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Abstract

This paper proposes to address the word
sense ambiguity issue in an unsupervised
manner, where word sense representations
are learned along a word sense selection
mechanism given contexts. Prior work
focused on designing a single model to
deliver both mechanisms, and thus suf-
fered from either coarse-grained represen-
tation learning or inefficient sense selec-
tion. The proposed modular approach,
MUSE, implements flexible modules to
optimize distinct mechanisms, achieving
the first purely sense-level representation
learning system with linear-time sense se-
lection. We leverage reinforcement learn-
ing to enable joint training on the pro-
posed modules, and introduce various ex-
ploration techniques on sense selection for
better robustness. The experiments on
benchmark data show that the proposed
approach achieves the state-of-the-art per-
formance on synonym selection as well as
on contextual word similarities in terms of
MaxSimC.

1 Introduction

Recently, deep learning methodologies have dom-
inated several research areas in natural language
processing (NLP), such as machine translation,
language understanding, and dialogue systems.
However, most of applications usually utilize
word-level embeddings to obtain semantics. Con-
sidering that natural language is highly ambigu-
ous, the standard word embeddings may suffer
from polysemy issues. Neelakantan et al. (2014)
pointed out that, due to triangle inequality in vec-
tor space, if one word has two different senses
but is restricted to one embedding, the sum of

the distances between the word and its synonym
in each sense would upper-bound the distance be-
tween the respective synonyms, which may be mu-
tually irrelevant, in embedding space1. Due to the
theoretical inability to account for polysemy us-
ing a single embedding representation per word,
multi-sense word representations are proposed to
address the ambiguity issue using multiple em-
bedding representations for different senses in a
word (Reisinger and Mooney, 2010; Huang et al.,
2012).

This paper focuses on unsupervised learning
from the unannotated corpus. There are two key
mechanisms for a multi-sense word representation
system in such scenario: 1) a sense selection (de-
coding) mechanism infers the most probable sense
for a word given its context and 2) a sense repre-
sentation mechanism learns to embed word senses
in a continuous space.

Under this framework, prior work focused on
designing a single model to deliver both mech-
anisms (Neelakantan et al., 2014; Li and Juraf-
sky, 2015; Qiu et al., 2016). However, the previ-
ously proposed models introduce side-effects: 1)
mixing word-level and sense-level tokens achieves
efficient sense selection but introduces ambigu-
ous word-level tokens during the representation
learning process (Neelakantan et al., 2014; Li and
Jurafsky, 2015), and 2) pure sense-level tokens
prevent ambiguity from word-level tokens but re-
quire exponential time complexity when decoding
a sense sequence (Qiu et al., 2016).

Unlike the prior work, this paper proposes
MUSE2—a novel modularization framework in-
corporating sense selection and representation
learning models, which implements flexible mod-
ules to optimize distinct mechanisms. Specifically,

1d(rock, stone) + d(rock, shake) ≥ d(stone, shake)
2The trained models and code are available at https:

//github.com/MiuLab/MUSE.
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MUSE enables linear time sense identity decoding
with a sense selection module and purely sense-
level representation learning with a sense repre-
sentation module.

With the modular design, we propose a novel
joint learning algorithm on the modules by con-
necting to a reinforcement learning scenario,
which achieves the following advantages. First,
the decision making process under reinforcement
learning better captures the sense selection mech-
anism than probabilistic and clustering methods.
Second, our reinforcement learning algorithm re-
alizes the first single objective function for modu-
lar unsupervised sense representation systems. Fi-
nally, we introduce various exploration techniques
under reinforcement learning on sense selection to
enhance robustness.

In summary, our contributions are five-fold:
• MUSE is the first system that maintains

purely sense-level representation learning
with linear-time sense decoding.
• We are among the first to leverage reinforce-

ment learning to model the sense selection
process in sense representations system.
• We are among the first to propose a single

objective for modularized unsupervised sense
embedding learning.
• We introduce a sense exploration mechanism

for the sense selection module to achieve bet-
ter flexibility and robustness.
• Our experimental results show the state-of-

the-art performance for synonym selection
and contextual word similarities in terms of
MaxSimC.

2 Related Work

There are three dominant types of approaches for
learning multi-sense word representations in the
literature: 1) clustering methods, 2) probabilis-
tic modeling methods, and 3) lexical ontology
based methods. Our reinforcement learning based
approach can be loosely connected to clustering
methods and probabilistic modeling methods.

Reisinger and Mooney (2010) first proposed
multi-sense word representations on the vector
space based on clustering techniques. With the
power of deep learning, some work exploited neu-
ral networks to learn embeddings with sense se-
lection based on clustering (Huang et al., 2012;
Neelakantan et al., 2014). Chen et al. (2014) re-
placed the clustering procedure with a word sense

disambiguation model using WordNet (Miller,
1995). Kågebäck et al. (2015) and Vu and Parker
(2016) further leveraged a weighting mechanism
and interactive process in the clustering proce-
dure. Moreover, Guo et al. (2014) leveraged bilin-
gual resources for clustering. However, most of
the above approaches separated the clustering pro-
cedure and the representation learning procedure
without a joint objective, which may suffer from
the error propagation issue. Instead, the proposed
approach, MUSE, enables joint training on sense
selection and representation learning.

Instead of clustering, probabilistic modeling
methods have been applied for learning multi-
sense embeddings in order to make the sense se-
lection more flexible, where Tian et al. (2014)
and Jauhar et al. (2015) conducted probabilis-
tic modeling with EM training. Li and Jurafsky
(2015) exploited Chinese Restaurant Process to
infer the sense identity. Furthermore, Bartunov
et al. (2016) developed a non-parametric Bayesian
extension on the skip-gram model (Mikolov
et al., 2013b). Despite reasonable modeling on
sense selection, all above methods mixed word-
level and sense-level tokens during representation
learning—unable to conduct representation learn-
ing in the pure sense level due to the complicated
computation in their EM algorithms.

Recently, Qiu et al. (2016) proposed an EM
algorithm to learn purely sense-level representa-
tions, where the computational cost is high when
decoding the sense identity sequence, because it
takes exponential time to search all sense com-
bination within a context window. Our modular
design addresses such drawback, where the sense
selection module decodes a sense sequence with
linear-time complexity, while the sense represen-
tation module remains representation learning in
the pure sense level.

Unlike a lot of relevant work that requires addi-
tional resources such as the lexical ontology (Pile-
hvar and Collier, 2016; Rothe and Schütze, 2015;
Jauhar et al., 2015; Chen et al., 2015; Iacobacci
et al., 2015) or bilingual data (Guo et al., 2014;
Ettinger et al., 2016; Šuster et al., 2016), which
may be unavailable in some language, our model
can be trained using only an unlabeled corpus.
Also, some prior work proposed to learn topical
embeddings and word embeddings jointly in or-
der to consider the contexts (Liu et al., 2015a,b),
whereas this paper focuses on learning multi-sense
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Corpus: { Smartphone companies including apple blackberry, and sony will be invited.}
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Figure 1: The MUSE architecture with a 3-step learning algorithm: 1) collocation sampling, 2) sense
selection for sense representation learning, and 3) optimizing sense selection with a reward signal from
sense representation. Reward signal is only passed to the target word to stabilize model training due to
directional architecture in the sense representation module.

word embeddings.

3 Proposed Approach: MUSE

This work proposes a framework to modularize
two key mechanisms for multi-sense word repre-
sentations: a sense selection module and a sense
representation module. The sense selection mod-
ule decides which sense to use given a text con-
text, whereas the sense representation module
learns meaningful representations based on its sta-
tistical characteristics. Unlike prior work that
must suffer from either inefficient sense selec-
tion (Qiu et al., 2016) or coarse-grained represen-
tation learning (Neelakantan et al., 2014; Li and
Jurafsky, 2015; Bartunov et al., 2016), the pro-
posed modularized framework is capable of per-
forming efficient sense selection and learning rep-
resentations in pure sense level simultaneously.

To learn sense-level representations, a sense
selection model should be first established for
sense identity decoding. On the other hand, the
sense embeddings should guide the sense selection
model when decoding a sense identity sequence.
Therefore, these two modules should be tangled.
This indicates that a naive two-stage algorithm
or two separate learning algorithms proposed by
prior work are not optimal.

By connecting the proposed formulation with
reinforcement learning literature, we design a
novel joint training algorithm. Besides, taking ad-
vantage of the form of reinforcement learning, we
are among the first to investigate various explo-
ration techniques in sense selection for unsuper-

vised sense embedding learning.

3.1 Model Architecture

Our model architecture is illustrated in Figure 1,
where there are two modules in optimization.

3.1.1 Sense Selection Module

Formally speaking, given a corpus C, vocabulary
W , and the t-th word Ct = wi ∈ W , we would
like to find the most probable sense zik ∈ Zi,
where Zi is the set of senses in word wi. As-
suming that a word sense is determined by the
local context, we exploit a local context C̄t =
{Ct−m, · · · , Ct+m} for sense selection according
to the Markov assumption, where m is the size
of a context window. Then we can either for-
mulate a probabilistic policy π(zik | C̄t) about
sense selection or estimate the individual likeli-
hood q(zik | C̄t) for each sense identity.

To ensure efficiency, here we exploit a linear
neural architecture that takes word-level input to-
kens and outputs sense-level identities. The ar-
chitecture is similar to continuous bag-of-words
(CBOW) (Mikolov et al., 2013a). Specifically,
given a word embedding matrix P , the local con-
text can be modeled as the summation of word em-
beddings from its context C̄t. The output can be
formulated with a 3-mode tensorQ, whose dimen-
sions denote words, senses, and latent variables.
Then we can model π(zik | C̄t) or q(zik | C̄t) cor-
respondingly. Here we model π(·) as a categorical
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distribution using a softmax layer:

π(zik | C̄t) =
exp(QTik

∑
j∈C̄t

Pj)∑
k′∈Zi

exp(QTik′
∑

j∈C̄t
Pj)

.

(1)
On the other hand, the likelihood of selecting dis-
tinct sense identities, q(zik | C̄t), is modeled as
a Bernoulli distribution with a sigmoid function
σ(·):

q(zik | C̄t) = σ(QTik
∑
j∈C̄t

Pj). (2)

Different modeling approaches require different
learning methods, especially for the unsupervised
setting. We leave the corresponding learning al-
gorithms in § 3.2. Finally, with a built sense se-
lection module, we can apply any selection algo-
rithm such as a greedy selection strategy to infer
the sense identity zik given a word wi with its con-
text Ct.

We note that modularized model enables effi-
cient sense selection by leveraging word-level to-
kens, while remaining purely sense-level tokens in
the representation module. Specifically, if n de-
notes maxk |Zk|, decoding L words takes O(nL)
senses to be searched due to independent sense
selection. The prior work using a single model
with purely sense-level tokens (Qiu et al., 2016)
requires exponential time to calculate the collo-
cation energy for every possible combination of
sense identities within a context window, O(n2m),
for a single target sense. Further, Qiu et al. (2016)
took an additional sequence decoding step with
quadratic time complexity O(n4mL), based on
an exponential number n2m in the base unit. It
demonstrates the achievement about sense infer-
ence efficiency in our proposed model.

3.1.2 Sense Representation Module
The semantic representation learning is typically
formulated as a maximum likelihood estimation
(MLE) problem for collocation likelihood. In this
paper, we use the skip-gram formulation (Mikolov
et al., 2013b) considering that it requires less
training time, where only two sense identities
are required for stochastic training. Other pop-
ular candidates, like GloVe (Pennington et al.,
2014) and CBOW (Mikolov et al., 2013a), require
more sense identities to be selected as input and
thus not suitable for our scenario. For example,
GloVe (Pennington et al., 2014) takes computa-
tionally expensive collocation counting statistics

for each token in a corpus as input, which requires
sense selection for every occurrence of the target
word across the whole corpus for a single opti-
mization step.

To learn the representations, we first create in-
put sense representation matrix U and collocation
estimation matrix V as the learning targets. Given
a target word wi and collocated word wj with cor-
responding local contexts, we map them to their
sense identities as zik and zjl by the sense se-
lection module, and maximize the sense colloca-
tion log likelihood logL(·). A natural choice of
the likelihood function is formulated as a categor-
ical distribution over all possible collocated senses
given the target sense zik:

max
U,V

logL(zjl | zik) = log
exp(UTzik

Vzjl
)∑

zuv
exp(UTzik

Vzuv)
.

(3)
Instead of enumerating all possible collocated
senses which is computationally expensive, we
use the skip-gram objective (4) (Mikolov et al.,
2013b) to approximate (3) as shown in the green
block of Figure 1.

max
U,V

log L̄(zjl | zik) = log σ(UTzik
Vzjl

) (4)

+
M∑
v=1

Ezuv∼pneg(z)[log σ(−UTzik
Vzuv)],

where pneg(z) is the distribution over all senses
for negative samples. In our experiment with |Zi|
senses for word wi, we use (1/|Zi|) word-level
unigram as sense-level unigram for efficiency and
the 3/4-th power trick in Mikolov et al. (2013b).

We note that our modular framework can easily
maintain purely sense-level tokens with an arbi-
trary representation learning model. In contrast,
most related work using probabilistic modeling
(Tian et al., 2014; Jauhar et al., 2015; Li and Juraf-
sky, 2015; Bartunov et al., 2016) binded sense rep-
resentations with the sense selection mechanism,
so efficient sense selection by leveraging word-
level tokens can be achieved only at the cost of
mixing word-level and sense-level tokens in their
representation learning process.

3.2 Learning
Without the supervised signal for the proposed
modules, it is desirable to connect two modules
in a way where they can improve each other by
their own estimations. First, a trivial way is to for-
ward the prediction of the sense selection module
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to the representation module. Then we cast the es-
timated collocation likelihood as a reward signal
for the selected sense for effective learning.

To realize the above procedure, we cast the
learning problem a one-step Markov decision pro-
cess (MDP) (Sutton and Barto, 1998), where the
state, action, and reward correspond to context C̄t,
sense zik, and collocation log likelihood log L̄(·),
respectively. Based on different modeling meth-
ods ((1) or (2)) in the sense selection module,
we connect the model to respective reinforcement
learning algorithms to solve the MDP. Specifically,
we refer (1) to policy distribution and refer (2) to
Q-value estimation in the reinforcement learning
literature.

The proposed MDP framework embodies sev-
eral nuances of sense selection. First, the deci-
sion of a word sense is Markov: taking the whole
corpus into consideration is not more helpful than
a handful of necessary local contexts. Second,
the decision making in MDP exploits a hard de-
cision for selecting sense identity, which captures
the sense selection process more naturally than a
joint probability distribution among senses (Qiu
et al., 2016). Finally, we exploit the reward mech-
anism in MDP to enable joint training: the estima-
tion of sense representation is treated as a reward
signal to guide sense selection. In contrast, the
decision making under clustering (Huang et al.,
2012; Neelakantan et al., 2014) considers the sim-
ilarity within clusters instead of the outcome of a
decision using a reward signal as MDP.

3.2.1 Policy Gradient Method
Because (1) fits a valid probability distribution, an
intuitive optimization target is the expectation of
resulting collocation likelihood among each sense.
In addition, as the skip-gram formulation in (4) is
unidirectional (L̄(zik | zjl) 6= L̄(zjl | zik)), we
perform one-side optimization for the target sense
zik to stabilize model training3. That is, for the
target word wi and the collocated word wj given
respective contexts C̄t and C̄t′ (0 < |t− t′| ≤ m),
we first draw a sense zjl for wj from the policy
π(· | C̄t′) and optimize the expected collocation
likelihood for the target sense zik as follows,

max
P,Q

Ezik∼π(·|C̄t)[log L̄(zjl | zik)]. (5)

Note that (4) can be merged into (5) as a sin-
gle objective. The objective is differentiable and

3We observe about 4% performance drop by optimizing
input selection zik and output selection zjl simultaneously.

supports stochastic optimization (Lei et al., 2016),
which uses a stochastic sample zik for optimiza-
tion.

However, there are two possible disadvantages
in this formulation. First, because the policy as-
sumes the probability distribution in (1), optimiz-
ing the selected sense must affect the estimation
of the other senses. Second, if applying stochastic
gradient ascent to optimizing (5), it would always
lower the probability estimation for the selected
sense zik even if the model accurately selects the
right sense. The detailed proof is in Appendix A.

3.2.2 Value-Based Method
To address the above issues, we apply the Q-
learning algorithm (Mnih et al., 2013). Instead of
maintaining a probabilistic policy for sense selec-
tion, Q-learning estimates the Q-value (resulting
collocation log likelihood) for each sense candi-
date directly and independently. Thus, the estima-
tion of unselected senses may not be influenced by
the selected one. Note that in one-step MDP, the
reward is equivalent to the Q-value, so we will use
reward and Q-value interchangeably, hereinafter,
based on the context.

We further follow the convention of recent neu-
ral reinforcement learning by reducing the re-
ward range to aid model training (Mnih et al.,
2013). Specifically, we replace the log likelihood
log L̄(·) ∈ (− inf, 0] with the likelihood L̄(·) ∈
[0, 1] as the reward function. Due to the mono-
tonic operation in log(), the relative ordering of
the reward remains the same.

Furthermore, we exploit the probabilistic na-
ture of likelihood for Q-learning. To elaborate,
as Q-learning is used to approximate the Q-value
for each action in typical reinforcement learning,
most literature adopted square loss to characterize
the discrepancy between the target and estimated
Q-values (Mnih et al., 2013). In our setting where
the Q-value/reward is a likelihood function, our
model exploits cross-entropy loss to better capture
the characteristics of probability distribution.

Given that the collocation likelihood in (4) is
an approximation to the original categorical dis-
tribution with a softmax function shown in (3)
(Mikolov et al., 2013b), we revise the formulation
by omitting the negative sampling term. The re-
sulting formulation L̂(·) is a Bernoulli distribution
indicating whether zjl collocates or not given zik:

L̂(zjl | zik) = σ(UTzik
Vzjl

). (6)
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There are three advantages about using L̂(·) in-
stead of approximated L̄(·) and original L(·).
First, regarding the variance of estimation, L̂(·)
better captures L(·) than L̄(·) because L̄(·) in-
volves sampling:

V ar(L̄(·)) ≥ V ar(L̂(·)) = V ar(L(·)) = 0. (7)

Second, regarding the relative ordering of estima-
tion, for any two collocated senses zjl and zjl′ with
a target sense zik, the following equivalence holds:

L(zjl | zik) < L(zjl′ | zik) (8)

⇔ L̄(zjl | zik) < L̄(zjl′ | zik)
⇔ L̂(zjl | zik) < L̂(zjl′ | zik)

Third, for collocation computation, L(·) requires
all sense identities and L̄(·) requires (M+1) sense
identities, whereas L̂(·) only requires 1 sense iden-
tity. In sum, the proposed L̂(·) approximates L(·)
with no variance, no “bias” (in terms of relative
ordering), and significantly less computation.

Finally, because both target distribution L̂(·)
and estimated distribution q(·) in (2) are Bernoulli
distributions, we follow the last section to conduct
one-side optimization by fixing a collocated sense
zjl and optimize the selected sense zik with cross
entropy as

min
P,Q

H(L̂(zik | zjl), q(zik | C̄t)). (9)

3.2.3 Joint Training
To jointly train sense selection and sense represen-
tation modules, we first select a pair of the collo-
cated senses, zik and zjl, based on the sense se-
lection module with any selecting strategy (e.g.
greedy), and then optimize the sense representa-
tion module and the sense selection module using
the above derivations. Algorithm 1 describes the
proposed MUSE model training procedure.

As modular frameworks, the major distinc-
tion between our modular framework and two-
stage clustering-representation learning frame-
work (Neelakantan et al., 2014; Vu and Parker,
2016) is that we establish a reward signal from the
sense representation to the sense selection module
to enable immediate and joint optimization.

3.3 Sense Selection Strategy
Given a fitness estimation for each sense, exploit-
ing the greedy sense is the most popular strat-
egy for clustering algorithms (Neelakantan et al.,

Algorithm 1: Learning Algorithm

for wi = Ct ∈ C do
sample wj = Ct′(0 < |t′ − t| ≤ m);
zik = select(Ct, wi);
zjl = select(Ct′ , wj);
optimize U, V by (4) for the sense
representation module;

optimize P,Q by (5) or (9) for the sense
selection module;

2014; Kågebäck et al., 2015) and hard-EM algo-
rithms (Qiu et al., 2016; Jauhar et al., 2015) in
literature. However, there are two incentives to
conduct exploration. First, in the early training
stage when the fitness is not well estimated, it is
desirable to explore underestimated senses. Sec-
ond, due to high ambiguity in natural language,
sometimes multiple senses in a word would fit
in the same context. The dilemma between ex-
ploring sub-optimal choices and exploiting the
optimal choice is called exploration-exploitation
trade-off in reinforcement learning (Sutton and
Barto, 1998).

We introduce exploration mechanisms for sense
selection for both policy gradient and Q-learning.
For policy gradient, we sample the policy distri-
bution to approximate the expectation in (5). Be-
cause of the flexible formulation of Q-learning, the
following classic exploration mechanisms are ap-
plied to sense selection:
• Greedy: selects the sense with the largest Q-

value (no exploration).
• ε-Greedy: selects a random sense with ε

probability, and adopts the greedy strategy
otherwise (Mnih et al., 2013).
• Boltzmann: samples the sense based on the

Boltzmann distribution modeled by Q-value.
We directly use (1) as the Boltzmann distri-
bution for simplicity.

We note that Q-learning with Boltzmann sampling
yields the same sampling process as policy gradi-
ent but different optimization objectives. To our
best knowledge, we are among the first to ex-
plore several exploration strategies for unsuper-
vised sense embedding learning.

In the following sections, MUSE-Policy de-
notes the proposed MUSE model with policy
learning and MUSE-Greedy denotes the model us-
ing corresponding sense selection strategy for Q-
learning.
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4 Experiments

We evaluate our proposed MUSE model in both
quantitative and qualitative experiments.

4.1 Experimental Setup

Our model is trained on the April 2010 Wikipedia
dump (Shaoul and Westbury, 2010), which con-
tains approximately 1 billion tokens. For fair
comparison, we adopt the same vocabulary set
as Huang et al. (2012) and Neelakantan et al.
(2014). For preprocessing, we convert all words to
their lower cases, apply the Stanford tokenizer and
the Stanford sentence tokenizer (Manning et al.,
2014), and remove all sentences with less than 10
tokens. The number of senses per word in Q is set
to 3 as the prior work (Neelakantan et al., 2014).

In the experiments, the context window size
is set to 5 (|C̄t| = 11). Subsampling tech-
nique introduced by word2vec (Mikolov et al.,
2013b) is applied to accelerate the training pro-
cess. The learning rate is set to 0.025. The em-
bedding dimension is 300. We initialize Q and V
as zeros, and P and U from uniform distribution
[−√

1/100,
√

1/100] such that each embedding
has unit length in expectation (Lei et al., 2015).
Our model uses 25 negative senses for negative
sampling in (4). We use ε = 5% for ε-Greedy
sense selection strategy

In optimization, we conduct mini-batch training
with 2048 batch size using the following proce-
dure: 1) select senses in the batch; 2) optimize
U, V using stochastic training within the batch
for efficiency; 3) optimize P,Q using mini-batch
training for robustness.

4.2 Experiment 1: Contextual Word
Similarity

To evaluate the quality of the learned sense em-
beddings, we compute the similarity score be-
tween each word pair given their respective lo-
cal contexts and compare with the human-judged
score using Stanford’s Contextual Word Similari-
ties (SCWS) dataset (Huang et al., 2012). Specifi-
cally, given a list of word pairs with correspond-
ing contexts, S = {(wi, C̄t, wj , C̄t′)}, we cal-
culate the Spearman’s rank correlation ρ between
human-judged similarity and model similarity es-
timations4. Two major contextual similarity esti-

4For example, human-judged similarity between “... east
bank of the Des Moines River ...” and “... basis of all money
laundering ...” is 2.5 out of 10.0 in SCWS dataset (Huang

Method MaxSimC AvgSimC

Huang et al. (2012) 26.1 65.7
Neelakantan et al. (2014) 60.1 69.3
Tian et al. (2014) 63.6 65.4
Li and Jurafsky (2015) 66.6 66.8
Bartunov et al. (2016) 53.8 61.2
Qiu et al. (2016) 64.9 66.1
MUSE-Policy 66.1 67.4
MUSE-Greedy 66.3 68.3
MUSE-ε-Greedy 67.4† 68.6
MUSE-Boltzmann 67.9† 68.7

Table 1: Spearman’s rank correlation ρ x100 on
the SCWS dataset. † denotes superior performance
to all unsupervised competitors.

mations are introduced by Reisinger and Mooney
(2010): AvgSimC and MaxSimC. AvgSimC is a
soft measurement that addresses the contextual in-
formation with a probability estimation:

AvgSimC(wi, C̄t, wj , C̄t′) =
|Zi|∑
k=1

|Zj |∑
l=1

π(zik|C̄t)π(zjl|C̄t′)d(zik, zjl),

where d(zik, zjl) refers to the cosine similarity be-
tween Uzik

and Uzjl
. AvgSimC weights the sim-

ilarity measurement of each sense pair zik and
zjl by their probability estimations. On the other
hand, MaxSimC is a hard measurement that only
considers the most probable senses:

MaxSimC(wi, C̄t, wj , C̄t′) = d(zik, zjl),
zik = arg max

zik′
π(zik′ |C̄t),

zjl = arg max
zjl′

π(zjl′ |C̄t′).

The baselines for comparison include classic
clustering methods (Huang et al., 2012; Neelakan-
tan et al., 2014), EM algorithms (Tian et al., 2014;
Qiu et al., 2016; Bartunov et al., 2016), and Chi-
nese Restaurant Process (Li and Jurafsky, 2015)5,
where all approaches are trained on the same cor-
pus except Qiu et al. (2016) used more recent
Wikipedia dumps. The embedding sizes of all
baselines are 300, except 50 in Huang et al. (2012).
For every competitor with multiple settings, we re-
port the best performance in each similarity mea-
surement setting and show in Table 1.

et al., 2012).
5We run Li and Jurafsky (2015)’s released code on our

corpus for fair comparison.
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Method ESL-50 RD-300 TOEFL-80

1) Conventional Word Embedding
Global Context 47.73 45.07 60.87
Skip-Gram 52.08 55.66 66.67
2) Word Sense Disambiguation
IMS+SG 41.67 53.77 66.67
3) Unsupervised Sense Embeddings
EM 27.08 33.96 40.00
MSSG 57.14 58.93 78.26
CRP 50.00 55.36 82.61
MUSE-Policy 52.38 51.79 79.71
MUSE-Greedy 57.14 58.93 79.71
MUSE-ε-Greedy 61.90† 62.50† 84.06†

MUSE-Boltzmann 64.29† 66.07† 88.41†

4) Supervised Sense Embeddings
Retro-GC 63.64 66.20 71.01
Retro-SG 56.25 65.09 73.33

Table 2: Accuracy on synonym selection. † de-
notes superior performance to all unsupervised
competitors.

Our MUSE model achieves the state-of-the-art
performance on MaxSimC, demonstrating supe-
rior quality on independent sense embeddings. On
the other hand, MUSE achieves comparable per-
formance with the best competitor in terms of
AvgSimC (68.7 vs. 69.3), while MUSE outper-
forms the same competitor significantly in terms
of MaxSimC (67.9 vs. 60.1). The results demon-
strate not only the high quality of sense represen-
tations but also accurate sense selection.

From the application perspective, MaxSimC
refers to a typical scenario using single embedding
per word, while AvgSimC employs multiple sense
vectors simultaneously per word, which not only
brings computational overhead but changes exist-
ing neural architecture for NLP. Hence, we argue
that MaxSimC better characterize practical usage
of a sense representation system than AvgSimC.

Among various learning methods for MUSE,
policy gradient performs worst, echoing our ar-
gument in § 3.2.1. On the other hand, the supe-
rior performance of Boltzmann sampling and ε-
Greedy over Greedy selection demonstrates the ef-
fectiveness of exploration.

Finally, replacing L̄(·) with L̂(·) as the re-
ward signal yields 2.3 times speedup for MUSE-
ε-Greedy and 1.3 times speedup for MUSE-
Boltzmann to reach 67.0 in MaxSimC, which
demonstrates the efficacy of proposed approxima-

tion L̂(·) over typical L̄(·) in terms of conver-
gence.

4.3 Experiment 2: Synonym Selection

We further evaluate our model on synonym
selection using multi-sense word representa-
tions (Jauhar et al., 2015). Three standard syn-
onym selection datasets, ESL-50 (Turney, 2001),
RD-300 (Jarmasz and Szpakowicz, 2004), and
TOEFL-80 (Landauer and Dumais, 1997), are per-
formed. In the datasets, each question consists of
a question word wQ and four answer candidates
{wA, wB, wC , wD}, and the goal is to select the
most semantically synonymous choice among the
four candidates. For example, in the TOEFL-80
dataset, a question shows {(Q) enormously, (A)
appropriately, (B) uniquely, (C) tremendously, (D)
decidedly}, and the answer is (C). For multi-sense
representations system, it selects the synonym of
the question word wQ using the maximum sense-
level cosine similarity as a proxy of the semantic
similarity (Jauhar et al., 2015).

Our model is compared with the following base-
lines: 1) conventional word embeddings: global
context vectors (Huang et al., 2012) and skip-
gram (Mikolov et al., 2013b); 2) applying su-
pervised word sense disambiguation using the
IMS system and then applying skip-gram on dis-
ambiguated corpus (IMS+SG) (Zhong and Ng,
2010); 3) unsupervised sense embeddings: EM
algorithm (Jauhar et al., 2015), multi-sense skip-
gram (MSSG) (Neelakantan et al., 2014), Chi-
nese restaurant process (CRP) (Li and Jurafsky,
2015), and the MUSE models; 4) supervised
sense embeddings with WordNet (Miller, 1995):
retrofitting global context vectors (Retro-GC) and
retrofitting skip-gram (Retro-SG) (Jauhar et al.,
2015).

Among unsupervised sense embedding ap-
proaches, CRP and MSSG refer to the baselines
with highest MaxSimC and AvgSimC in Table 1
respectively. Here we report the setting for base-
lines based on the best average performance in this
task. We also show the performance of supervised
sense embeddings as an upperbound of unsuper-
vised methods due to the usage of additional su-
pervised information from WordNet.

The results are shown in Table 2, where our
MUSE-ε-Greedy and MUSE-Boltzmann signifi-
cantly outperform all unsupervised sense embed-
dings methods, echoing the superior quality of our

334



Context k-NN Senses
· · · braves finish the season in tie with the los angeles dodgers · · · scoreless otl shootout 6-6 hingis 3-3 7-7 0-0

· · · his later years proudly wore tie with the chinese characters for · · · pants trousers shirt juventus blazer socks anfield

· · · of the mulberry or the blackberry and minos sent him to · · · cranberries maple vaccinium apricot apple

· · · of the large number of blackberry users in the us federal · · · smartphones sap microsoft ipv6 smartphone

· · · shells and/or high explosive squash head hesh and/or anti-tank · · · venter thorax neck spear millimeters fusiform

· · · head was shaven to prevent head lice serious threat back then · · · shaved thatcher loki thorax mao luthor chest

· · · appoint john pope republican as head of the new army of · · · multi-party appoints unicameral beria appointed

Table 3: Different word senses are selected by MUSE according to different contexts. The respective
k-NN (sorted by collocation likelihood) senses are shown to indicate respective semantic meanings.

sense vectors in last section. MUSE-Boltzmann
also outperforms the supervised sense embeddings
except 1 setting without any supervised signal dur-
ing training. Finally, the MUSE methods with
proper exploration outperform all unsupervised
baselines consistently, demonstrating the impor-
tance of exploration.

4.4 Qualitative Analysis

We further conduct qualitative analysis to check
the semantic meanings of different senses learned
by MUSE with k-nearest neighbors (k-NN) us-
ing sense representations. In addition, we provide
contexts in the training corpus where the sense will
be selected to validate the sense selection mod-
ule. Table 3 shows the results. The learned sense
embeddings of the words “tie”, “blackberry”, and
“head” clearly correspond to correct senses under
different contexts.

Since we address an unsupervised setting that
learns sense embeddings from unannotated cor-
pus, the discovered senses highly depend on the
training corpus. From our manual inspection, it is
common for our model to discover only two senses
in a word, like “tie” and “blackberry”. However,
we maintain our effort in developing unsupervised
sense embeddings learning methods in this work,
and the number of discovered sense is not a focus.

5 Conclusion

This paper proposes a novel modularized frame-
work for unsupervised sense representation learn-
ing, which supports not only the flexible de-
sign of modular tasks but also joint optimization
among modules. The proposed model is the first
work that implements purely sense-level represen-
tation learning with linear-time sense selection,
and achieves the state-of-the-art performance on
benchmark contextual word similarity and syn-

onym selection tasks. In the future, we plan to in-
vestigate reinforcement learning methods to incor-
porate multi-sense word representations for down-
stream NLP tasks.
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A Doubly Stochastic Gradient

To derive doubly stochastic gradient for equation
(5), we first denote (5) as J(Θ) with Θ = {P,Q}
and resolve the expectation form as:

J(θ) = Ezik∼π(·|C̄t)[log L̄(zjl | zik)]
=

∑
k

π(zik | C̄t) log L̄(zjl|zik).

Denote Θ = {P,Q} as the parameter set for pol-
icy π. The gradient with respect to Θ should be:

∂J(θ)
∂Θ

=
∂

∂Θ

∑
k

π(zik | C̄t) log L̄(zjl|zik)

=
∑
k

log L̄(zjl|zik)∂π(zik | C̄t)
∂Θ

=
∑
k

log L̄(zjl|zik)(∂ log π(zik | C̄t)
∂Θ

)(π(zik | C̄t))

= Ezik∼π(·|C̄t)[log L̄(zjl | zik)∂ log π(zik | C̄t)
∂Θ

]

Accordingly, if we conduct typical stochastic gra-
dient ascent training on J(Θ) with respect to Θ
from samples zik with a learning rate η, the up-
date formula will be:

Θ = Θ + η log L̄(zjl | zik)∂ log π(zik | C̄t)
∂Θ

.

However, the collocation log likelihood should al-
ways be non-positive: log L̄(zjl | zik) ≤ 0.
Therefore, as long as the collocation log likelihood
log L̄(zjl | zik) is negative, the update formula is
to minimize the likelihood of choosing zik, despite
the fact that zik may be good choices. On the other
hand, if the log likelihood reaches 0, according to
(4), it indicates:

log L̄(zjl | zik) = 0⇒ L̄(zjl | zik) = 1

⇒ UTzik
Vzjl
→∞, UTzik

Vzuv →∞, ∀zuv,
which leads to computational overflow from an in-
finity value.
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