
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 338–348
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Reporting Score Distributions Makes a Difference: Performance Study of
LSTM-networks for Sequence Tagging

Nils Reimers and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES

Department of Computer Science, Technische Universität Darmstadt
Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research
www.ukp.tu-darmstadt.de

Abstract

In this paper we show that reporting a
single performance score is insufficient
to compare non-deterministic approaches.
We demonstrate for common sequence tag-
ging tasks that the seed value for the ran-
dom number generator can result in statis-
tically significant (p < 10−4) differences
for state-of-the-art systems. For two re-
cent systems for NER, we observe an ab-
solute difference of one percentage point
F1-score depending on the selected seed
value, making these systems perceived ei-
ther as state-of-the-art or mediocre. Instead
of publishing and reporting single perfor-
mance scores, we propose to compare score
distributions based on multiple executions.
Based on the evaluation of 50.000 LSTM-
networks for five sequence tagging tasks,
we present network architectures that pro-
duce both superior performance as well as
are more stable with respect to the remain-
ing hyperparameters. The full experimen-
tal results are published in (Reimers and
Gurevych, 2017).1 The implementation of
our network is publicly available.2

1 Introduction

Large efforts are spent in our community on devel-
oping new state-of-the-art approaches. To docu-
ment that those approaches are better, they are ap-
plied to unseen data and the obtained performance
score is compared to previous approaches. In or-
der to make results comparable, a provided split
between train, development and test data is often

1https://arxiv.org/abs/1707.06799
2https://github.com/UKPLab/

emnlp2017-bilstm-cnn-crf

used, for example from a former shared task.

In recent years, deep neural networks were shown
to achieve state-of-the-art performance for a wide
range of NLP tasks, including many sequence tag-
ging tasks (Ma and Hovy, 2016), dependency pars-
ing (Andor et al., 2016), and machine translation
(Wu et al., 2016). The training process for neural
networks is highly non-deterministic as it usually
depends on a random weight initialization, a ran-
dom shuffling of the training data for each epoch,
and repeatedly applying random dropout masks.
The error function of a neural network is a highly
non-convex function of the parameters with the
potential for many distinct local minima (LeCun
et al., 1998; Erhan et al., 2010). Depending on the
seed value for the pseudo-random number genera-
tor, the network will converge to a different local
minimum.

Our experiments show that these different local
minima have vastly different characteristics on un-
seen data. For the recent NER system by Ma and
Hovy (2016) we observed that, depending on the
random seed value, the performance on unseen data
varies between 89.99% and 91.00% F1-score. The
difference between the best and worst performance
is statistically significant (p < 10−4) using a ran-
domization test3. In conclusion, whether this newly
developed approach is perceived as state-of-the-art
or as mediocre, largely depends on which random
seed value is selected. This issue is not limited
to this specific approach, but potentially applies
to all approaches with non-deterministic training
processes.

This large dependence on the random seed value
creates several challenges when evaluating new
approaches:

31 Million iterations. p-value adapted using the Bonferroni
correction to take the 86 tested seed values into account.

338



• Observing a (statistically significant) improve-
ment through a new non-deterministic ap-
proach might not be the result of a superior
approach, but the result of having a more fa-
vorable sequence of random numbers.

• Promising approaches might be rejected too
early, as they fail to deliver an outperformance
simply due to a less favorable sequence of
random numbers.

• Reproducing results is difficult.

To study the impact of the random seed value
on the performance we will focus on five linguis-
tic sequence tagging tasks: POS-tagging, Chunk-
ing, Named Entity Recognition, Entity Recogni-
tion4, and Event Detection. Further we will fo-
cus on Long-Short-Term-Memory (LSTM) Net-
works (Hochreiter and Schmidhuber, 1997b), as
those demonstrated state-of-the-art performance
for a wide variety of sequence tagging tasks (Ma
and Hovy, 2016; Lample et al., 2016; Søgaard and
Goldberg, 2016).

Fixing the random seed value would solve the issue
with the reproducibility, however, there is no justi-
fication for choosing one seed value over another
seed value. Hence, instead of reporting and compar-
ing a single performance, we show that comparing
score distributions can lead to new insights into the
functioning of algorithms.

Our main contributions are:

1. Showing the implications of non-deterministic
approaches on the evaluation of approaches
and the requirement to compare score distri-
butions instead of single performance scores.

2. Comparison of two recent, state-of-the-art sys-
tems for NER and showing that reporting a
single performance score can be misleading.

3. In-depth analysis of different LSTM-
architectures for five sequence tagging
tasks with respect to: superior performance,
stability of results, and importance of tuning
parameters.

4Entity Recognition labels all tokens that refer to an entity
in a sentence, also generic phrases like U.S. president.

2 Background

Validating and reproducing results is an important
activity in science to manifest the correctness of
previous conclusions and to gain new insights into
the presented approaches. Fokkens et al. (2013)
show that reproducing results is not always straight-
forward, as factors like preprocessing (e.g. tok-
enization), experimental setup (e.g. splitting data),
the version of components, the exact implementa-
tion of features, and the treatment of ties can have
a major impact on the achieved performance and
sometimes on the drawn conclusions.

For approaches with non-deterministic training pro-
cedures, like neural networks, reproducing exact
results becomes even more difficult, as randomness
can play a major role in the outcome of experiments.
The error function of a neural network is a highly
non-convex function of the parameters with the
potential for many distinct local minima (LeCun
et al., 1998; Erhan et al., 2010). The sequence of
random numbers plays a major role to which min-
ima the network converges during the training pro-
cess. However, not all minima generalize equally
well to unseen data. Erhan et al. (2010) showed
for the MNIST handwritten digit recognition task
that different random seeds result in largely varying
performances. They noted further that with increas-
ing depth of the neural network, the probability of
finding poor local minima increases.

Flat Minimum Sharp Minimum

Train/Dev Error Test Error

f(x)

Figure 1: A conceptual sketch of flat and sharp
minima from Keskar et al. (2016). The Y-axis
indicates values of the error function and the X-
axis the weight-space.

As (informally) defined by Hochreiter and Schmid-
huber (1997a), a minimum can be flat, where the
error function remains approximately constant for a
large connected region in weight-space, or it can be
sharp, where the error function increases rapidly in

339



a small neighborhood of the minimum. A concep-
tual sketch is given in Figure 1. The error functions
for training and testing are typically not perfectly
synced, i.e. the local minima on the train or devel-
opment set are not the local minima for the held-out
test set. A sharp minimum usually depicts poorer
generalization capabilities, as a slight variation re-
sults in a rapid increase of the error function. On
the other hand, flat minima generalize better on
new data (Keskar et al., 2016). Keskar et al. ob-
serve for the MNIST, TIMIT, and CIFAR dataset,
that the generalization gap is not due to over-fitting
or over-training, but due to different generaliza-
tion capabilities of the local minima the networks
converge to.

A priori it is unknown to which type of local mini-
mum a neural network will converge. Some meth-
ods like the weight initialization (Erhan et al., 2010;
Glorot and Bengio, 2010) or small-batch training
(Keskar et al., 2016) help to avoid bad (e.g. sharp)
minima. Nonetheless, the non-deterministic behav-
ior of approaches must be considered when they
are evaluated.

3 Impact of Randomness in the
Evaluation of Neural Networks

Two recent, state-of-the-art systems for NER are
proposed by Ma and Hovy (2016)5 and by Lample
et al. (2016)6. Lample et al. report an F1-score of
90.94% and Ma and Hovy report an F1-score of
91.21%. Ma and Hovy draw the conclusion that
their system achieves a significant improvement
over the system by Lample et al.

We re-ran both implementations multiple times,
each time only changing the seed value of the ran-
dom number generator. We ran the Ma and Hovy
system 86 times and the Lample et al. system,
due to its high computational requirement, for 41
times. The score distribution is depicted as a violin
plot in Figure 2. Using a Kolmogorov-Smirnov
significance test (Massey, 1951), we observe a
statistically significant difference between these
two distributions (p < 0.01). The plot reveals
that the quartiles for the Lample et al. system are
above those of the Ma and Hovy system. Further
it reveals a smaller standard deviation σ of the F1-

5https://github.com/XuezheMax/
LasagneNLP

6https://github.com/glample/tagger

scores for the Lample et al. system. Using a Brown-
Forsythe test, the standard deviations are different
with p < 0.05. Table 1 shows the minimum, the
maximum, and the median performance for the test
performances.

Figure 2: Distribution of scores for re-running the
system by Ma and Hovy (left) and Lample et al.
(right) multiple times with different seed values.
Dashed lines indicate quartiles.

Based on this observation, we draw the conclusion
that the system by Lample et al. outperforms the
system by Ma and Hovy, as their implementation
achieves a higher score distribution and shows a
lower standard deviation.

In a usual setup, approaches would be compared
on a development set and the run with the highest
development score would be used for unseen data,
i.e. be used to report the test performance. For the
Lample et al. system we observe a Spearman’s rank
correlation between the development and the test
score of ρ = 0.229. This indicates a weak correla-
tion and that the performance on the development
set is not a reliable indicator. Using the run with the
best development score (94.44%) would yield a test
performance of mere 90.31%. Using the second
best run on development set (94.28%), would yield
state-of-the-art performance with 91.00%. This dif-
ference is statistically significant (p < 0.002). In
conclusion, a development set will not necessarily
solve the issue with bad local minima.

The main difference between these two approaches
is in the generation of character-based represen-
tations: Ma and Hovy uses a Convolutional Neu-
ral Network (CNN) (LeCun et al., 1989), while
Lample et al. uses an LSTM-network. As our ex-
periments in section 6.4 show, both approaches
perform comparably if all other parameters were
kept the same. Further, we could only observe a

340



System Reported F1 # Seed values Min. F1 Median F1 Max. F1 σ

Ma and Hovy 91.21% 86 89.99% 90.64% 91.00% 0.00241
Lample et al. 90.94% 41 90.19% 90.81% 91.14% 0.00176

Table 1: The system by Ma and Hovy (2016) and Lample et al. (2016) were run multiple times with
different seed values.

Task Dataset # Configs Median Difference 95th percentile Max. Difference
POS Penn Treebank 269 0.17% 0.78% 1.55%

Chunking CoNLL 2000 385 0.17% 0.50% 0.81%
NER CoNLL 2003 406 0.38% 1.08% 2.59%

Entities ACE 2005 405 0.72% 2.10% 8.23%
Events TempEval 3 365 0.43% 1.23% 1.73%

Table 2: The table depicts the median, the 95th percentile and the maximum difference between networks
with the same hyperparameters but different random seed values.

statistically significant improvement for the tasks
POS, Chunking and Event Detection. For NER
and Entity Recognition, the difference was statis-
tically not significant given the number of tested
hyperparameters.

In the next step, we evaluated the impact of the
random seed value for the five sequence tagging
tasks described in section 4. We sampled randomly
1830 different configurations, for example different
numbers of recurrent units, and ran the network
twice, each time with a different seed value. The
results are depicted in Table 2.

The largest difference was observed for the ACE
2005 Entities dataset: Using one seed value, the net-
work achieved an F1 performance of 82.5% while
using another seed value, the network achieved a
performance of only 74.3%. Even though this is a
rare extreme case, the median difference between
different weight initializations is still large. For
example for the CoNLL 2003 NER dataset, the me-
dian difference is at 0.38% and the 95th percentile
is at 1.08%.

In conclusion, if the fact of different local minima
is not taken care of and single performance scores
are compared, there is a high chance of drawing
false conclusions and either rejecting promising
approaches or selecting weaker approaches due
to a more or less favorable sequence of random
numbers.

4 Experimental Setup

In order to find LSTM-network architectures that
perform robustly on different tasks, we selected
five classical NLP tasks as benchmark tasks: Part-
of-Speech tagging (POS), Chunking, Named Entity
Recognition (NER), Entity Recognition (Entities)
and Event Detection (Events).

For Part-of-Speech tagging, we use the benchmark
setup described by Toutanova et al. (2003). Using
the full training set for POS tagging would hin-
der our ability to detect design choices that are
consistently better than others. The error rate for
this dataset is approximately 3% (Marcus et al.,
1993), making all improvements above 97% accu-
racy likely the result of chance. A 97.24% accuracy
was achieved by Toutanova et al. (2003). Hence,
we reduced the training set size from over 38.000
sentences to the first 500 sentences. This decreased
the accuracy to about 95%.

For Chunking, we use the CoNLL 2000 shared task
setup. For Named Entity Recognition (NER), we
use the CoNLL 2003 setup. The ACE 2005 entity
recognition task annotated not only named entities,
but all words referring to an entity, e.g. the phrase
U.S. president. We use the same data split as Li
et al. (2013). For the Event Detection task, we use
the TempEval3 Task B setup. There, the smallest
extent of text, usually a single word, that expresses
the occurrence of an event, is annotated.

For the POS-task, we report accuracy and for the
other tasks we report the F1-score.

341



4.1 Model

We use a BiLSTM-network for sequence tagging
as described in (Huang et al., 2015; Ma and Hovy,
2016; Lample et al., 2016). To be able to evaluate
a large number of different network configurations,
we optimized our implementation for efficiency,
reducing by a factor of 6 the time required per
epoch compared to Ma and Hovy (2016).

4.2 Evaluated Parameters

We evaluate the following design choices and hy-
perparameters:
Pre-trained Word Embeddings. We evaluate
the Google News embeddings (G. News)7 from
Mikolov et al. (2013), the Bag of Words (Le.
BoW) as well as the dependency based embed-
dings (Le. Dep.)8 by Levy and Goldberg (2014),
three different GloVe embeddings9 from Penning-
ton et al. (2014) trained either on Wikipedia 2014
+ Gigaword 5 (GloVe1 with 100 dimensions and
GloVe2 with 300 dimensions) or on Common
Crawl (GloVe3), and the Komninos and Manand-
har (2016) embeddings (Komn.)10. We also evalu-
ate the approach of Bojanowski et al. (2016) (Fast-
Text), which trains embeddings for n-grams with
length 3 to 6. The embedding for a word is
defined as the sum of the embeddings of the n-
grams.

Character Representation. We evaluate the ap-
proaches of Ma and Hovy (2016) using Convo-
lutional Neural Networks (CNN) as well as the
approach of Lample et al. (2016) using LSTM-
networks to derive character-based representa-
tions.

Optimizer. Besides Stochastic Gradient Descent
(SGD), we evaluate Adagrad (Duchi et al., 2011),
Adadelta (Zeiler, 2012), RMSProp (Hinton, 2012),
Adam (Kingma and Ba, 2014), and Nadam (Dozat,
2015), an Adam variant that incorporates Nesterov
momentum (Nesterov, 1983) as optimizers.

Gradient Clipping and Normalization. Two
common strategies to deal with the exploding gradi-

7https://code.google.com/archive/p/
word2vec/

8https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/

9http://nlp.stanford.edu/projects/
glove/

10https://www.cs.york.ac.uk/nlp/extvec/

ent problem are gradient clipping (Mikolov, 2012)
and gradient normalization (Pascanu et al., 2013).
Gradient clipping involves clipping the gradient’s
components element-wise if it exceeds a defined
threshold. Gradient normalization has a better theo-
retical justification and rescales the gradient when-
ever the norm goes over a threshold.

Tagging schemes. We evaluate the BIO and
IOBES schemes for tagging segments.

Dropout. We compare no dropout, naive dropout,
and variational dropout (Gal and Ghahramani,
2016). Naive dropout applies a new dropout mask
at every time step of the LSTM-layers. Variational
dropout applies the same dropout mask for all time
steps in the same sentence. Further, it applies
dropout to the recurrent units. We evaluate the
dropout rates {0.05, 0.1, 0.25, 0.5}.
Classifier. We evaluate a Softmax classifier as
well as a CRF classifier as the last layer of the
network.

Number of LSTM-layers. We evaluated 1, 2, and
3 stacked BiLSTM-layers.

Number of recurrent units. For each
LSTM-layer, we selected independently
a number of recurrent units from the set
{25, 50, 75, 100, 125}.
Mini-batch sizes. We evaluate the mini-batch
sizes 1, 8, 16, 32, and 64.

5 Robust Model Evaluation

We have shown in section 3 that re-running non-
deterministic approaches multiple times and com-
paring score distributions is essential to draw cor-
rect conclusions. However, to truly understand the
capabilities of an approach, it is interesting to test
the approach with different sets of hyperparameters
for the complete network.

Training and tuning a neural network can be time
consuming, sometimes taking multiple days to train
a single instance of a network. A priori it is hard
to know which hyperparameters will yield the best
performance and the selection of the parameters
often makes the difference between mediocre and
state-of-the-art performance (Hutter et al., 2014).
If an approach yields good performance only for
a narrow set of parameters, it might be difficult
to adapt the approach to new tasks, new domains

342



or new languages, as a large range of possible pa-
rameters must be evaluated, each time requiring
a significant amount of training time. Hence it is
desirable, that the approach yields stable results for
a wide range of parameters.

In order to find approaches that result in high per-
formance and are robust against the remaining pa-
rameters, we decided to randomly sample several
hundred network configurations from the set de-
scribed in section 4.2. For each sampled configu-
ration, we compare different options, e.g. different
options for the last layer of the network. For ex-
ample, we sampled in total 975 configurations and
each configuration was trained with a Softmax clas-
sifier as well as with a CRF classifier, totaling to
1950 trained networks.

Dataset # Configs Softmax CRF
POS 111 18.9% 81.1%

∆Acc. -0.20%
Chunking 229 4.8% 95.2%

∆F1 -0.38%
NER 232 9.5% 90.5%
∆F1 -0.66%

Entities 210 13.3% 86.7%
∆F1 -0.84%

Events 202 61.9% 38.1%
∆F1 -0.15%

Average 21.7% 78.3%

Table 3: Percentages of configurations where Soft-
max or CRF classifiers demonstrated a higher test
performance.

Our results are presented in Table 3. The table
shows that for the NER task 232 configurations
were sampled randomly and for 210 of the 232
configurations (90.5%), the CRF setup achieved a
better test performance than the setup with a Soft-
max classifier. To measure the difference between
these two options, we compute the median of the
absolute differences: Let Si be the test performance
(F1-measure) for the Softmax setup for configura-
tion i and Ci the test performance for the CRF
setup. We then compute ∆F1 = median(S1 −
C1, S2 −C2, . . . , S232 −C232). For the NER task,
the median difference was ∆F1 = −0.66%, i.e.
the setup with a Softmax classifier achieved on av-
erage an F1-score of 0.66 percentage points below
that of the CRF setup.

We also evaluated the standard deviation of the F1-

scores to detect approaches that are less dependent
on the remaining hyperparameters and the random
number generator. The standard deviation σ for the
CRF-classifier is with 0.0060 significantly lower
(p < 10−3 using Brown-Forsythe test) than for the
Softmax classifier with σ = 0.0082.

6 Results

This section highlights our main insights in the
evaluation of different design choices for BiL-
STM architectures. We limit the number of results
we present for reasons of brevity. Detailed infor-
mation can be found in (Reimers and Gurevych,
2017).11

6.1 Classifier

Table 3 shows a comparison between using a Soft-
max classifier as a last layer and using a CRF classi-
fier. The BiLSTM-CRF architecture by Huang et al.
(2015) achieves a better performance on 4 out of 5
tasks. For the NER task it further achieves a 27%
lower standard deviation (statistically significant
with p < 10−3), indicating that it is less sensitive to
the remaining configuration of the network.

The CRF classifier only fails for the Event Detec-
tion task. This task has nearly no dependency be-
tween tags, as often only a single token is annotated
as an event trigger in a sentence.

We studied the differences between these two clas-
sifiers in terms of number of LSTM-layers. As
Figure 3 shows, a Softmax classifier profits from
a deep LSTM-network with multiple stacked lay-
ers. On the other hand, if a CRF classifier is
used, the effect of additional LSTM-layers is much
smaller.

6.2 Optimizer

We evaluated six optimizers with the suggested
default configuration from their respective papers.
We observed that SGD is quite sensitive towards
the selection of the learning rate and it failed in
many instances to converge. For the optimizers
SGD, Adagrad and Adadelta we observed a large
standard deviation in terms of test performance,

11https://public.ukp.informatik.
tu-darmstadt.de/reimers/Optimal_
Hyperparameters_for_Deep_LSTM-Networks.
pdf

343



Figure 3: Difference between Softmax and CRF classifier for different number of BiLSTM-layers for the
CoNLL 2003 NER dataset.

which was for the NER task at 0.1328 for SGD,
0.0139 for Adagrad, and 0.0138 for Adadelta. The
optimizers RMSProp, Adam, and Nadam on the
other hand produced much more stable results. Not
only were the medians for these three optimizers
higher, but also the standard deviation was with
0.0096, 0.0091, and 0.0092 roughly 35% smaller
in comparison to Adagrad. A large standard devia-
tion indicates that the optimizer is sensitive to the
hyperparameters as well as to the random initializa-
tion and bears the risk that the optimizer produces
subpar results.

The best result was achieved by Nadam. For 453
out of 882 configurations (51.4%), it yielded the
highest performance out of the six tested optimiz-
ers. For the NER task, it produced on average
a 0.82 percentage points better performance than
Adagrad.

Besides test performance, the convergence speed
is important in order to reduce training time. Here,
Nadam had the best convergence speed. For the
NER dataset, Nadam converged on average after 9
epochs, whereas SGD required 42 epochs.

6.3 Word Embeddings

The pre-trained word embeddings had a large im-
pact on the performance as shown in Table 4.
The embeddings by Komninos and Manandhar
(2016) resulted in the best performance for the
POS, the Entities and the Events task. For the
Chunking task, the dependency-based embeddings
of Levy and Goldberg (2014) are slightly ahead of
the Komninos embeddings, the significance level

is at p = 0.025. For NER, the GloVe embeddings
trained on common crawl perform on par with the
Komninos embeddings (p = 0.391).

We observe that the underlying word embeddings
have a large impact on the performance for all tasks.
Well suited word embeddings are especially critical
for datasets with small training sets. For the POS
task we observe a median difference of 4.97% be-
tween the Komninos embeddings and the GloVe2
embeddings.

Note we only evaluated the pre-trained embeddings
provided by different authors, but not the underly-
ing algorithms to generate these embeddings. The
quality of word embeddings depends on many fac-
tors, including the size, the quality, and the prepro-
cessing of the data corpus. As the corpora are not
comparable, our results do not allow concluding
that one approach is superior for generating word
embeddings.

6.4 Character Representation

We evaluate the approaches of Ma and Hovy (2016)
using Convolutional Neural Networks (CNN) as
well as the approach of Lample et al. (2016) using
LSTM-networks to derive character-based repre-
sentations.

Table 5 shows that character-based representations
yield a statistically significant difference only for
the POS, the Chunking, and the Events task. For
NER and Entity Recognition, the difference to not
using a character-based representation is not signif-
icant (p > 0.01).

344



Dataset Le. Dep. Le. BoW GloVe1 GloVe2 GloVe3 Komn. G. News FastText
POS 6.5% 0.0% 0.0% 0.0% 0.0% 93.5% 0.0% 0.0%

∆Acc. -0.39% -2.52% -4.14% -4.97% -2.60% -1.95% -2.28%
Chunking 60.8% 0.0% 0.0% 0.0% 0.0% 37.1% 2.1% 0.0%

∆F1 -0.52% -1.09% -1.50% -0.93% -0.10% -0.48% -0.75%
NER 4.5% 0.0% 22.7% 0.0% 43.6% 27.3% 1.8% 0.0%
∆F1 -0.85% -1.17% -0.15% -0.73% -0.08% -0.75% -0.89%

Entities 4.2% 7.6% 0.8% 0.0% 6.7% 57.1% 21.8% 1.7%
∆F1 -0.92% -0.89% -1.50% -2.24% -0.80% -0.33% -1.13%

Events 12.9% 4.8% 0.0% 0.0% 0.0% 71.8% 9.7% 0.8%
∆F1 -0.55% -0.78% -2.77% -3.55% -2.55% -0.67% -1.36%

Average 17.8% 2.5% 4.7% 0.0% 10.1% 57.4% 7.1% 0.5%

Table 4: Randomly sampled configurations were evaluated with 8 possible word embeddings. 108
configurations were sampled for POS, 97 for Chunking, 110 for NER, 119 for Entities, and 124 for Events.

The difference between the CNN approach by Ma
and Hovy (2016) and the LSTM approach by Lam-
ple et al. (2016) to derive a character-based repre-
sentations is statistically insignificant for all tasks.
This is quite surprising, as both approaches have
fundamentally different properties: The CNN ap-
proach from Ma and Hovy (2016) takes only tri-
grams into account. It is also position independent,
i.e. the network will not be able to distinguish be-
tween trigrams at the beginning, in the middle, or at
the end of a word, which can be crucial information
for some tasks. The BiLSTM approach from Lam-
ple et al. (2016) takes all characters of the word
into account. Further, it is position aware, i.e. it
can distinguish between characters at the start and
at the end of the word. Intuitively, one would think
that the LSTM approach by Lample et al. would
be superior.

6.5 Gradient Clipping and
Normalization

For gradient clipping (Mikolov, 2012) we couldn’t
observe any improvement for the thresholds of 1,
3, 5, and 10 for any of the five tasks.

Gradient normalization has a better theoretical jus-
tification (Pascanu et al., 2013) and we can confirm
with our experiments that it performs better. Not
normalizing the gradient was the best option only
for 5.6% of the 492 evaluated configurations (un-
der null-hypothesis we would expect 20%). Which
threshold to choose, as long as it is not too small
or too large, is of lower importance. In most cases,
a threshold of 1 was the best option (30.5% of the

Task No CNN LSTM
POS 4.9% 58.2% 36.9%

∆Acc. -0.90% -0.05%
Chunking 13.3% 43.2% 43.6%

∆F1 -0.20% -0.00%
NER 27.2% 36.4% 36.4%
∆F1 -0.11% -0.01%

Entities 26.8% 36.0% 37.3%
∆F1 -0.07% 0.00%

Events 20.5% 35.6% 43.8%
∆F1 -0.44% -0.04%

Average 18.5% 41.9% 39.6%

Table 5: Comparison of not using character-based
representations and using CNNs (Ma and Hovy,
2016) or LSTMs (Lample et al., 2016) to derive
character-based representations. 225 configura-
tions were sampled for POS, 241 for Chunking,
217 for NER, 228 for Entities, and 219 for Events.

cases).

We observed a large performance increase com-
pared to not normalizing the gradient. The median
increase was between 0.29 percentage points F1-
score for the Chunking task and 0.82 percentage
points for the POS task.

6.6 Dropout

Dropout is a popular method to deal with overfit-
ting for neural networks (Srivastava et al., 2014).
We could observe that variational dropout (Gal
and Ghahramani, 2016) clearly outperforms naive
dropout and not using dropout. It was the best op-

345



tion in 83.5% of the 479 evaluated configurations.
The median performance increase in comparison
to not using dropout was between 0.31 percentage
points for the POS-task and 1.98 for the Entities
task. We also observed a large improvement in
comparison to naive dropout between 0.19 percent-
age points for the POS task and 1.32 percentage
points for the Entities task. Variational dropout
showed the smallest standard deviation, indicating
that it is less dependent on the remaining hyperpa-
rameters and the random number sequence.

We further evaluated whether variational dropout
should be applied to the output units of the LSTM-
network, to the recurrent units, or to both. We
observed that applying dropout to both dimensions
gave in most cases (62.6%) the best results. The me-
dian performance increase was between 0.05 per-
centage points and 0.82 percentage points.

6.7 Further Evaluated Parameters

The tagging schemes BIO and IOBES performed
on par for 4 out of 5 tasks. For the Entities
task, the BIO scheme significantly outperformed
the IOBES scheme for 88.7% of the tested con-
figurations. The median difference was ∆F1 =
−1.01%.

For the evaluated tasks, 2 stacked LSTM-layers
achieved the best performance. For the POS-
tagging task, 1 and 2 layers performed on par. For
flat networks with a single LSTM-layer, around 150
recurrent units yielded the best performance. For
networks with 2 or 3 layers, around 100 recurrent
units per network yielded the best performance.
However, the impact of the number of recurrent
units was extremely small.

For tasks with small training sets, smaller mini-
batch sizes of 1 up to 16 appears to be a good
choice. For larger training sets sizes of 8 - 32
appears to be a good choice. Mini-batch sizes of
64 usually performed worst.

7 Conclusion

In this paper, we demonstrated that the sequence of
random numbers has a statistically significant im-
pact on the test performance and that wrong conclu-
sions can be made if performance scores based on
single runs are compared. We demonstrated this for
the two recent state-of-the-art NER systems by Ma

and Hovy (2016) and Lample et al. (2016). Based
on the published performance scores, Ma and Hovy
draw the conclusion of a significant improvement
over the approach of Lample et al. Re-executing
the provided implementations with different seed
values however showed that the implementation of
Lample et al. results in a superior score distribution
generalizing better to unseen data.

Comparing score distributions reduces the risk of
rejecting promising approaches or falsely accepting
weaker approaches. Further it can lead to new in-
sights on the properties of an approach. We demon-
strated this for ten design choices and hyperparam-
eters of LSTM-networks for five tasks.

By studying the standard deviation of scores, we
estimated the dependence on hyperparameters and
on the random seed value for different approaches.
We showed that SGD, Adagrad and Adadelta have
a higher dependence than RMSProp, Adam or
Nadam. We have shown that variational dropout
also reduces the dependence on the hyperparame-
ters and on the random seed value. As future work,
we will investigate if those methods are either less
dependent on the hyperparameters or are less de-
pendent on the random seed value, e.g. if they avoid
converging to bad local minima.

By testing a large number of configurations, we
showed that some choices consistently lead to su-
perior performance and are less dependent on the
remaining configuration of the network. Thus,
there is a good chance that these configurations
require less tuning when applied to new tasks or
domains.

Acknowledgements

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant No.
GRK 1994/1. Calculations for this research were
conducted on the Lichtenberg high performance
computer of the TU Darmstadt.

346



References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR,
abs/1603.06042.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Timothy Dozat. 2015. Incorporating Nesterov Momen-
tum into Adam.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. J. Mach. Learn. Res.,
12:2121–2159.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why Does Unsupervised Pre-training
Help Deep Learning? Journal of Machine Learning
Research, 11:625–660.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from Reproduction Problems: What Replication
Failure Teaches Us. In ACL (1), pages 1691–1701. The
Association for Computer Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoret-
ically Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 1019–1027.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS10). Society for Artificial Intelligence and Statis-
tics.

Geoffrey Hinton. 2012. Neural Networks for Machine
Learning - Lecture 6a - Overview of mini-batch gradi-
ent descent.

Sepp Hochreiter and Jürgen Schmidhuber. 1997a. Flat
Minima. Neural Computation, 9(1):1–42.

Sepp Hochreiter and Jürgen Schmidhuber. 1997b.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
CoRR, abs/1508.01991.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
2014. An Efficient Approach for Assessing Hyperpa-
rameter Importance. In Proceedings of the 31st Inter-
national Conference on International Conference on
Machine Learning - Volume 32, ICML’14, pages I–
754–I–762. JMLR.org.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2016. On Large-Batch Training for Deep Learn-
ing: Generalization Gap and Sharp Minima. CoRR,
abs/1609.04836.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Alexandros Komninos and Suresh Manandhar. 2016.
Dependency based embeddings for sentence classifi-
cation tasks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1490–1500, San Diego, California. As-
sociation for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
CoRR, abs/1603.01360.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. 1989. Back-
propagation Applied to Handwritten Zip Code Recog-
nition. Neural Computation, 1(4):541–551.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and
Klaus-Robert Müller. 1998. Efficient BackProp. In
Neural Networks: Tricks of the Trade, This Book is an
Outgrowth of a 1996 NIPS Workshop, pages 9–50, Lon-
don, UK, UK. Springer-Verlag.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 2: Short Papers, pages 302–308.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event Ex-
traction via Structured Prediction with Global Features.
In Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 73–82, Sofia, Bulgaria. Association for
Computational Linguistics.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-CRF.
CoRR, abs/1603.01354.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Comput. Lin-
guist., 19(2):313–330.

Frank J. Massey. 1951. The kolmogorov-smirnov test
for goodness of fit. Journal of the American Statistical
Association, 46(253):68–78.

Tomáš Mikolov. 2012. Statistical language models
based on neural networks. Ph.D. thesis, Brno Univer-
sity of Technology.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Representa-
tions in Vector Space. CoRR, abs/1301.3781.

347



Yurii Nesterov. 1983. A method of solving a
convex programming problem with convergence rate
O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–
376.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the Difficulty of Training Recurrent Neural
Networks. In Proceedings of the 30th International
Conference on International Conference on Machine
Learning - Volume 28, ICML’13, pages III–1310–III–
1318. JMLR.org.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Nils Reimers and Iryna Gurevych. 2017. Optimal Hy-
perparameters for Deep LSTM-Networks for Sequence
Labeling Tasks. arXiv preprint arXiv:1707.06799.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
2: Short Papers), pages 231–235, Berlin, Germany. As-
sociation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich Part-of-
speech Tagging with a Cyclic Dependency Network. In
Proceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics on Human Language Technology - Volume 1,
NAACL 2003, pages 173–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. CoRR,
abs/1609.08144.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

348


