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Abstract

Generating captions for images is a task
that has recently received considerable at-
tention. In this work we focus on caption
generation for abstract scenes, or object
layouts where the only information pro-
vided is a set of objects and their locations.
We propose OBJ2TEXT, a sequence-to-
sequence model that encodes a set of ob-
jects and their locations as an input se-
quence using an LSTM network, and de-
codes this representation using an LSTM
language model. We show that our model,
despite encoding object layouts as a se-
quence, can represent spatial relationships
between objects, and generate descriptions
that are globally coherent and semanti-
cally relevant. We test our approach in
a task of object-layout captioning by us-
ing only object annotations as inputs. We
additionally show that our model, com-
bined with a state-of-the-art object detec-
tor, improves an image captioning model
from 0.863 to 0.950 (CIDEr score) in the
test benchmark of the standard MS-COCO
Captioning task.

1 Introduction

Natural Language generation (NLG) is a long
standing goal in natural language processing.
There have already been several successes in ap-
plications such as financial reporting (Kukich,
1983; Smadja and McKeown, 1990), or weather
forecasts (Konstas and Lapata, 2012; Wen et al.,
2015), however it is still a challenging task for
less structured and open domains. Given recent
progress in training robust visual recognition mod-
els using convolutional neural networks, the task
of generating natural language descriptions for ar-
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Figure 1: Overview of our proposed model for
generating visually descriptive language from ob-
ject layouts. The input (a) is an object layout that
consists of object categories and their correspond-
ing bounding boxes, the encoder (b) uses a two-
stream recurrent neural network to encode the in-
put object layout, and the decoder (c) uses a stan-
dard LSTM recurrent neural network to generate
text.

bitrary images has received considerable atten-
tion (Vinyals et al., 2015; Karpathy and Fei-Fei,
2015; Mao et al., 2015). In general, generating vi-
sually descriptive language can be useful for vari-
ous tasks such as human-machine communication,
accessibility, image retrieval, and search. How-
ever this task is still challenging and it depends on
developing both a robust visual recognition model,
and a reliable language generation model. In this
paper, we instead tackle a task of describing ob-
ject layouts where the categories for the objects in
an input scene and their corresponding locations
are known. Object layouts are commonly used for
story-boarding, sketching, and computer graphics
applications. Additionally, using our object layout
captioning model on the outputs of an object de-
tector we are also able to improve image caption-
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ing models. Object layouts contain rich seman-
tic information, however they also abstract away
several other visual cues such as color, texture,
and appearance, thus introducing a different set of
challenges than those found in traditional image
captioning.

We propose OBJ2TEXT, a sequence-to-
sequence model that encodes object layouts using
an LSTM network (Hochreiter and Schmidhuber,
1997), and decodes natural language descriptions
using an LSTM-based neural language model1.
Natural language generation systems usually con-
sist of two steps: content planning, and surface
realization. The first step decides on the content
to be included in the generated text, and the
second step connects the concepts using structural
language properties. In our proposed model,
OBJ2TEXT, content planning is performed by the
encoder, and surface realization is performed by
the decoder. Our model is trained in the standard
MS-COCO dataset (Lin et al., 2014), which
includes both object annotations for the task of
object detection, and textual descriptions for the
task of image captioning. While most previous
research has been devoted to any one of these
two tasks, our paper presents, to our knowledge,
the first approach for learning mappings between
object annotations and textual descriptions. Using
several lesioned versions of the proposed model
we explored the effect of object counts and loca-
tions in the quality and accuracy of the generated
natural language descriptions.

Generating visually descriptive language re-
quires beyond syntax, and semantics; an under-
standing of the physical word. We also take in-
spiration from recent work by Schmaltz et al.
(2016) where the goal was to reconstruct a sen-
tence from a bag-of-words (BOW) representation
using a simple surface-level language model based
on an encoder-decoder sequence-to-sequence ar-
chitecture. In contrast to this previous approach,
our model is grounded on visual data, and its cor-
responding spatial information, so it goes beyond
word re-ordering. Also relevant to our work is Yao
et al. (2016a) which previously explored the task
of oracle image captioning by providing a lan-
guage generation model with a list of manually
defined visual concepts known to be present in the
image. In addition, our model is able to leverage

1We build on neuraltalk2 and make our Torch code, and an
interactive demo of our model available in the following url:
http://vision.cs.virginia.edu/obj2text

both quantity and spatial information as additional
cues associated with each object/concept, thus al-
lowing it to learn about verbosity, and spatial rela-
tions in a supervised fashion.

In summary, our contributions are as follows:

• We demonstrate that despite encoding object
layouts as a sequence using an LSTM, our
model can still effectively capture spatial in-
formation for the captioning task. We per-
form ablation studies to measure the individ-
ual impact of object counts, and locations.

• We show that a model relying only on ob-
ject annotations as opposed to pixel data, per-
forms competitively in image captioning de-
spite the ambiguity of the setup for this task.

• We show that more accurate and compre-
hensive descriptions can be generated on
the image captioning task by combining our
OBJ2TEXT model using the outputs of a
state-of-the-art object detector with a stan-
dard image captioning approach.

2 Task

We evaluate OBJ2TEXT in the task of object lay-
out captioning, and image captioning. In the first
task, the input is an object layout that takes the
form of a set of object categories and bounding
box pairs 〈o, l〉 = {〈oi, li〉}, and the output is
natural language. This task resembles the second
task of image captioning except that the input is
an object layout instead of a standard raster im-
age represented as a pixel array. We experiment in
the MS-COCO dataset for both tasks. For the first
task, object layouts are derived from ground-truth
bounding box annotations, and in the second task
object layouts are obtained using the outputs of an
object detector over the input image.

3 Related Work

Our work is related to previous works that used
clipart scenes for visually-grounded tasks includ-
ing sentence interpretation (Zitnick and Parikh,
2013; Zitnick et al., 2013), and predicting ob-
ject dynamics (Fouhey and Zitnick, 2014). The
cited advantage of abstract scene representations
such as the ones provided by the clipart scenes
dataset proposed in (Zitnick and Parikh, 2013)
is their ability to separate the complexity of pat-
tern recognition from semantic visual representa-
tion. Abstract scene representations also maintain
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common-sense knowledge about the world. The
works of Vedantam et al. (2015b); Eysenbach et al.
(2016) proposed methods to learn common-sense
knowledge from clipart scenes, while the method
of Yatskar et al. (2016), similar to our work, lever-
ages object annotations for natural images. Un-
derstanding abstract scenes has demonstrated to
be a useful capability for both language and vision
tasks and our work is another step in this direction.

Our work is also related to other language gen-
eration tasks such as image and video caption-
ing (Farhadi et al., 2010; Ordonez et al., 2011;
Mason and Charniak, 2014; Ordonez et al., 2015;
Xu et al., 2015; Donahue et al., 2015; Mao et al.,
2015; Fang et al., 2015). This problem is inter-
esting because it combines two challenging but
perhaps complementary tasks: visual recogni-
tion, and generating coherent language. Fueled
by recent advances in training deep neural net-
works (Krizhevsky et al., 2012) and the availabil-
ity of large annotated datasets with images and
captions such as the MS-COCO dataset (Lin et al.,
2014), recent methods on this task perform end-
to-end learning from pixels to text. Most re-
cent approaches use a variation of an encoder-
decoder model where a convolutional neural net-
work (CNN) extracts visual features from the in-
put image (encoder), and passes its outputs to a
recurrent neural network (RNN) that generates a
caption as a sequence of words (decoder) (Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015). How-
ever, the MS-COCO dataset, containing object an-
notations, is also a popular benchmark in com-
puter vision for the task of object detection, where
the objective is to go from pixels to a collection of
object locations. In this paper, we instead frame
our problem as going from a collection of object
categories and locations (object layouts) to image
captions. This requires proposing a novel encod-
ing approach to encode these object layouts in-
stead of pixels, and allows for analyzing the im-
age captioning task from a different perspective.
Several other recent works use a similar sequence-
to-sequence approach to generate text from source
code input (Iyer et al., 2016), or to translate text
from one language to another (Bahdanau et al.,
2015).

There have also been a few previous works ex-
plicitly analyzing the role of spatial and geomet-
ric relations between objects for vision and lan-
guage related tasks. The work of Elliott and Keller

(2013) manually defined a dictionary of object-
object relations based on geometric cues. The
work of Ramisa et al. (2015) is focused on pre-
dicting preposition given two entities and their lo-
cations in an image. Previous works of Plummer
et al. (2015) and Rohrbach et al. (2016) showed
that switching from classification-based CNN net-
work to detection-based Fast RCNN network im-
proves performance for phrase localization. The
work of Hu et al. (2016) showed that encoding
image regions with spatial information is crucial
for natural language object retrieval as the task ex-
plicitly asks for locations of target objects. Unlike
these previous efforts, our model is trained end-
to-end for the language generation task, and takes
as input a holistic view of the scene layout, poten-
tially learning higher order relations between ob-
jects.

4 Model

In this section we describe our base OBJ2TEXT
model for encoding object layouts to produce text
(section 4.1), as well as two further variations to
use our model to generate captions for real images:
OBJ2TEXT-YOLO which uses the YOLO object
detector (Redmon and Farhadi, 2017) to generate
layouts of object locations from real images (sec-
tion 4.2), and OBJ2TEXT-YOLO + CNN-RNN
which further combines the previous model with
an encoder-decoder image captioning which uses
a convolutional neural network to encode the im-
age (section 4.3).

4.1 OBJ2TEXT

OBJ2TEXT is a sequence-to-sequence model that
encodes an input object layout as a sequence, and
decodes a textual description by predicting the
next word at each time step. Given a training
data set comprising N observations

{〈o(n), l(n)〉},
where 〈o(n), l(n)〉 is a pair of sequences of in-
put category and location vectors, together with
a corresponding set of target captions

{
s(n)

}
, the

encoder and decoder are trained jointly by mini-
mizing a loss function over the training set using
stochastic gradient descent:

W ∗ = arg min
W

N∑
n=1

L(〈o(n), l(n)〉, s(n)), (1)

in which W =
(
W1

W2

)
is the group of encoder pa-

rameters W1 and decoder parameters W2. The loss
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function is a negative log likelihood function of
the generated description given the encoded object
layout

L(〈o(n), l(n)〉, s(n)) = − log p(sn|hn
L, W2), (2)

where hn
L is computed using the LSTM-based en-

coder (eqs. 3, and 4) from the object layout inputs
〈o(n), l(n)〉, and p(sn|hn

L, W2) is computed using
the LSTM-based decoder (eqs. 5, 6 and 7).

At inference time we encode an input layout
〈o, l〉 into its representation hL, and sample a sen-
tence word by word based on p(st|hL, s<t) as
computed by the decoder in time-step t. Finding
the optimal sentence s∗ = arg maxs p(s|hL) re-
quires the evaluation of an exponential number of
sentences as in each time-step we have K number
of choices for a word vocabulary of size K. As a
common practice for an approximate solution, we
follow (Vinyals et al., 2015) and use beam search
to limit the choices for words at each time-step by
only using the ones with the highest probabilities.
Encoder: The encoder at each time-step t takes
as input a pair 〈ot, lt〉, where ot is the object cat-
egory encoded as a one-hot vector of size V , and
lt = [Bx

t , By
t , Bw

t , Bh
t ] is the location configura-

tion vector that contains left-most position, top-
most position, and the width and height of the
bounding box corresponding to object ot, all nor-
malized in the range [0,1] with respect to input im-
age dimensions. ot and lt are mapped to vectors
with the same size k and added to form the input
xt to one time-step of the LSTM-based encoder as
follows:

xt = Woot + (Wllt + bl), xt ∈ Rk, (3)

in which Wo ∈ Rk×V is a categorical embedding
matrix (the word encoder), and Wl ∈ Rk×4 and
bias bl ∈ Rk are parameters of a linear transfor-
mation unit (the object location encoder).

Setting initial value of cell state vector ce
0 = 0

and hidden state vector he
0 = 0, the LSTM-based

encoder takes the sequence of input (x1, ..., xT1)
and generates a sequence of hidden state vectors
(he

1, ..., h
e
T1

) using the following step function (we
omit cell state variables and internal transition
gates for simplicity as we use a standard LSTM
cell definition):

he
t = LSTM(he

t−1, xt; W1). (4)

We use the last hidden state vector hL = he
T1

as the
encoded representation of the input layout 〈ot, lt〉
to generate the corresponding description s.

Decoder: The decoder takes the encoded layout
hL as input and generates a sequence of multino-
mial distributions over a vocabulary of words us-
ing an LSTM neural language model. The joint
probability distribution of generated sentence s =
(s1, ..., sT2) is factorized into products of condi-
tional probabilities:

p(s|hL) =
T2∏
t=1

p(st|hL, s<t), (5)

where each factor is computed using a softmax
function over the hidden states of the decoder
LSTM as follows:

p(st|hL, s<t) = softmax(Whhd
t−1 + bh), (6)

hd
t = LSTM(hd

t−1, Wsst; W2), (7)

where Ws is the categorical embedding matrix for
the one-hot encoded caption sequence of symbols.
By setting hd−1 = 0 and cd−1 = 0 for the initial
hidden state and cell state, the layout representa-
tion is encoded into the decoder network at the 0
time step as a regular input:

hd
0 = LSTM(hd

−1, hL; W2). (8)

We use beam search to sample from the LSTM
as is routinely performed in previous literature in
order to generate text.

4.2 OBJ2TEXT-YOLO
For the task of image captioning we propose
OBJ2TEXT-YOLO. This model takes an image as
input, extracts an object layout (object categories
and locations) with a state-of-the-art object detec-
tion model YOLO (Redmon and Farhadi, 2017),
and uses OBJ2TEXT as described in section 4.1 to
generate a natural language description of the in-
put layout and hence, the input image. The model
is trained using the standard back-propagation al-
gorithm, but the error is not back-propagated to the
object detection module.

4.3 OBJ2TEXT-YOLO + CNN-RNN
For the image captioning task we experiment with
a combined model (see Figure 2) where we take
an image as input, and then use two separate
computation branches to extract visual feature in-
formation and object layout information. These
two streams of information are then passed to an
LSTM neural language model to generate a de-
scription. Visual features are extracted using the
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Figure 2: Image Captioning by joint learning of
visual features and object layout encoding.

VGG-16 (Simonyan and Zisserman, 2015) con-
volutional neural network pre-trained on the Im-
ageNet classification task (Russakovsky et al.,
2015). Object layouts are extracted using the
YOLO object detection system and its output ob-
ject locations are encoded using our proposed
OBJ2TEXT encoder. These two streams of in-
formation are encoded into vectors of the same
size and their sum is input to the language model
to generate a textual description. The model is
trained using the standard back-propagation al-
gorithm where the error is back-propagated to
both branches but not the object detection mod-
ule. The weights of the image CNN model are
fine-tuned only after the layout encoding branch is
well trained but no significant overall performance
improvements were observed.

5 Experimental Setup

We evaluate the proposed models on the MS-
COCO (Lin et al., 2014) dataset which is a pop-
ular image captioning benchmark that also con-
tains object extent annotations. In the object lay-
out captioning task the model uses the ground-
truth object extents as input object layouts, while
in the image captioning task the model takes raw
images as input. The qualities of generated de-
scriptions are evaluated using both human evalu-
ations and automatic metrics. We train and vali-
date our models based on the commonly adopted
split regime (113,287 training images, 5000 val-
idation and 5000 test images) used in (Karpathy
et al., 2016), and also test our model in the MS-
COCO official test benchmark.

We implement our models based on the
open source image captioning system Neu-
raltalk2 (Karpathy et al., 2016). Other config-
urations including data preprocessing and train-
ing hyper-parameters also follow Neuraltalk2. We
trained our models using a GTX1080 GPU with
8GB of memory for 400k iterations using a batch

size of 16 and an Adam optimizer with alpha of
0.8, beta of 0.999 and epsilon of 1e-08. Descrip-
tions of the CNN-RNN approach are generated us-
ing the publicly available code and model check-
point provided by Neuraltalk2 (Karpathy et al.,
2016). Captions for online test set evaluations are
generated using beam search of size 2, but score
histories on split validation set are based on cap-
tions generated without beam search (i.e. max
sampling at each time-step).

Ablation on Object Locations and Counts:. We
setup an experiment where we remove the input
locations from the OBJ2TEXT encoder to study
the effects on the generated captions, and confirm
whether the model is actually using spatial infor-
mation during surface realization. In this restricted
version of our model the LSTM encoder at each
time step only takes the object category embed-
ding vector as input. The OBJ2TEXT model ad-
ditionally encodes different instances of the same
object category in different time steps, potentially
encoding in some of its hidden states information
about how many objects of a particular class are
in the image. For example, in the object annota-
tion presented in the input in Figure 1, there are
two instances of “person”. We perform an addi-
tional experiment where our model does not have
access neither to object locations, nor the num-
ber of object instances by providing only a set
of object categories. Note that in this set of ex-
periments the object layouts are given as inputs,
thus we assume full access to ground-truth object
annotations, even in the test split. In the exper-
imental results section we use the “-GT” postfix
to indicate that input object layouts are obtained
from ground-truth object annotations provided by
the MS-COCO dataset.

Image Captioning Experiment: In this exper-
iment we assess whether the image captioning
model OBJ2TEXT-YOLO that only relies on ob-
ject categories and locations could give compara-
ble performance with a CNN-RNN model based
on Neuraltalk2 (Karpathy et al., 2016) that has full
access to visual image features. We also explore
how much does a combined OBJ2TEXT-YOLO
+ CNN-RNN model could improve over a CNN-
RNN model by fusing object counts and location
information that is not explicitly encoded in a tra-
ditional CNN-RNN approach.

Human Evaluation Protocol. We use a two-
alternative forced-choice evaluation (2AFC) ap-
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proach to compare two methods that generate cap-
tions. For this, we setup a task on Amazon Me-
chanical Turk where users are presented with an
image and two alternative captions, and they have
to choose the caption that best describes the image.
Users are not prompted to use any single criteria
but rather a holistic assessment of the captions, in-
cluding their semantics, syntax, and the degree to
which they describe the image content. In our ex-
periment we randomly sample 500 captions gen-
erated by various models for MS COCO online
test set images, and use three users per image to
obtain annotations. Note that three users choos-
ing randomly between two options have a chance
of 25% to select the same caption for a given im-
age. In our experiments comparing method A vs
method B, we report the percentage of times A
was picked over B (Choice-all), the percentage of
times all users selected the same method, either A
or B, (Agreement), and the percentage of times A
was picked over B only for these cases where all
users agreed (Choice-agreement).

6 Results

Impact of Object Locations and Counts: Fig-
ure 3a shows the CIDEr (Vedantam et al., 2015a),
and BLEU-4 (Papineni et al., 2002) score his-
tory on our validation set during 400k iterations of
training of OBJ2TEXT, as well as a version of our
model that does not use object locations, and a ver-
sion of our model that does not use neither object
locations nor object counts. These results show
that our model is effectively using both object lo-
cations and counts to generate better captions, and
absence of any one of these two cues affects per-
formance. Table 1 confirms these results on the
test split after a full round of training.

Furthermore, human evaluation results in the
first row of Table 2 show that the OBJ2TEXT
model with access to object locations is preferred
by users, especially in cases where all evaluators
agreed on their choice (62% over the baseline that
does not have access to locations). In Figure 4 we
additionally present qualitative examples showing
predictions side-by-side between OBJ2TEXT-GT
and OBJ2TEXT-GT (no obj-locations). These re-
sults indicate that 1) perhaps not surprisingly, ob-
ject counts is useful for generating better qual-
ity descriptions, and 2) object location informa-
tion when properly encoded, is an important cue
for generating more accurate descriptions. We ad-

ditionally implemented a nearest neighbor base-
line by representing the objects in the input layout
using an orderless bag-of-words representation of
object counts and the CIDEr score on the test split
was only 0.387.

On top of OBJ2TEXT we additionally experi-
mented with the global attention model proposed
in (Luong et al., 2015) so that a weighted combi-
nation of the encoder hidden states are forwarded
to the decoding neural language model, however
we did not notice any overall gains in terms of ac-
curacy from this formulation. We observed that
this model provided gains only for larger input se-
quences where it is more likely that the LSTM
network forgets its past history (Bahdanau et al.,
2015). However in MS-COCO the average num-
ber of objects in each image is rather modest, so
the last hidden state can capture well the overall
nuances of the visual input.

Object Layout Encoding for Image Captioning:
Figure 3b shows the CIDEr, and BLEU-4 score
history on the validation set during 400k iterations
of training of OBJ2TEXT-YOLO, CNN-RNN,
and their combination. These results show that
OBJ2TEXT-YOLO performs surprisingly close to
CNN-RNN, and the model resulting from com-
bining the two, clearly outperforms each method
alone. Table 3 shows MS-COCO evaluation re-
sults on the test set using their online benchmark
service, and confirms results obtained in the vali-
dation split, where CNN-RNN seems to have only
a slight edge over OBJ2TEXT-YOLO which lacks
access to pixel data after the object detection stage.
Human evaluation results in Table 2 rows 2, and
3, further confirm these findings. These results
show that meaningful descriptions could be gen-
erated solely based on object categories and loca-
tions information, even without access to color and
texture input.

The combined model performs better than the
two models, improving the CIDEr score of the
basic CNN-RNN model from 0.863 to 0.950,
and human evaluation results show that the com-
bined model is preferred over the basic CNN-
RNN model for 65.3% of the images for which
all evaluators were in agreement about the se-
lected method. These results show that explic-
itly encoded object counts and location informa-
tion, which is often overlooked in traditional im-
age captioning approaches, could boost the perfor-
mance of existing models. Intuitively, object lay-
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(a) Score histories of lesioned versions of the proposed model
for the task of object layout captioning.
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Figure 3: Score histories of various models on the MS COCO split validation set.

Method Bleu 4 CIDEr METEOR ROUGE-L
OBJ2TEXT-GT (no obj-locations, counts) 0.21 0.759 0.215 0.464
OBJ2TEXT-GT (no obj-locations) 0.233 0.837 0.222 0.482
OBJ2TEXT-GT 0.253 0.922 0.238 0.507

Table 1: Performance of lesioned versions of the proposed model on the MS COCO split test set.

out and visual features are complementary: neural
network models for visual feature extraction are
trained on a classification task where object-level
information such as number of instances and lo-
cations are ignored in the objective. Object lay-
outs on the other hand, contain categories and their
bounding-boxes but don’t have access to rich im-
age features such as image background, object at-
tributes and objects with categories not present in
the object detection vocabulary.

Figure 5 provides a three-way comparison of
captions generated by the three image captioning
models, with preferred captions by human evalu-
ators annotated in bold text. Analysis on actual
outputs gives us insights into the benefits of comb-
ing object layout information and visual features
obtained using a CNN. Our OBJ2TEXT-YOLO
model makes many mistakes because of lack of
image context information since it only has access
to object layout, while CNN-RNN makes many
mistakes because the visual recognition model is
imperfect at predicting the correct content. The
combined model is usually able to generate more
accurate and comprehensive descriptions.

In this work we only explored encoding spa-
tial information with object labels, but object la-

bels could be readily augmented with rich seman-
tic features that are more detailed descriptions of
objects or image regions. For example, the work
of You et al. (2016) and Yao et al. (2016b) showed
that visual features trained with semantic concepts
(text entities mentioned in captions) instead of ob-
ject labels is useful for image captioning, although
they didn’t consider encoding semantic concepts
with spatial information. In case of object an-
notations the MS-COCO dataset only provides
object labels and bounding-boxes, but there are
other datasets such as Flick30K Entities (Plummer
et al., 2015), and the Visual Genome dataset (Kr-
ishna et al., 2017) that provide richer region-to-
phrase correspondence annotations. In addition,
the fusion of object counts and spatial information
with CNN visual features could in principle bene-
fit other vision and language tasks such as visual
question answering. We leave these possible ex-
tensions as future work.

7 Conclusion

We introduced OBJ2TEXT, a sequence-to-
sequence model to generate visual descriptions
for object layouts where only categories and
locations are specified. Our proposed model
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Alternatives Choice-all Choice-agreement Agreement
OBJ2TEXT-GT vs. OBJ2TEXT-GT (no obj-locations) 54.1% 62.1% 40.6%
OBJ2TEXT-YOLO vs. CNN+RNN 45.6% 40.6% 54.7%
OBJ2TEXT-YOLO + CNN-RNN vs. CNN-RNN 58.1% 65.3% 49.5%
OBJ2TEXT-GT vs. HUMAN 23.6% 9.9% 58.8%

Table 2: Human evaluation results using two-alternative forced choice evaluation. Choice-all is percent-
age the first alternative was chosen. Choice-agreement is percentage the first alternative was chosen only
when all annotators agreed. Agreement is percentage where all annotators agreed (random is 25%).

MS COCO Test Set Performance CIDEr ROUGE-L METEOR B-4 B-3 B-2 B-1
5-Refs
OBJ2TEXT-YOLO 0.830 0.497 0.228 0.262 0.361 0.500 0.681
CNN-RNN 0.857 0.514 0.237 0.283 0.387 0.529 0.705
OBJ2TEXT-YOLO + CNN-RNN 0.932 0.528 0.250 0.300 0.404 0.546 0.719
40-Refs
OBJ2TEXT-YOLO 0.853 0.636 0.305 0.508 0.624 0.746 0.858
CNN-RNN 0.863 0.654 0.318 0.540 0.656 0.775 0.877
OBJ2TEXT-YOLO + CNN-RNN 0.950 0.671 0.334 0.569 0.686 0.802 0.896

Table 3: The 5-Refs and 40-Refs performances of OBJ2TEXT-YOLO, CNN-RNN and the combined
approach on the MS COCO online test set. The 5-Refs performance is measured using 5 ground-truth
reference captions, while 40-Refs performance is measured using 40 ground-truth reference captions.

a: three buses parked in a parking lot
b: a bus is parked in front of a bus stop

a: two people riding on the back of an elephant
b: a man and a woman riding on the back of an elephant

a: a man is riding a horse and a dog is carrying a bag
b: two dogs are sitting on the back of a horse

bus bus bus person
person

elephant

elephant

person

dog
dog

boottle

truck
truck

horse

a: a group of people standing around a parking meter
b: a man riding a motorcycle down a street

a: a woman sitting on a couch with a man holding a doughnut
b: a woman and a child sitting at a table with food

a: two young girls holding tennis racquets on a court
b: a man holding a tennis racquet on a tennis court

motorcycle
personpersonpersonperson

person person

bag

bag
bag

boottle
boottle

donut

person person

bag bag

cupcup

couch
person

person

tennis racket

Figure 4: Qualitative examples comparing generated captions of (a) OBJ2TEXT-GT, and (b)
OBJ2TEXT-GT (no obj-locations).

shows that an orderless visual input representation
of concepts is not enough to produce good de-
scriptions, but object extents, locations, and object
counts, all contribute to generate more accurate
image descriptions. Crucially we show that our
encoding mechanism is able to capture useful
spatial information using an LSTM network to
produce image descriptions, even when the input
is provided as a sequence rather than as an explicit
2D representation of objects. Additionally, using

our proposed OBJ2TEXT model in combination
with an existing image captioning model and
a robust object detector we showed improved
results in the task of image captioning.
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(a) a yellow fire hydrant sitting
on the side of a road

(b) a man is standing in the
snow with a snowboard

(c) a fire hydrant in the snow
near a road

(a) a small boat in a body of
water

(b) a boat with a bunch of
people on it

(c) a boat is docked in a
large body of water

(a) a man and a woman are
sitting on a bench

(b) a man and a woman sitting
on a couch

(c) a man and woman are
talking on their cell phones

(a) a man sitting on a bench in
a park

(b) a woman sitting on a bench
with a cell phone

(c) a woman sitting on a
bench with her legs crossed

(a) a bird sitting on a tree
branch in a tree

(b) a bird sitting on a branch in
a tree

(c) two birds are sitting on a
tree branch

(a) a zebra standing in a field
of grass

(b) a man riding a wave on top
of a surfboard

(c) a zebra standing in the
water near a rock wall

(a) a chair and a table in a
room

(b) a pile of luggage sitting on
top of a wooden floor

(c) a room with a table and
chairs and a suitcase

(a) a white plate topped with
meat and vegetables

(b) a white plate topped with
meat and vegetables
(c) a plate of food with meat
and vegetables

(a) a herd of cattle grazing on
a lush green field

(b) a herd of elephants walking
across a river

(c) a group of cows standing
in a river

(a) a man is swinging a bat at
a ball

(b) a man is playing with a
frisbee in a park

(c) a man is swinging a bat
in a field

(a) a little girl sitting at a table
with a cake

(b) a bride and groom cutting
their wedding cake

(c) a bride and groom
cutting their wedding cake

(a) a street sign with a street
name sign on it

(b) a large clock tower
towering over a city

(c) a large body of water
with a clock tower in the
background

(a) a couple of giraffe standing
next to each other

(b) a giraffe is standing in a
tree in a forest
(c) two giraffes standing next
to each other in a tree

(a) a group of people standing
around a pizza

(b) a man holding a box of
food in front of him
(c) a couple of people that are
holding a pizza

(a) a group of people playing a
game with remote controllers

(b) a man and a woman
playing a video game

(c) a group of people sitting
around a living room

(a) a man is standing in the
middle of a street

(b) a man sitting on a beach
with a surfboard

(c) a man and woman sitting
on the beach

(a) a glass vase with some
flowers in it

(b) a vase filled with flowers
on top of a table
(c) a vase filled with flowers on
top of a table

(a) a man and a woman sitting
at a table eating pizza

(b) a woman is taking a picture
of herself in a mirror

(c) two women sitting at a
table with a pizza

(a) a man sitting in a kitchen
next to a woman

(b) a woman standing in front
of a counter in a kitchen

(c) two women in a kitchen
preparing food on a table

(a) a man and a woman
standing next to each other

(b) a man in a suit and tie
standing in a room

(c) a man in a suit and tie
standing next to a man

(a) a man riding a bike down a
street

(b) a man riding a motorcycle
down a street

(c) a man riding a bike with a
helmet on his head

(a) a woman is playing tennis
on a court

(b) a woman is playing
tennis on a tennis court
(c) a tennis player in action on
the court

(a) a woman in a bathroom
with a sink and a mirror

(b) a man standing in a kitchen
next to a stove

(c) a man standing in a
kitchen next to a counter

(a) a man holding a nintendo
wii game controller

(b) a young boy sitting on a
couch holding a remote control

(c) a young child is holding
a toy in his hand

(a) a person riding a horse on
a beach

(b) a woman is riding a
horse in a field
(c) a girl is riding a horse in a
field

(a) a bunch of vases sitting on
a shelf

(b) a bunch of flowers in a
vase on a table

(c) a bunch of colorful vases
sitting on a table

(a) a man riding a bike down a
street next to tall buildings

(b) a man is on a boat in the
water

(c) a couple of people
standing on top of a bridge

(a) a man riding a skateboard
with a dog

(b) a dog is riding a
skateboard on a street

(c) a dog on a skateboard in
the middle of the street

(a) a young boy in a baseball
uniform holding a glove

(b) a man is sitting on the
ground holding a
skateboard
(c) a man sitting on the ground
with a baseball glove

(a) a woman holding a tennis
racquet on a court

(b) a dog with a tennis racket
in a basket

(c) a person holding a tennis
racket in a park

Figure 5: Qualitative examples comparing the generated captions of (a) OBJ2TEXT-YOLO, (b) CNN-
RNN and (c) OBJ2TEXT-YOLO + CNN-RNN. Images are selected from the 500 human evaluation
images and annotated with YOLO object detection results. Captions preferred by human evaluators with
agreement are highlighted in bold text.
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