first algorithm. However, it is possi-
ble to have fewer steps (or more, if we want the de-
coder to be able to “self-correct”). After complet-
ing the N sketch steps, we obtain the final sketch
matrix SN = [sN1 , . . . , s

N
L ]. Then, we compute a

tag probability for every word as follows:2

pi = softmax(affine(concat(hi, sNi ))). (6)
1Note that this is a rank-one update, as it can be written

in matrix notation as Sn = Sn−1 + tanh(affine(c̄n)) ·αn>.
2We found the concatenation with hi in Eq. 6 benefi-

cial to transfer input information directly to the output layer,
avoiding the need of flowing this information through the
sketches.

351



In §5, we compare this to a BILSTM tagger, which
predicts according to pi = softmax(affine(hi)).

3.2 Full-State Model (NEF-F)

The full-state model differs from the single-state
model in §3.1 by computing a full matrix for ev-
ery sketch step, instead of a single vector. Namely,
instead of Eq. 4, it does the following sketch up-
date for every word i ∈ [L]:

sni = sn−1
i + αni · tanh(affine(cni )). (7)

Note that the only difference is in replacing the
single vector c̄n by the word-specific vector cni .
As a result, this is no longer a rank-one update
of the sketch matrix, but a full update. In the ex-
treme case where the attention is peaked on a sin-
gle word, the sketch update reduces to the same
form as in the single-state model (Eq. 5). How-
ever, the full-state model is generally more flexible
and allows processing words in parallel, since it
allows different sketch updates for multiple words
receiving attention, instead of trying to force those
words to receive the same update. We will see in
the experiments (§5) that this flexibility can be im-
portant in practice.

3.3 Computational Complexity

For both models, assuming that the ρ(z;β) trans-
formation in Eq. 3 takes O(L) time to compute,
the total runtime of Alg. 2 isO((N+K)L) (where
K is the number of tags), which becomesO(L2) if
K ≤ N = L. This is so because the input-sketch
representation, the attention mechanism, and the
sketch generation step all have O(L) complexity,
and the final softmax layer requires O(KL) op-
erations. This is the same runtime of the vanilla
easy-first algorithm, though the latter can be re-
duced to O(KLlogL) with caching and a heap, if
the scores in line 4 depend only on local sketches
(Goldberg and Elhadad, 2010). By comparison, a
standard BILSTM tagger has runtime O(KL).

4 Constrained Softmax Attention

An important part of our models is their attention
component (line 7 in Alg. 2). To keep the “easy-
first” intuition, we would like the transformation ρ
in Eq. 3 to have a couple of properties:

1. Sparsity: being able to generate sparse distri-
butions αn (ideally, peaked on a single word).

2. Evenness: over iterations, spreading attention
evenly over the words. Ideally, the cumulative
attention should satisfy βn ∈ [0, 1]L for every
n ∈ [N ] and βN = 1.

The standard choice for attention mechanisms is
the softmax transformation, αn = softmax(zn).
However, the softmax does not satisfy either of
the properties above. For the first requirement,
we could incorporate a “temperature” parameter
in the softmax to push for more peaked distribu-
tions. However, this does not guarantee sparsity
(only “hard attention” in the limit) and we found
it numerically unstable when plugged in Alg. 2.
For the second one, we could add a penalty before
the softmax transformation, αn = softmax(zn −
λβn−1), where λ ≥ 0 is a tunable hyperparame-
ter. This strategy was found effective to prevent a
word to receive too much attention, but it made the
model less accurate.

An alternative is the sparsemax transformation
(Martins and Astudillo, 2016):

sparsemax(z) = argmin
α∈∆L−1

‖α− z‖2. (8)

The sparsemax maintains most of the appealing
properties of the softmax (efficiency to evaluate
and backpropagate), and it is able to generate truly
sparse distributions. However, it still does not sat-
isfy the “evenness” property.

Instead, we propose a novel constrained soft-
max transformation that satisfies both require-
ments. It resembles the standard softmax, but it
allows imposing hard constraints on the maximal
probability assigned to each word. Let us start
by writing the (standard) softmax in the following
variational form (?):

softmax(z) = argmin
α∈∆L−1

KL(α‖ softmax(z))

= argmin
α∈∆L−1

−H(α)− z>α, (9)

where KL and H denote the Kullback-Leibler di-
vergence and the entropy, respectively. Based on
this observation, we define the constrained soft-
max transformation as follows:

csoftmax(z;u) = argmin
α∈∆L−1

−H(α)− z>α
s.t. α ≤ u, (10)

where u ∈ RL is a vector of upper bounds. Note
that, if u ≥ 1, all constraints are loose and this

352



Algorithm 3 Constrained Softmax Forward

Input: z, u
Output: α = csoftmax(z;u)

1: initialize s := 0,A := [L], Z :=
∑K

i=1 exp(zi)
2: sort qi1 ≥ . . . ≥ qiL , where qi = exp(zi)/ui, ∀i ∈ [L]
3: for k = 1 to L do
4: αik := exp(zik )(1− s)/Z
5: if αik > uik then
6: Z := Z − exp(zik )
7: αik := uik , s := s+ uik , A := A \ {ik}
8: end if
9: end for

reduces to the standard softmax; on the contrary,
if u ∈ ∆L−1, they are tight and we must have
α = u due to the normalization constraint. Thus,
we propose the following for Eq. 3:

αn = csoftmax(zn; 1− βn−1). (11)

The constraints guarantee βn = βn−1 +αn ≤ 1.
Since 1>βN =

∑N
n=1 1>αn = N , they also en-

sure that βN = 1, hence the “evenness” prop-
erty is fully satisfied. Intuitively, each word gets
a credit of one unit of attention that is consumed
during the execution of the algorithm. When this
credit expires, all subsequent attention weights for
that word will be zero.

The next proposition shows how to evaluate the
constrained softmax and compute its gradients.

Proposition 1 Let α = csoftmax(z;u), and de-
fine the set A = {i ∈ [L] | αi < ui} of the con-
straints in Eq. 10 that are met strictly. Then:

• Forward propagation. The solution of Eq. 10
can be written in closed form as αi =
min{exp(zi)/Z, ui}, where Z =

∑
i∈A exp(zi)

1−∑i/∈A ui
.

• Gradient backpropagation. Let L(θ) be a loss
function, dα = ∇αL(θ) be the output gradient,
and dz = ∇zL(θ) and du = ∇uL(θ) be the
input gradients. Then, we have:

dzi = 1(i ∈ A)αi(dαi −m) (12)

dui = 1(i /∈ A)(dαi −m), (13)

where m = (
∑

i∈A αi dαi)/(1−
∑

i/∈A ui).

Proof: See App. A (supplementary material).

Algs. 3–4 turn the results in Prop. 1 into con-
crete procedures for evaluating csoftmax and for
backpropagating its gradient. Their runtimes are
respectively O(LlogL) and O(L).

Algorithm 4 Constrained Softmax Backprop

Input: z, u, dα (and cached α, A, s from Alg. 3)
Output: dz, du
1: m :=

∑
i∈A αi dαi/(1− s)

2: for i ∈ [L] do
3: if i ∈ A then
4: dzi := αi(dαi −m), dui := 0
5: else
6: dzi := 0, dui := dαi −m
7: end if
8: end for

5 Experiments

We evaluate our neural easy-first models in three
sequence tagging tasks: POS tagging, NER, and
word quality estimation.

5.1 Part-of-Speech Tagging
We ran POS tagging experiments in 12 languages
from the Universal Dependencies project v1.4
(Nivre et al., 2016), using the standard splits. The
datasets contain 17 universal tags.3

We implemented Alg. 2 in DyNet (Neubig et al.,
2017), which we extended with the constrained
softmax operator (Algs. 3–4).4 We used 64-
dimensional word embeddings, initialized with
pre-trained Polyglot vectors (Al-Rfou et al., 2013).
Apart from the words, we embedded prefix and
suffix character n-grams with n ≤ 4. We set
the affix embedding size to 50 and summed all
these embeddings; in the end, we obtained a 164-
dimensional representation for each word (words,
prefixes, and suffixes). We then fed these em-
beddings into a BILSTM (with 50 hidden units
in each direction) to obtain the encoder states
[h1, . . . ,hL] ∈ R100×L. The other hyperparam-
eters were set as follows: we used a context size
w = 2, set the pre-attention sizeDz and the sketch
size Ds to 50, and applied dropout with a proba-
bility of 0.2 after the embedding and BILSTM lay-
ers and before the final softmax output layer.5 We
ran 20 epochs of Adagrad to minimize the cross-
entropy loss, with a stepsize of 0.1, and gradient

3Our choice of languages covers 8 families: Romance
(French, Portuguese, Spanish), Germanic (English, German),
Slavic (Czech, Russian), Semitic (Arabic), Indo-Iranian
(Hindi), Austronesian (Indonesian), Sino-Tibetan (Chinese),
and Japonic (Japanese). For all languages, we used the
datasets that have the canonical language name, except for
Russian, where we used the (much larger) SynTagRus cor-
pus. We prefered large datasets over small ones, to reduce
the impact of overfitting in our analysis.

4The code is available at https://github.com/
Unbabel/neural-easy-first.

5These hyperparameters were tuned in the English devel-
opment set, and kept fixed across languages.

353



Ara. Chi. Cze. Eng. Fre. Ger. Hin. Ind. Jap. Por. Rus. Spa. Avg.

Gillick et al. (2016)† – – 98.44 94.00 95.17 92.34 – 91.03 – – – 95.26 –
Plank et al. (2016)† 98.91 – 98.24 95.16 96.11 93.38 97.10 93.41 – 97.90 – 95.74 –

Linear (TurboTagger) 95.18 91.38 98.07 94.43 96.48 91.92 95.98 93.12 89.35 96.63 97.32 95.44 94.88
BILSTM 95.60 92.73 98.46 94.94 96.37 92.97 96.80 93.79 92.72 97.01 97.83 95.27 95.39
Vanilla Easy-First 95.62 92.78 98.50 94.78 96.35 92.91 96.81 93.68 92.68 97.12 97.93 95.31 95.42

NEF-S, csoftmax 95.63 92.87 98.50 94.91 96.41 92.86 96.79 93.65 92.93 96.57 97.91 95.42 95.42
NEF-F, softmax 95.61 92.92 98.47 95.15 96.52 92.96 96.75 93.67 92.57 97.12 97.92 95.41 95.43
NEF-F, sparsemax 95.14 92.86 97.75 93.97 91.79 90.27 89.40 93.48 92.61 95.27 96.32 95.36 93.88
NEF-F, csoftmax 95.53 92.99 98.53 95.01 96.70 92.93 96.98 93.81 92.72 97.04 97.94 95.42 95.47

Table 1: POS tagging accuracies. The average in the rightmost column is over the words of each treebank.
†Note that Gillick et al. (2016) and Plank et al. (2016) are not strictly comparable, since they use older
versions of the treebanks (UD1.1 and UD1.2, respectively).

Figure 2: Attention visualization for English POS tagging. From the left: constrained softmax, softmax,
sparsemax, vanilla. Rows correspond to attention vectors (high values in yellow, low ones in dark blue).

clipping of 5 (DyNet’s default). We excluded from
the training set sentences longer than 50 words.

Table 1 compares several variants of our neural
easy-first system—the single-state model (NEF-
S), the full-state model (NEF-F), and the latter
with softmax, sparsemax, and csoftmax attention.
We used as many sketch steps as the number of
words, N = L. As baselines, we used:

• A feature-based linear model (TurboTagger,
Martins et al. (2013)).

• A BILSTM tagger identical to our system, but
without sketch steps (N = 0).

• A vanilla easy-first tagger (Alg. 1), using the ar-
gument of the softmax in Eq. 6 as the scoring
function. This uses the same sketch represen-
tations as the neural easy-first systems, but re-
places the attention mechanism by “hard” atten-
tion placed on the highest scored word.

For comparison, we also show the accuracies re-
ported by Gillick et al. (2016) for their byte-to-
span system (trained separately on each language)
and by Plank et al. (2016) for their state-of-the-art
multi-task BILSTM tagger (these results are not

fully comparable though, due to different treebank
versions).

Among the neural easy-first systems, we ob-
serve that NEF-F with csoftmax attention gener-
ally outperforms the others, but the differences are
very slight (excluding the sparsemax attention sys-
tem, which performed substancially worse). This
system wins over the linear system for all lan-
guages but Spanish, and over the BILSTM base-
line for 9 out of 12 languages (loses in Arabic and
German, and ties in Japanese). Note, however, that
the differences are small (95.47% against 95.39%,
averaged across treebanks). We conjecture that
this is due to the fact that the BILSTM already cap-
tures most of the relevant context in its encoder.
Our NEF-F system with csoftmax also wins over
the vanilla easy-first system for 10 out of 12 lan-
guages (arguably due to its ability to backpropa-
gate the gradients through the soft attention mech-
anism), but the difference in the average score is
again small (95.47% against 95.42%).

Figure 2 depicts some patterns learned by the
NEF-F model with various attention types. With
the csoftmax, the model learns to move left and
right, and the main verb “thought” is the most

354



prominent candidate for the easiest decision. In
fact, in 57% of the test sentences, the model fo-
cuses first on a verb. The “raindrop” appear-
ance of the plot is due to the evenness property
of csoftmax, which causes the attention over a
word to increase gradually until the cumulative
attention is exhausted. This constrasts with the
softmax attention (less diverse and non-sparse)
and the sparsemax (sparse, but not even). We show
for comparison the (hard) decisions made by the
vanilla easy-first decoder.

5.2 Named Entity Recognition
Next, we applied our model to NER. We used the
official datasets from the CoNLL 2002-3 shared
tasks (Sang, 2002; Sang and De Meulder, 2003),
which tag names, locations, and organizations
using a BIO scheme, and cover four languages
(Dutch, English, German, and Spanish). We made
two experiments: one using the exact same BIL-
STM and NEF models with a standard softmax
output layer, as in §5.1 (which does not guar-
antee valid segmentations), and another one re-
placing the output softmax layer by a sequential
CRF layer, which requires learning O(K2) ad-
ditional parameters for pairs of consecutive tags
(Huang et al., 2015; Lample et al., 2016). We
used the same hyperparameters as in the POS tag-
ging experiments, except the dropout probabil-
ity, which was set to 0.3 (tuned on the valida-
tion set). For English, we used pre-trained 300-
dimensional GloVe-840B embeddings (Penning-
ton et al., 2014); for Spanish and German, we used
the 64-dimensional word embeddings from Lam-
ple et al. (2016); for Dutch we used the aforemen-
tioned Polyglot vectors. All embeddings are fine-
tuned during training. Since many words are not
entities, and those receive a default “outside” tag,
we expect that fewer sketch steps are necessary to
achieve top performance.

Table 2 shows the results, which confirm this
hypothesis. We compare the same BILSTM
baseline to our NEF-S and NEF-F models with
csoftmax attention (with and without the CRF out-
put layer), varying the maximum number of sketch
steps. We also compare against the byte-to-span
model of Gillick et al. (2016) and the state-of-the-
art character-based LSTM-CRF system of Lample
et al. (2016).6 We can see that, for all languages,

6The current state of the art on these datasets (Gillick
et al., 2016; Lample et al., 2016; Ma and Hovy, 2016) is
achieved by more sophisticated systems with more param-

Dut. Eng. Ger. Spa.

Gillick et al. (2016) 78.08 84.57 72.08 81.83
Lample et al. (2016) 81.74 90.94 78.76 85.75

BILSTM 76.56 85.74 70.05 77.00

NEF-S, N = 5 77.37 86.40 72.27 75.80
NEF-F, N = 5 77.96 86.11 72.60 79.22
NEF-F, N = 10 77.52 87.11 72.96 78.99
NEF-F, N = L 78.46 86.36 72.35 78.87

BILSTM-CRF 79.00 86.96 72.98 80.44

NEF-CRF-S, N = 5 78.89 88.33 72.37 80.21
NEF-CRF-F, N = 5 80.03 88.01 73.45 81.00
NEF-CRF-F, N = 10 79.86 87.51 73.63 80.35
NEF-CRF-F, N = L 80.29 87.58 74.75 80.71

Table 2: F1 scores for NER, computed by the
CoNLL 2002 evaluation script.

the NEF-CRF-F model with 5 steps is consistently
better than the BILSTM-CRF and, with the excep-
tion of English, the NEF-CRF-S model. The same
holds for the BILSTM and NEF-F models without
the CRF output layer. With the exception of Ger-
man, increasing the number of steps did not make
a big difference.

Figure 3 shows the attention distributions over
the sketch steps for an English sentence, for full-
state models trained with N ∈ {5, L}. The model
with L sketch steps learned that it is easiest to fo-
cus on the beginning of a named entity, and then
to move to the right to identify the full span. The
model with only 5 sketch steps learns to go straight
to the point, placing most attention on the entity
words and ignoring most of the O-tokens.

5.3 Word-Level Quality Estimation
Finally, we evaluate our model’s performance on
word-level translation quality estimation. The
goal is to evaluate a translation system’s qual-
ity without access to reference translations (Blatz
et al., 2004; Specia et al., 2013). Given a sentence
pair (a source sentence and its machine translated
sentence in a target language), a word-level sys-
tem classifies each target word as OK or BAD. We
used the official English-German dataset from the
WMT16 shared task (Bojar et al., 2016).

This task differs from the previous ones in
which its input is a sentence pair and not a single

eters, mixing character and word-based models, sharing a
model across languages, or combining CRFs with convolu-
tional and recurrent layers. We used simpler models in our
experiments since our goal is to assess how much the neural
easy-first systems can bring in addition to a BILSTM system,
rather than building a state-of-the-art system.

355



Figure 3: Attention visualization for English NER,
for 5 (top) and L (bottom) sketch steps. Words
tagged as B-* are marked in light blue, those with
I-* tags, in bold red, and with O-* tags, in green.

sentence. We replaced the affix embeddings by
the concatenation of the 64-dimensional embed-
dings of the target words with those of the aligned
source words (we used the alignments provided in
the shared task), yielding 128-dimensional repre-
sentations. We used the same hyperparameters as
in the POS tagging task, except the dropout proba-
bility, set to 0.1. We followed prior work (Kreutzer
et al., 2015) and upweighted the BAD words in the
loss function to make the model more pessimistic;
we used a weight of 5 (tuned in the validation set).

Table 3 shows the results. We see that all our
NEF-S and NEF-F models outperform the BIL-
STM, and that the NEF-F model with 5 sketch
steps achieved the best results.7 Figure 4 il-
lustrates the attention over the target words for 5
sketches. We observe that the attention focuses
early in the areas predicted BAD and moves left
and right within these areas, not wasting attention
on the OK part of the sentence. This block-wise fo-

7Our best system would rank third in the shared task, out
of 13 submissions. The winner system, which achieved 49.52
F1-MULT, was considerably more complex than ours, using
an ensemble of three neural networks with a linear system
(Martins et al., 2016).

BILSTM NEF-S NEF-F
N = 5 N = L N = 5 N = L

39.71 40.91 40.99 41.18 40.84

Table 3: F1-MULT scores (product of F1 for OK

and BAD words) for word-level quality estimation,
computed by the official shared task script.

Figure 4: Example for word-level quality estima-
tion. The source sentence is “To open the Actions
panel, from the main menu, choose Window > Ac-
tions.” BAD words are red (bold font), OK words
are green.

cus makes sense for quality estimation, since often
complete phrases are BAD.

5.4 Ablation Study
To better understand our proposed model, we car-
ried out an ablation study for NER on the English
dataset. The following alternate configurations
were tried and compared against the NEF-CRF-F
model with csoftmax attention and 5 sketch steps:

• A NEF-CRF-F model for which the final con-
catenation in Eq. 6 was removed, being replaced
by pi = softmax(affine(sNi )). The goal was
to see if the sketches retain enough information
about the input to make a final prediction with-
out requiring the states hi.

• A model for which the attention mechanism ap-
plied at each sketch step was replaced by a uni-
form distribution over the input words.

• A vanilla easy-first system (Alg. 1). Since this
system can only focus on one word at the time
(unlike the models with soft attention), we tried
both N = 5 and N = L sketch steps.

• A left-to-right and right-to-left model, which re-
places the attention mechanism by one of these
two prescribed orders.

Table 4 shows the results. As expected, the neural
easy-first system was the best performing one, al-
though the difference with respect to the ablated

356



NEF-CRF-F, N = 5 88.01

NEF-CRF-F w/out concat, N = 5 87.47
Uniform Attention, N = 5 87.46
Vanilla EF + CRF, N = 5 87.17
Vanilla EF + CRF, N = L 87.46
Left-to-right + CRF, N = L 87.57
Right-to-left + CRF, N = L 87.53

Table 4: Ablation experiments. Reported are F1

scores for NER in the English test set.

systems is relatively small. Removing the con-
catenation in Eq. 6 is harmful, which suggests that
there is information about the input not retained
in the sketches. The uniform attention performs
surprisingly well, and so do the left-to-right and
right-to-left models, but they are still about half a
point behind. The vanilla easy-first system has the
worst performance with N = 5. This is due to the
fact that the vanilla model is uncapable of process-
ing words “in parallel” in the same sketch step, a
disadvantage with respect to the neural easy-first
models, which have this capability due to their soft
attention mechanisms (see the top image in Fig. 3).

6 Related Work

Vanilla easy-first decoders have been used in
POS tagging (Tsuruoka and Tsujii, 2005; Ma
et al., 2013), dependency parsing (Goldberg
and Elhadad, 2010), and coreference resolution
(Stoyanov and Eisner, 2012), being related to
cyclic dependency networks and guided learning
(Toutanova et al., 2003; Shen et al., 2007). More
recent works compute scores with a neural net-
work (Socher et al., 2011; Clark and Manning,
2016; Kiperwasser and Goldberg, 2016a), but they
still operate in a discrete space to pick the easi-
est actions (the non-differentiable argmax in line 6
of Alg. 1). Generalizing this idea to “continuous”
operations is at the very core of our paper, allow-
ing gradients to be fully backpropagated. In a dif-
ferent context, building differentiable computation
structures has also been addressed by Graves et al.
(2014); Grefenstette et al. (2015).

An important contribution of our paper is the
constrained softmax transformation. Others have
proposed alternatives to softmax attention, includ-
ing the sparsemax (Martins and Astudillo, 2016)
and multi-focal attention (Globerson et al., 2016).
The latter computes a KL projection onto a bud-
get polytope to focus on multiple words. Our con-
strained softmax also corresponds to a KL projec-

tion, but (i) it involves box constraints instead of
a budget, (ii) it is normalized to 1, and (iii) we
also backpropagate the gradient over the constraint
variables. It also achieves sparsity (see the “rain-
drop” plots in Figures 2–4), and is suitable for se-
quentially computing attention distributions when
diversity is desired (e.g. soft 1-to-1 alignments).
Recently, Chorowski and Jaitly (2016) developed
an heuristic with a threshold on the total attention
as a “coverage criterion” (see their Eq. 11), how-
ever their heuristic is non-differentiable.

Our sketch generation step is similar in spirit to
the “deep recurrent attentive writer” (DRAW, Gre-
gor et al. (2015)) which generates images by itera-
tively refining sketches with a recurrent neural net-
work (RNN). However, our goal is very different:
instead of generating images, we generate vectors
that lead to a final sequence tagging prediction.

Finally, the visualization provided in Figures 2–
4 brings up the question how to understand and
rationalize predictions by neural network systems,
addressed by Lei et al. (2016). Their model, how-
ever, uses a form of stochastic attention and it does
not perform any iterative refinement like ours.

7 Conclusions

We introduced novel fully-differentiable easy-first
taggers that learn to make predictions over se-
quences in an order that is adapted to the task at
hand. The decoder iteratively updates a sketch
of the predictions by interacting with an attention
mechanism. To spread attention evenly through all
words, we introduced a new constrained softmax
transformation, along with an algorithm to back-
propagate its gradients. Our neural-easy first de-
coder consistently outperformed a BILSTM on a
range of sequence tagging tasks.

A natural direction for future work is to go be-
yond sequence tagging (which we regard as a sim-
ple first step) toward other NLP structured predic-
tion problems, such as sequence-to-sequence pre-
diction. This requires replacing the sketch matrix
in Alg. 2 by a dynamic memory structure.

Acknowledgments

We thank the Unbabel research team and the re-
viewers for their comments. This work was sup-
ported by the Fundação para a Ciência e Tec-
nologia through contracts UID/EEA/50008/2013,
PTDC/EEI-SII/7092/2014 (LearnBig), and CMU-
PERI/TIC/0046/2014 (GoLocal).

357



References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word represen-
tations for multilingual nlp. arXiv preprint
arXiv:1307.1662 .

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc.
of the Annual Meeting of the Association for Com-
putational Linguistics. pages 2442–2452.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 1171–1179.

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence esti-
mation for machine translation. In Proc. of the Inter-
national Conference on Computational Linguistics.
page 315.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation. pages 131–
198.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration
in sequence to sequence models. arXiv preprint
arXiv:1612.02695 .

Kevin Clark and Christopher D Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proc. of the An-
nual Meeting of the Association for Computational
Linguistics.

H. Daumé, J. Langford, and D. Marcu. 2009. Search-
based structured prediction. Machine learning
75(3):297–325.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proc. of the Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, Beijing, China,
pages 334–343.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Proc. of the Annual Meeting of
the North-American Chapter of the Association for
Computational Linguistics.

Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringgaard, and Fer-
nando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proc. of the Annual
Meeting of the Association for Computational Lin-
guistics.

Y. Goldberg and M. Elhadad. 2010. An efficient al-
gorithm for easy-first non-directional dependency
parsing. In Proc. of Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics. pages 742–750.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional lstm networks for im-
proved phoneme classification and recognition. In
International Conference on Artificial Neural Net-
works. Springer, pages 799–804.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural Turing Machines. arXiv preprint
arXiv:1410.5401 .

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
Transduce with Unbounded Memory. In Advances
in Neural Information Processing Systems. pages
1819–1827.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo
Rezende, and Daan Wierstra. 2015. Draw: A recur-
rent neural network for image generation. In Proc.
of the International Conference on Machine Learn-
ing. pages 1462–1471.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree lstms.
arXiv preprint arXiv:1603.00375 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. arXiv preprint
arXiv:1603.04351 .

Julia Kreutzer, Shigehiko Schamoni, and Stefan Rie-
zler. 2015. Quality estimation from scratch
(quetch): Deep learning for word-level translation
quality estimation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation. pages
316–322.

358



Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proc. of the Annual Meeting of the North-
American Chapter of the Association for Computa-
tional Linguistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proc. of Empir-
ical Methods for Natural Language Processing.

Ji Ma, Tong Xiao, and Nan Yang. 2013. Easy-first pos
tagging and dependency parsing with beam search.
In In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proc. of the Annual Meeting of the Association for
Computational Linguistics.

André F. T Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of the Annual
Meeting of the Association for Computational Lin-
guistics.

André F. T. Martins and Ramón Astudillo. 2016. From
Softmax to Sparsemax: A Sparse Model of Atten-
tion and Multi-Label Classification. In Proc. of the
International Conference on Machine Learning.

André F. T. Martins, Ramón Astudillo, Chris Hokamp,
and Fábio Kepler. 2016. Unbabel’s participation in
the wmt16 word-level translation quality estimation
shared task. In Proceedings of the First Conference
on Machine Translation.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Yevgeni Berzak, Riyaz Ahmad Bhat, Eck-
hard Bick, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Gülşen Cebirolu Eryiit,
Giuseppe G. A. Celano, Fabricio Chalub, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Arantza Diaz de
Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Tomaž
Erjavec, Richárd Farkas, Jennifer Foster, Claudia
Freitas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökrmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Linh
Hà M, Dag Haug, Barbora Hladká, Radu Ion,

Elena Irimia, Anders Johannsen, Fredrik Jørgensen,
Hüner Kaşkara, Hiroshi Kanayama, Jenna Kanerva,
Boris Katz, Jessica Kenney, Natalia Kotsyba, Si-
mon Krek, Veronika Laippala, Lucia Lam, Phng
Lê Hng, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna
Missilä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Keiko Sophie Mori, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Lng Nguyn Th,
Huyn Nguyn Th Minh, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Valeria Paiva, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalnia,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Livy Real, Laura Rituma, Rudolf Rosa,
Shadi Saleh, Baiba Saulīte, Sebastian Schuster,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril
Simov, Aaron Smith, Carolyn Spadine, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Larraitz Uria, Gertjan van Noord, Viktor Varga,
Veronika Vincze, Lars Wallin, Jing Xian Wang,
Jonathan North Washington, Mats Wirén, Zdeněk
Žabokrtský, Amir Zeldes, Daniel Zeman, and
Hanzhi Zhu. 2016. Universal dependencies 1.4.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University
in Prague. http://hdl.handle.net/11234/1-1827.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word
Representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014) 12:1532–1543.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proc. of the Annual Meeting of
the Association for Computational Linguistics (short
papers).

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In AIS-
TATS. volume 1, page 6.

E.F.T.K. Sang. 2002. Introduction to the CoNLL-2002
shared task: Language-independent named entity
recognition. In Proc. of International Conference
on Natural Language Learning.

E.F.T.K. Sang and F. De Meulder. 2003. Introduc-
tion to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proc.
of International Conference on Natural Language
Learning.

359



Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided learning for bidirectional sequence classifi-
cation. In ACL. volume 7, pages 760–767.

Richard Socher, Cliff C Lin, Chris Manning, and An-
drew Y Ng. 2011. Parsing natural scenes and natu-
ral language with recursive neural networks. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML-11). pages 129–136.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst - a translation qual-
ity estimation framework. In Proc. of the An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations. pages 79–84.
http://www.aclweb.org/anthology/P13-4014.

Veselin Stoyanov and Jason Eisner. 2012. Easy-first
coreference resolution. In COLING. pages 2519–
2534.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems. pages 3104–3112.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1. Association for Computational Linguis-
tics, pages 173–180.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidi-
rectional inference with the easiest-first strategy for
tagging sequence data. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing. Associ-
ation for Computational Linguistics, pages 467–474.

M. Wainwright and M. Jordan. 2008. Graphical Mod-
els, Exponential Families, and Variational Infer-
ence. Now Publishers.

360



A Proof of Proposition 1

We provide here a detailed proof of Proposition 1.

A.1 Forward Propagation

The optimization problem is

csoftmax(z,u) = argmin −H(α)− z>α
s.t.

{
1>α = 1
0 ≤ α ≤ u.

The Lagrangian function is:

L(α, λ,µ,ν) = −H(α)− z>α+ λ(1>α− 1)
−µ>α+ ν>(α− u). (14)

To obtain the solution, we invoke the Karush-Kuhn-Tucker conditions. From the stationarity condition,
we have 0 = log(α) + 1 − z + λ1 − µ + ν, which due to the primal feasibility condition implies that
the solution is of the form:

α = exp(z + µ− ν)/Z, (15)

where Z is a normalization constant. From the complementarity slackness condition, we have that 0 <
αi < ui implies that µi = νi = 0 and therefore αi = exp(zi)/Z. On the other hand, νi > 0 implies
αi = ui. Hence the solution can be written as αi = min{exp(zi)/Z, ui}, where Z is determined such
that the distribution normalizes:

Z =
∑

i∈A exp(zi)
1−∑i/∈A ui

, (16)

with A = {i ∈ [L] | αi < ui}.

A.2 Gradient Backpropagation

We now turn to the problem of backpropagating the gradients through the constrained softmax transfor-
mation. For that, we need to compute its Jacobian matrix, i.e., the derivatives ∂αi

∂zj
and ∂αi

∂uj
for i, j ∈ [L].

Let us first express α as

αi =

{
exp(zi)(1−s)∑

j∈A exp(zj) , i ∈ A
ui, i /∈ A, (17)

where s =
∑

j /∈A uj . Note that we have ∂s/∂zj = 0, ∀j, and ∂s/∂uj = 1(j /∈ A). To compute the
entries of the Jacobian matrix, we need to consider several cases.

Case 1: i ∈ A. In this case, the evaluation of Eq. 17 goes through the first branch. Let us first compute
the derivative with respect to uj . Two things can happen: if j ∈ A, then s does not depend on uj , hence
∂αi
∂uj

= 0. Else, if j /∈ A, we have

∂αi
∂uj

=
−exp(zi) ∂s

∂uj∑
k∈A exp(zk)

= −αi/(1− s).

Now let us compute the derivative with respect to zj . Three things can happen: if j ∈ A and i 6= j, we
have

∂αi
∂zj

=
−exp(zi)exp(zj)(1− s)(∑

k∈A exp(zk)
)2

= −αiαj/(1− s). (18)

361



If j ∈ A and i = j, we have

∂αi
∂zi

= (1− s)×
exp(zi)

∑
k∈A exp(zk)− exp(zi)2(∑
k∈A exp(zk)

)2
= αi − α2

i /(1− s). (19)

Finally, if j /∈ A, we have ∂αi
∂zj

= 0.

Case 2: i /∈ A. In this case, the evaluation of Eq. 17 goes through the second branch, which means
that ∂αi

∂zj
= 0, always. Let us now compute the derivative with respect to uj . This derivative is always

zero unless i = j, in which case ∂αi
∂uj

= 1.

To sum up, we have:
∂αi
∂zj

=
{
1(i = j)αi − αiαj

1−s , if i, j ∈ A
0, otherwise,

(20)

and

∂αi
∂uj

=


− αi

1−s , if i ∈ A, j /∈ A
1, if i, j /∈ A, i = j
0, otherwise.

(21)

Therefore, we obtain:

dzj =
∑
i

∂αi
∂zj

dαi

= 1(j ∈ A)
(
αjdαj −

αj
∑

i∈A αidαi
1− s

)
= 1(j ∈ A)αj(dαj −m), (22)

and

duj =
∑
i

∂αi
∂uj

dαi

= 1(j /∈ A)
(

dαj −
∑

i∈A αidαi
1− s

)
= 1(j /∈ A)(dαj −m), (23)

where m =
∑

i∈A αidαi

1−s .

362


