
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 316–320
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

VecShare: A Framework for Sharing Word Representation Vectors

Jared Fernandez and Zhaocheng Yu and Doug Downey
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

{jared.fern|zhaochengyu2017}@u.northwestern.edu
ddowney@eecs.northwestern.edu

Abstract

Many Natural Language Processing
(NLP) models rely on distributed vector
representations of words. Because the
process of training word vectors can
require large amounts of data and compu-
tation, NLP researchers and practitioners
often utilize pre-trained embeddings
downloaded from the Web. However,
finding the best embeddings for a given
task is difficult, and can be computation-
ally prohibitive. We present a framework,
called VecShare, that makes it easy to
share and retrieve word embeddings on
the Web. The framework leverages a
public data-sharing infrastructure to host
embedding sets, and provides automated
mechanisms for retrieving the embed-
dings most similar to a given corpus.
We perform an experimental evaluation
of VecShare’s similarity strategies, and
show that they are effective at efficiently
retrieving embeddings that boost accuracy
in a document classification task. Finally,
we provide an open-source Python library
for using the VecShare framework.1

1 Introduction

Word embeddings capture syntactic and semantic
properties of words, and are a key component of
many modern NLP models (Turian et al., 2010).
However, high-quality embeddings can be expen-
sive to train. As a result, rather than training their
own embeddings, NLP researchers and practition-
ers often download pre-trained embeddings from
the Web, e.g. (Limsopatham and Collier, 2016;
Cheng et al., 2016).

1https://github.com/JaredFern/VecShare

However, existing methods for sharing embed-
dings on the Web are suboptimal. Current prac-
tice primarily consists of contributors posting em-
bedding sets to their own Web sites. No central
embedding repository exists, and it is difficult for
users to know which embedding sets are available.
Furthermore, determining the utility of an embed-
ding set for a particular NLP task entails signifi-
cant time and computational costs, as users must
manually download and evaluate multiple com-
plete embedding sets. Methods exist for automati-
cally scoring an embedding set, but these are lim-
ited to specific tasks and lack integration with ex-
isting code bases (Faruqui and Dyer, 2014).

Our goal in this paper is to introduce a frame-
work that makes sharing word embeddings easier
for NLP researchers and practitioners. It should be
simple and fast to post, browse, and retrieve em-
beddings from a public data store. Additionally,
integration with existing NLP codebases should be
more seamless: software libraries should automat-
ically identify and download the particular embed-
dings that are likely to be relevant to a user’s cor-
pus.

This paper presents VecShare, a framework for
sharing word embeddings. As its data store,
it uses an existing public data-sharing platform,
which provides searching and browsing capabil-
ity. To solve the critical challenge of helping
users quickly find relevant embeddings, we in-
troduce embedding indexers. The indexers com-
pute and share compact representations, called sig-
natures, for each embedding set. Users employ
a software library that downloads the signatures
and compares them against the user’s corpus. Us-
ing the signatures, the library efficiently evaluates
the utility of each shared embedding set and de-
termines which sets are most likely to be rele-
vant. The library can then automatically download
the relevant embeddings and make them available

316



Contributors

Public Embedding StoreTrained 
Embeddings

Embedding
Sets

Indexers

Users

Signatures and 
Embeddings

Embedding
Set

Signatures

Figure 1: The VecShare Framework.

within the user’s code. Finally, VecShare is an
open source framework: new embeddings, index-
ers, and signature methods can be independently
added at any time.

We perform experiments evaluating different
signature methods in selecting embeddings for
document classification tasks, and demonstrate
that an ensemble signature based on simple fea-
tures (e.g. vocabulary overlap with the user’s cor-
pus, or similarities between a sample of embed-
ding pairs) can select helpful embeddings. We
release a Python library for NLP researchers and
practitioners that can query the embedding library,
and automatically select and download relevant
embeddings for a given corpus.

2 The VecShare Framework

The VecShare framework is illustrated in Figure 1.
Contributors upload embedding sets to a Public
Embedding Store, hosted on a public data-sharing
platform. Indexers periodically poll the embed-
ding store, detecting and indexing newly uploaded
embedding sets. For each embedding set, index-
ers store a signature that compactly represents the
content of the embedding set. The indexer uses
these signatures to return relevant embedding sets
to users. A user can then retrieve embeddings for
their particular corpus from the data store, using a
software library built for this purpose.

The current VecShare implementation uses the
public data sharing website data.world as its em-
bedding store.2 We chose data.world for its ease of
use and robustness, but any publicly-available data
share that allows search by tags and programmatic
access is sufficient to house VecShare. Below, we
describe the details of the framework.

2http://data.world/

2.1 Contributors

A contributor who has computed a set of word em-
beddings adds the embeddings to VecShare by up-
loading the data to the share, following a simple
standard format with n + 1 fields where the first
field is a word, and the remaining fields give the
n-dimensional embedding of the word. The con-
tributor tags the data set with a designated tag so
that indexers can automatically identify that the
data set is an indexable word embedding set. For
embedding sets to be applicable to certain kinds
of signatures, contributors can also elect to up-
load additional metadata with their embeddings
(in our initial implementation, metadata includes
a frequency ranking of terms in the corpus, and
the total number of tokens used to construct the
embeddings).

2.2 Indexers and Signatures

Indexers periodically poll the embedding store,
looking for new embedding sets uploaded by con-
tributors. For each embedding set, the indexer
computes and stores a signature designed to cap-
ture characteristics of the embeddings. To esti-
mate the relevance of each embedding set for the
user’s task, these signatures are later compared to
corresponding signatures created from the user’s
corpus. Thus, each signature method has an asso-
ciated similarity measure, which takes in a pair of
signatures (one from a VecShare embedding set,
and the other from the user’s corpus) and outputs
a numeric similarity score for the pair.

We explore two primary signature methods in
this paper. The first, VocabRk, consists of (up to)
the Tv most frequent words in the embedding cor-
pus, excluding a set of stop words. The similar-
ity method is the negative average rank of the sig-
nature words within the user’s frequency-ordered
vocabulary. Words not in the user’s corpus are as-
signed a rank of T . Thus, the most similar embed-
ding set under the VocabRk signature is thus the
one with the lowest average rank.

The VocabRk signature method relies only on
vocabulary overlap, and entirely ignores the em-
beddings themselves. We also experiment with a
second signature method that does utilize the em-
beddings. The SimCorr signature for a set of em-
beddings E consists of the embeddings for the Ts

most frequent words in E’s corpus (again exclud-
ing stop words). To estimate the similarity be-
tween the user’s corpus C and the embeddings E,

317



the SimCorr method first computes a set of embed-
dings on the user’s corpus. For all words found in
both E’s signature and in the user’s corpus, Sim-
Corr computes all pairwise cosine similarities be-
tween pairs of E embeddings, and pairs of C em-
beddings. The Pearson correlation coefficient be-
tween the E-based cosine similarities and the C-
based ones is taken as the SimCorr similarity mea-
sure. Thus, two embedding sets that estimate sim-
ilarity of terms in a similar manner will be deemed
similar according the SimCorr measure, even if
the vector values of the embeddings differ substan-
tially between the two sets.

The indexers make their signatures available to
users by simply sharing a signature data set on the
public data store, which is read by the VecShare
software library. Like the other components of
VecShare, the indexers of the framework are ex-
tensible – new indexers, signature and similarity
measures can be created at any time.

2.3 Libraries

Users access the VecShare framework using a
code library. Embeddings can be requested by
name if the user desires a particular embedding
(e.g. “300 dimensional Google News word2vec
embeddings”), or the user can query an indexer
to find embedding sets most likely to be useful
for the user’s task. Importantly, the software li-
brary performs embedding selection locally on the
user’s machine, using signature similarity methods
described previously. The user’s corpus does not
need to be uploaded or shared.

Once the target embedding set has been identi-
fied, the library downloads the target embeddings
for the particular words in the user’s vocabulary.
Thus, if the user’s vocabulary is much smaller than
that of the embedding set, this download can be
much more compact than the full embedding set.

A contribution of this paper is the release of a
Python library for the framework, which imple-
ments the VocabRk similarity computation. With
this library, leveraging the framework to select
and retrieve the top-ranked embeddings for a given
corpus requires just one line of code.

3 Experiments

We now evaluate the effectiveness of the signature
methods described in the previous section at iden-
tifying high-quality embedding sets for a given
corpus, for the task of text classification. We

also quantify the improvement in efficiency when
using VecShare rather than following the current
practice of downloading and testing multiple em-
bedding sets.

In our experiments, we set the parameters Tv =
5, 000 and Ts = 1, 000, and we discard the top
100 most frequent words as stopwords. When
training embeddings on the user’s corpus, we use
word2vec.

3.1 Experimental Methodology

We perform experiments in two settings: first with
large-corpus embeddings, where we use word2vec
and GloVe embedding sets trained on billions of
tokens. The large-corpus embeddings are repre-
sentative of state-of-the-art models, but are trained
over very broad-topic corpora (billions of tokens
of newswire, Web or social media text). To bet-
ter measure whether VecShare can harness more
specific, targeted embedding sets, we also evalu-
ate over small-corpus embeddings.

For the large-corpus embeddings, we utilize
three sets of GloVe embeddings (Pennington
et al., 2014): wik+, 100-dimensional embeddings
trained on six billion tokens of Wikipedia and the
Gigaword corpus; web, 300-dimensional embed-
dings trained on 42 billion tokens of the Common
Crawl Web dataset; and twtr, 100-dimensional
embeddings trained on 27 billion tokens of Twit-
ter posts. We also utilize gnws, 300-dimensional
word2vec embeddings trained on three billion to-
kens of Google News data.3

For the small corpus embeddings, we created
a topically diverse collection of subsets of the
New York Times corpus (Sandhaus, 2008), across
seven categories (agriculture, arts, books, eco-
nomics, government, movies, and weather). We
then trained word2vec embeddings on each sub-
set, to create seven distinct similarly-sized, small
corpus embedding sets.

For our experiments, we utilize the embed-
dings as features for document classification
within a convolutional neural network (Chollet,
2017). We evaluate on four document classifica-
tion tasks: Reuters-21578 newswire topic classi-
fication (Lewis, 1997), subjectivity classification
(Pang and Lee, 2004), IMDB movie review classi-
fication (Maas et al., 2011), and the 20news clas-
sification task.4

3https://github.com/mmihaltz/
word2vec-GoogleNews-vectors.

4http://qwone.com/˜jason/20Newsgroups/

318



Reuters Subjectivity IMDB 20news Average
ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Acc

Random - - 0.862 - - 0.688 - - 0.868 - - 0.763 - 0.795
MaxTkn 0.63 web 0.888 0.19 web 0.728 0.38 web 0.881 0.97 web 0.863 0.54 0.840
VocabRk 0.46 gnws 0.882 0.02 gnws 0.759 0.40 gnws 0.886 0.20 gnws 0.719 0.27 0.812
SimCorr -0.65 wik+ 0.84 0.81 gnws 0.759 0.45 gnws 0.886 0.60 twtr 0.748 0.30 0.808

All 0.26 gnws 0.882 0.43 gnws 0.759 0.49 gnws 0.886 0.87 web 0.863 0.51 0.848
Oracle - web 0.888 - gnws 0.759 - gnws 0.886 - web 0.863 - 0.85

Table 1: Experimental results using large-corpus embeddings. All of the signature methods outperform
the random baseline, and the All method performs best in terms of both correlation ρ and text classifica-
tion accuracy.

Reuters Subjectivity IMDB 20news Average
ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Sel. Acc. ρ Acc

Random - - 0.844 - - 0.667 - - 0.829 - - 0.610 - 0.738
MaxTkn 0.62 govt 0.856 -0.64 govt 0.568 -0.02 govt 0.763 0.82 govt 0.647 0.20 0.709
VocabRk 0.74 econ 0.880 0.51 mov 0.686 0.89 mov 0.835 0.64 book 0.629 0.70 0.758
SimCorr 0.51 econ 0.880 0.62 book 0.706 0.93 book 0.842 -0.25 agri 0.551 0.45 0.745

All 0.82 econ 0.880 0.16 book 0.706 0.87 book 0.842 0.67 book 0.629 0.63 0.764
Oracle - econ 0.880 - book 0.706 - book 0.842 - govt 0.647 - 0.769

Table 2: Experimental results using small-corpus embeddings. The VocabRk and SimCorr methods
outperform the baselines, and the All method performs best in terms of both correlation ρ and text clas-
sification accuracy.

In addition to the VocabRk and SimCorr meth-
ods described in the previous section, we also eval-
uate against two simple baselines: Random, which
selects an embedding set at random, and Max-
Tkn, which adopts a “bigger is better” strategy, al-
ways selecting the embedding set trained over the
largest text corpus.

Finally, as discussed below our experimental re-
sults reveal that the different signature methods
have distinct strengths. Thus, we also evaluate All,
a simple ensemble of the VocabRk, SimCorr, and
MaxTkn methods. All simply takes an even aver-
age of the rankings output by its three constituent
signature methods. The All method selects the sin-
gle embedding set with the lowest average rank-
ing, breaking ties in favor of the VocabRk method.

3.2 Results

Our results are shown in Tables 1 and 2. For
each classification task and each method, “Sel.”
indicates the embedding set that the method se-
lects (that is, the one the method ranks most sim-
ilar to the text classification data set). We report
two measures of the quality of a signature method:
ρ, the Pearson correlation between the similarity
scores assigned by the method and the set’s accu-
racy on the classification task; and “Acc.,” the ac-
curacy of the embeddings selected by the method.

The results show that for the small-corpus em-
beddings, the VocabRk and SimCorr signature
methods perform well, beating the random base-
line overall. By contrast, for the large-corpus em-
beddings, the MaxTkn method performs the best of
the individual methods (primarily due to its strong
performance on the idiosyncratic 20news data set).
The All ensemble method achieves performance
nearly as high as the best possible embedding se-
lection (represented as the Oracle method in the
tables).

An alternative to using pre-trained embeddings
is to train embeddings on the evaluation corpus it-
self. We found that this approach achieved an av-
erage accuracy of 0.746 across our four data sets,
lower than our results using the All method. Utiliz-
ing the pre-trained embeddings, especially those
computed over large corpora, provides a signifi-
cant boost in text classification accuracy.

3.3 Efficiency Experiment

We also evaluated the relative gain in time and
space efficiency that VecShare provides over the
current practice of manually evaluating each em-
bedding set and selecting the embedding that per-
forms best. The efficiency experiment was per-
formed on a single machine with a 2.3 GHz quad-
core CPU and 8GB of main memory, using a test

319



framework containing 11 embedding sets.
Embedding selection was performed using both

the VocabRk signature method on VecShare and
the conventional method of selecting embeddings,
which trains models for each embedding set and
then evaluates those models on the test corpus.
The conventional approach required an average of
177 minutes to train, evaluate, and select an em-
bedding set for each test corpus. Whereas, the Vo-
cabRk signature method on the VecShare frame-
work required an average of 38 seconds to se-
lect an embedding for each test corpus, an aver-
age speedup of 280x. Additionally, VecShare sub-
stantially reduces space cost: the total size of the
signatures in the experiments is 4-5 orders of mag-
nitude smaller than the full embedding sets.

4 Conclusions and Future Work

We presented VecShare, a framework for sharing
word vector representations. The VecShare frame-
work uses signatures to help researchers and prac-
titioners quickly identify helpful embeddings for
their task. We released a Python library that al-
lows practitioners to access the framework. We
also performed experiments quantifying the accu-
racy and efficiency of VecShare’s embedding se-
lection approach on text classification. Further ex-
periments on additional data sets and NLP tasks
are necessary.

In future work, we wish to explore embedding
signatures that leverage richer knowledge of the
practitioner’s corpus and task. Finally, we hope
to extend VecShare’s embedding selection meth-
ods to consider syntheses of multiple distinct em-
bedding sets, tailored to the practitioner’s task and
corpus.

Acknowledgments

This research was supported in part by NSF grant
IIS-1351029 and the Allen Institute for Artificial
Intelligence. We thank Mohammed Alam, Dave
Demeter, Thanapon Noraset, and Zheng Yuan for
helpful comments.

References
Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.

Long short-term memory-networks for machine
reading. In EMNLP.

Franois Chollet. 2017. keras. https://github.
com/fchollet/keras.

Manaal Faruqui and Chris Dyer. 2014. Community
evaluation and exchange of word vectors at word-
vectors.org. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. Association for
Computational Linguistics, Baltimore, USA.

David D Lewis. 1997. Reuters-21578 text categoriza-
tion test collection, distribution 1.0. http://www. re-
search. att. com/˜ lewis/reuters21578. html .

Nut Limsopatham and Nigel Collier. 2016. Modelling
the combination of generic and target domain em-
beddings in a convolutional neural network for sen-
tence classification. Association for Computational
Linguistics.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 142–150.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 271.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia
6(12):e26752.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics. Association for Computational
Linguistics, pages 384–394.

320


