Where is Misty? Interpreting Spatial Descriptors
by Modeling Regions in Space

Nikita Kitaev and Dan Klein
Computer Science Division
University of California, Berkeley
{kitaev,klein}@cs.berkeley.edu

Abstract

We present a model for locating regions
in space based on natural language de-
scriptions. Starting with a 3D scene and
a sentence, our model is able to associate
words in the sentence with regions in the
scene, interpret relations such as on top
of or mext to, and finally locate the re-
gion described in the sentence. All com-
ponents form a single neural network that
is trained end-to-end without prior knowl-
edge of object segmentation. To evalu-
ate our model, we construct and release a
new dataset consisting of Minecraft scenes
with crowdsourced natural language de-
scriptions. We achieve a 32% relative er-
ror reduction compared to a strong neural
baseline.

1 Introduction

In this work, we present a model for grounding
spatial descriptors in 3D scenes. Consider inter-
preting the instructions: Take the book and put it
on the shelf. One critical element of being able
to interpret this sentence is associating the refer-
ring expression the book with the corresponding
object in the world. Another important component
of understanding the command above is translat-
ing the phrase on the shelf to a location in space.
We call such phrases spatial descriptors. While
spatial descriptors are closely related to referring
expressions, they are distinct in that they can refer
to locations even when there is nothing there. An
intuitive way to model this is to reason over spatial
regions as first-class entities, rather than taking an
object-centric approach.

Following a long tradition of using game envi-
ronments for Al, we adopt Minecraft as the setting
for our work. Minecraft has previously been used

157

Misty is hanging in the air next to the
wooden shelf with the plant on it.

(b)

Figure 1: An example from our dataset. (a) The Minecraft
scene and its natural language description. (b) Given the
choice between six possible locations, our model assigns the
highest probability to the location consistent with the natural
language description.

for work on planning and navigation (Oh et al.,
2016; Tessler et al., 2016), and we expand on this
by using it for grounded language understanding.
As a sandbox game, it can be used to construct
a wide variety of environments that capture many
interesting aspects of the real world. At the same
time, it is easy to extract machine-interpretable
representations from the game.

We construct a dataset of Minecraft scenes with
natural-language annotations, and propose a task
that evaluates understanding spatial descriptors.
Our task is formulated in terms of locating a pink,
cube-shaped character named Misty given a scene,
a natural language description, and a set of loca-
tions to choose from. An example from our dataset
is shown in Figure 1. The Minecraft scene repre-
sentation does not provide ground-truth informa-
tion about object identity or segmentation, reflect-
ing the fact that perceptual ambiguity is always

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 157-166
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics

present in real-world scenarios. We do, however,
assume the availability of 3D depth information
(which, for real-world conditions, can be acquired
using depth sensors such as RGBD cameras or Li-
DAR).

We propose and evaluate a neural network that
combines convolutional layers operating over 3D
regions in space with recurrent layers for process-
ing language. Our model jointly learns to seg-
ment objects, associate them with words, and un-
derstand spatial relationships — all in an end-to-end
manner. We compare with a strong neural baseline
and demonstrate a relative error reduction of 32%.

The dataset and model described in this paper
are available online.!

2 Related Work

Our task includes some of the same elements as
referring-expression generation and interpretation.
Past work on these tasks includes Golland et al.
(2010), Krishnamurthy and Kollar (2013), Socher
et al. (2014) and Kazemzadeh et al. (2014). A key
difference is that spatial descriptors (as modeled in
this paper) refer to locations in space, rather than
to objects alone. For example, Krishnamurthy
and Kollar (2013) convert natural language to a
logical form that is matched against image seg-
ments, an approach that is only capable of rea-
soning about objects already present in the scene
(and not skipped over by the segmentation pro-
cess). Our model’s ability to reason over spatial
regions also differentiates it from past approaches
to tasks beyond referring expressions, such as the
work by Tellex et al. (2011) on natural-language
commanding of robots. Recent work by Hu et al.
(2016) on interpreting referring expressions can
capture relationships between objects, relying on
the construction of (subject, object, relation) tu-
ples. Their model is limited in that it can only
handle one such tuple per utterance. Our model
does not have such a restriction, and it addition-
ally expands to a 3D setting.

Our task is also related to work on Visual Ques-
tion Answering, or VQA (Agrawal et al., 2015).
While VQA uses free-form textual answers, our
task places targeted emphasis on spatial reasoning
by requiring outputs to be locations in the scene.
Spatial reasoning remains an important capabil-
ity for VQA systems, and is one of the elements
featured in CLEVR (Johnson et al., 2016), a di-

'https://github.com/nikitakit/voxelworld

158

agnostic dataset for VQA. Like in our dataset, vi-
sual percepts in CLEVR are based on machine-
generated scenes. CLEVR also makes use of
machine-generated language, while all language
in our dataset is written by humans.

Another related task in NLP is spatial role la-
beling, which includes the identification of spatial
descriptors and the assigning of roles to each of
their constituent words. This task was studied by
Kordjamshidi et al. (2011) and led to the creation
of shared tasks such as SpaceEval (Pustejovsky
et al., 2015). Our setting differs in that we con-
sider grounded environments instead of studying
text in isolation, and evaluate on task performance
rather than logical correctness of interpretation.

Spatial descriptors are also present in the task of
generating 3D scenes given natural language de-
scriptions. Compared to a recent model by Chang
et al. (2017) for scene generation, our model
works with lower-level 3D percepts rather than li-
braries of segmented and tagged objects. We are
also able to incorporate learning of vocabulary,
perception, and linguistic structure into a single
neural network that is trainable end-to-end.

3 Task

At its core, the ability to understand spatial de-
scriptors can be formulated as mapping from a
natural-language description to a particular loca-
tion in space. In Figure 1, we show an instance of
our task, which consists of the following compo-
nents:

W a perceptual representation of the world

x: the natural language description

{y1,y2,...,yn}: the candidate set of loca-
tions that are under consideration

y*: the true location that is being referred to
in the scene

Given W and z, a model must select which candi-
date location y; best matches the description .
We will address the particulars of the above
representation as we discuss the process
for constructing our dataset. = Each example
(W, z,{y1,...,yn},y") in the dataset is made by
generating a Minecraft scene (Section 3.1) and
selecting a location as the target of description
(Section 3.2). We then crowdsource natural
language descriptions of the target location in
space. To better anchor the language, we populate

the target location with a cube-shaped character
we name Misty, and ask workers to describe
Misty’s location (Section 3.3). We repeat this
process for each example in the dataset.

3.1 Scene Generation and Representation

Each of our Minecraft scenes is set in a randomly-
generated room. We select a random size for this
room, and then populate it with a variety of ob-
jects. We include objects that can be placed on
the floor (e.g. tables), mounted on the wall (e.g.
torches), embedded in the wall (e.g. doors), or
hanging from the ceiling (e.g. cobwebs).

We then discard ground-truth knowledge about
object segmentation or identity in the process of
saving our dataset. This allows our task to eval-
uate not only models’ capacity for understand-
ing language, but also their ability to integrate
with perceptual systems. One way of approxi-
mating real-world observations would be to take
a screenshot of the scene — however, a 2D projec-
tion does not provide all of the spatial informa-
tion that a language user would reasonably have
access to. We would like to use a 3D encoding
instead, and Minecraft naturally offers a low-level
(albeit low-resolution) voxel-based representation
that we adopt for this work.

Each Minecraft world W is encoded as a 3D
grid of voxels, where a voxel may be empty or
contain a particular type of “block,” e.g. stone
or wood. In general, what humans would inter-
pret as single objects will be made of multiple
Minecraft blocks — for example, the table in Fig-
ure 1 consists of a “wooden pressure plate” block
on top of a “wooden fencepost” block. These same
blocks can be used for other purposes as well: the
“wooden fencepost” block is also part of fences,
lamp-posts, and pillars, while the “wooden pres-
sure plate” block can form shelves, countertops,
as well as being placed on the ground to detect
when something walks over it. We construct our
Minecraft scenes specifically to include examples
of such re-use, so that models capable of achieving
high performance on this task must demonstrate
the capacity to work without ground-truth segmen-
tation or perfect object labeling.

The voxel-grid 3D representation is not spe-
cific to the virtual Minecraft setting: it is equally
applicable to real-world data where depth infor-
mation is available. The main difference is that
each voxel would need to be associated with a fea-

ture vector rather than a block type. One use of
such a representation is in Maturana and Scherer
(2015)’s work on object classification from data
collected with RGBD cameras and LiDAR, which
uses a 3D convolutional neural network over a
voxel grid. We do not explicitly handle occlusion
in this work, but we imagine that real-world ex-
tensions can approach it using a combination of
multi-viewpoint synthesis, occlusion-aware voxel
embeddings, and restricting the set of voxels con-
sidered by the model.

3.2 Location Sampling

After constructing a scene with representation W,
we proceed to sample a location y* in the scene.
Given our voxel-based scene representation, our
location sampling is at voxel granularity. The can-
didate set we sample from, {y1, ..., y,}, consists
of empty voxels in the scene. Locations that occur
in the middle of a large section of empty space are
hard to distinguish visually and to describe pre-
cisely, so we require that each candidate y; be ad-
jacent to at least one object.

3.3 Natural Language Descriptions

For each scene-location pair (W, y*) we crowd-
source a natural language description .

The choice of prompt for human annotators is
important in eliciting good descriptions. At the lo-
cation we are asking workers to refer to, we insert
a pink-colored cube that we personify and name
“Misty.” We then ask workers to describe Misty’s
location such that someone can find her if she were
to turn invisible. Having a visually salient target
helps anchor human perception, which is why we
chose a pink color that contrasts with other visual
elements in the scene. We make sure to empha-
size the name “Misty” in the instructions, which
results in workers almost always referring to Misty
by name or with the pronoun she. This avoids hav-
ing to disambiguate a myriad of generic descrip-
tions (the pink block, the block, the target, etc.)
for what is fundamentally an artificial construct.

To make sure that humans understand the 3D
structure of the scene as they describe it, we give
them access to a 3D view of the environment and
require that they move the camera before submit-
ting a description. This helped increase the quality
of our data.

159

Misty table and just under the torch
@ (o o:] (eee) (eee) (ee0e) (eee) (o o:] Input
= (33) (32)
1 ool a a5 e
5 - =1+ 1+ 15

W Q0

ﬁ
%
A L @

ﬂ Localizations

Offsets

Output

Misty is to the right of the table and just under the torch.

Figure 2: Our model architecture. Note that while the schematic illustrations are shown in 2D, our actual model operates in 3D.
Zoomed-in versions of the marked references, offsets, localizations, and output are shown in Figure 3.

4 Model

We next present our model for this task. Our
model architecture is shown in Figure 2, with
some of the quantities it operates over highlighted
in Figure 3. Throughout this section, we will use
the example description Misty is to the right of the
table and just under the torch. Note that while the
accompanying scene illustrations are shown in 2D
for visual clarity, our actual model operates in 3D
and on larger scene sizes.

Our model first associates words with regions in
the world. There is no notion of object segmenta-
tion in the dataset, so the references it produces are
just activations over space given a word. Activa-
tions are computed for all words in the sentence,
though they will only be meaningful for words
such as table and torch (Figure 3a). Our model
next determines the spatial relationships between
referenced objects and Misty, using information
provided by context words such as right and under.
These relationships are represented as 3D convo-
lutional offset filters (Figure 3b). For each word,
its reference and offset filter are convolved to get
a localization, i.e. an estimate of Misty’s location
(Figure 3c). Finally, our model aggregates local-
izations across all words in the sentence, combin-
ing the information provided by the phrases fo the
right of the table and just under the torch (Fig-
ure 3e).

The following sections describe in more detail
how references (Section 4.1), offsets (Section 4.2),

160

and localizations (Section 4.3) are computed.

4.1 Input and References

The first component of our model is responsible
for associating words with the voxels that they re-
fer to. It assigns a real-valued score s(z,y) to
each pair consisting of word x; and voxel coordi-
nate y.

High scores correspond to high compatibility;
for any given word, we can visualize the set
s(x,) of scores assigned to different voxels by
interpreting it as logits that encode a probability
distribution over blocks in the scene. In the exam-
ple, the word trable would ideally be matched to
the uniform reference distribution over blocks that
are part of a table, and similarly for the word forch
(Figure 3a).

The word-voxel scores are computed by com-
bining word and block embeddings. To take ad-
vantage of additional unsupervised language and
world data, we start with pretrained word em-
beddings and context-aware location embeddings
f(W,y). The function f consists of the first
two layers of a convolutional neural network that
is pretrained on the task of predicting a voxel’s
identity given the 5x5x5 neighborhood around it.
Since f fails to take into account the actual voxel’s
identity, we add additional embeddings V' that
only consider single blocks. The score is then
computed as s(z¢,y) = w] Af(W,y) + w/ vy,
where w; is the word embedding and v, is the
single-block embedding. The parameter matrix

Misty is to the right of the table and just under the torch.
table torch

=

(a) Reference distributions for the words rable and torch.

(b) Offset distributions that will be applied to the refer-
ences for table and torch. These are calculated based on
the language context, including the words right and un-
der.

-

(c) Localizations for Misty, given the words fable and
torch in context.

(d) Output

(e) Output distribution produced by intersecting the lo-
calizations for each word.

Figure 3: A schematic 2D depiction of the representations
used throughout our neural network, zoomed in from Fig-
ure 2. Our model (a) matches words with objects in the scene,
(b) determines offsets from landmark objects to Misty’s lo-
cation, (c) combines these pieces of information to form per-
word localizations of Misty, and then (d) uses all localizations
to guess Misty’s location.

A and the single-block embedding matrix V are
trained end-to-end with the rest of the model.

References are computed for all words in the
sentence — including function words like to or the.
To signify that a word does not refer to any objects
in the world, the next layer of the network expects
that we output a uniform distribution over all vox-
els. Outputting uniform distributions also serves
as a good initialization for our model, so we set the
elements of A and V' to zero at the start of training
(our pretrained word embeddings are sufficient to
break symmetry).

161

4.2 Offsets

The per-word references described in Section 4.1
do not themselves indicate Misty’s location.
Rather, they are used in a spatial descriptor like to
the right of the table. For every word, our model
outputs a distribution over offset vectors that is
used to redistribute scores from object locations to
possible locations for Misty (Figure 3b). For ex-
ample, if probability mass is placed on the “one-
block-to-the-right” offset vector, this corresponds
to predicting that Misty will be one block to the
right of the voxels that a word refers to. Offset
scores o; are assigned based on the context the
word x; occurs in, which allows the model to in-
corporate information from words such as right
or under in its decisions. This is accomplished
by running a bidirectional LSTM over the embed-
dings w; of the words in the sentence, and using
its output to compute offset probabilities:

Each set of offset scores o; is reshaped into a
3x3x3 convolutional filter, except that we struc-
turally disallow assigning any probability to the
no-offset vector in the center. As a parameter-
tying technique, the trainable matrix M is not full-
rank; we instead decompose it such that the log-
probability of an offset vector factors additively
over the components in a cylindrical coordinate
system.

4.3 Localizations and Output

For each word, the 3D tensor of word-voxel scores
s(x¢, -) is convolved with the offset distribution oy
to produce a distribution of localizations for Misty,
d¢(y). A 2D illustration of the result is shown in
Figure 3c. Localizations are then summed across
all words in the sentence, resulting in a single
score for each voxel in the scene (Figure 3e).
These scores are interpreted as logits correspond-
ing to a probability distribution over possible loca-
tions for Misty:

di(y) = s(t,y) * o
p(y) o< exp { > dt(y)}

Not all words will have localizations that pro-
vide information about Misty — for some words

the localizations will just be a uniform distribu-
tion. We will refer to words that have low-entropy
localizations as landmarks, with the understand-
ing that being a landmark is actually a soft notion
in our model.

Our offset filters o; are much smaller than our
voxel grid, which means that convolving any off-
set filter with a uniform reference distribution over
the voxel grid will also result in a uniform localiza-
tion distribution (edge effects are immaterial given
the small filter size and the fact that Misty is gener-
ally not at the immediate edges of the scene). Con-
versely, given non-uniform references almost any
set of offsets will result in a non-uniform local-
ization. The architecture for computing references
can output uniform references for function words
(like to or the), but it lacks the linguistic context to
determine when words refer to objects but should
not be interpreted as landmarks (e.g. when they
are part of exposition or a negated expression).
We therefore include an additional not-a-landmark
class that is softmax-normalized jointly with the
offset vector distribution o;. Probability assigned
to this class subtracts from the probability mass
for the true offset directions (and therefore from
the localizations) — if this class receives a prob-
ability of 1, the corresponding localizations will
not contribute to the model output.

4.4 Loss and Training

We use a softmax cross-entropy loss for training
our model. During training, we find that it helps to
not use the candidate set {y1,y2,...,¥y,} and in-
stead calculate a probability p(y) for all blocks in
the scene, including solid blocks that cannot possi-
bly contain Misty (perhaps because this penalizes
inferring nonsensical spatial relationships).

We run the Adam optimizer (Kingma and Ba,
2014) with step size 0.001 for 100 epochs using
batch size 10. We keep an exponential moving av-
erage of our trainable parameters, which we save
every two epochs. We then select the saved model
that has the highest performance on our develop-
ment set.

We perform several regularization and data aug-
mentation techniques in order to achieve better
generalization. Each time we sample a training
example, we select a random 19x19x19 crop from
the full scene (as long as Misty’s location is not
cropped out). We also disallow using the context-
based block embeddings for the first 20 epochs by

162

holding the parameter matrix A described in Sec-
tion 4.1 fixed at zero, forcing the model to first
learn to associate vocabulary with local features
and only later expand to capture the compositional
aspects of the environment.

For the natural language descriptions, all to-
kens are converted to lowercase as part of pre-
processing. During training we apply word-level
dropout (i.e. replacing words with an UNK token)
in the LSTM responsible for computing offsets.

5 Evaluation

5.1 Evaluation Metric

In evaluating this task, we would like to use a
metric that can provide meaningful comparison of
our model with baseline and human performance.
The set of all possible locations for Misty is large
enough that it is hard even for a human to guess
the correct block on the first try, especially when
some descriptions are only precise to within 1 or 2
blocks. The size of this set also varies from scene
to scene.

Therefore for our evaluation, we restrict the set
{y1,...,yn} to 6 possible locations: Misty’s true
location and 5 distractors. This represents a less
ambiguous problem that is much easier for hu-
mans, while also allowing for the evaluation of fu-
ture models that may require an expensive com-
putation for each candidate location considered.
Our procedure for selecting the distractors is de-
signed to ensure that we test both local and global
scene understanding. Each set of six choices is
constructed to consist of three clusters of two can-
didates each. Each cluster location is anchored to a
landmark — we sample a landmark block adjacent
to Misty and two additional landmark blocks from
the entire scene, such that the pairwise distances
between landmarks are at least 4 units. We then
sample one distractor near Misty’s landmark and
two distractors near both of the other landmarks.

5.2 Dataset

To make our development and test sets, we con-
struct this six-option variation from a subset of
our collected data. For each such example we
crowdsource two human solutions using Mechani-
cal Turk. Examples where both humans answered
correctly are partitioned into a development and
a test set. This filtering procedure serves as our
primary method of excluding confusing or unin-
formative descriptions from the evaluation con-

(@)
(b)
©

Misty is facing to the right of the brown door.

When you come in the door, she’s on the floor to the right, just in front of the flower.

If you were to walk through the door that is on the same wall as the table and plank of floating wood,

Misty would be to the left of the door. She is eye level with the plank of wood and floating in front of it.

(d)
(e)

Misty is in the ground and she is front of door.

Misty is located under a table that is connected to the wall. She is at ground level.

Table 1: Five natural-language descriptions sampled at random from our dataset.

ditions. We also collect a third human solution
to each example in the development and test sets
to get an independent estimate of human perfor-
mance on our task. The final dataset consists of
2321 training examples, 120 dev set examples, and
200 test set examples.

The natural-language descriptions across the
full dataset use a vocabulary of 1015 distinct to-
kens (case-insensitive but including punctuation).
The average description length is 19.02 tokens,
with a standard deviation of 10.00 tokens. The
large spread partially reflects the fact that some
people gave short descriptions that referenced a
few landmarks, while others gave sequences of in-
structions on how to find Misty. As a point of com-
parison, the Referlt dataset (Kazemzadeh et al.,
2014) has a larger vocabulary of 9124 tokens, but
a shorter average description length of 3.52 tokens
(with a standard deviation of 2.67 tokens).

A random sampling of descriptions from our
dataset is shown in Table 1.

5.3

Quantitative results are shown in Table 2. Our
evaluation metric is constructed such that there is
an easily interpretable random baseline. We also
evaluate a strong neural baseline that uses an ap-
proach we call Seq2Emb. This baseline converts
the sentence into a vector using a bidirectional
LSTM encoder, and also assigns vector embed-
dings to each voxel using a two-layer convolu-
tional neural network. The voxel with an embed-
ding that most closely matches the sentence em-
bedding is chosen as the answer.

Our model achieves noticeable gains over the
baseline approaches. At the same time, there re-
mains a gap between our model and individual hu-
man performance. We see this as an indication that
we have constructed a task with appropriate diffi-
culty: it is approachable by building on the cur-
rent state-of-the-art in machine learning and NLP,
while presenting challenges that can motivate con-
tinued work on understanding language and how it

Quantitative Results

163

Dev Set Test Set
Random Baseline 16.67 16.67
Seq2Emb Baseline 52.50 44.50
Our Model 67.50 62.50
Human 85.83 87.50

Table 2: Success rates for our dataset split. Our model is able
to outperform a strong neural baseline (Seq2Emb).

% correct
Full model 67.5
—contextual block embeddings 65.0
—LSTM (use 3-word convolutions instead) 62.5
—language-dependent spatial operators 61.7

Table 3: Development set results for our full model and three
independent ablations.

relates to descriptions of the world.

5.4 Ablation Study

We next conduct an ablation study to evaluate
the contribution of the individual elements in our
model. Our ablation results on the development
set are shown in Table 3.

In our first ablation, we remove the composi-
tional block embeddings that make use of multiple
blocks. The resulting performance drop of 2.5%
reflects the fact that our model uses multi-block
information to match words with objects.

We next replace the LSTM in our full model
with a 3-word-wide convolutional layer. A sin-
gle word of left- and right-context provides lim-
ited ability to incorporate spatial descriptor words
like left and right, or to distinguish landmarks used
to locate Misty from words providing exposition
about the scene. This ablation solves 5% fewer ex-
amples than our full model, reflecting our LSTM’s
ability to capture such phenomena.

Finally, we try holding the distribution over off-
set vectors fixed, by making it a trainable variable
rather than a function of the language. This cor-
responds to enforcing the use of only one spatial

Misty is floating in the middle of the room. She in
the upper half of the room, between the two poles.

Figure 4: Reference distribution representing our model’s be-
lief of which blocks the word poles refers to. Our model as-
signs the majority of the probability mass to the poles, while
ignoring a table leg that is made of the same block type.
Note that the seven numbers overlaid on top account for more
than 99% of the total probability mass, and that each of the
remaining blocks in the scene has a probability of at most
0.025%.

operator that roughly means ‘near.’” We retain the
LSTM for the sole purpose of assigning a score to
the not-a-landmark class, meaning that contextual
information is still incorporated in the decision of
whether to classify a word as a landmark or not.
The resulting accuracy is 5.8% lower than our full
model, which makes this the worst-performing of
our ablations. These results suggest that the abil-
ity to infer spatial directions is important to our
model’s overall performance.

5.5 Qualitative Examination

The modular design of our model allows us to ex-
amine the individual behavior of each component
in the network, which we explore in this section.

We find that our algorithm is able to learn to
associate words with the corresponding voxels in
the world. Figure 4 shows the reference distribu-
tion associated with the word poles, which is con-
structed by applying a softmax operation to the
word-voxel scores for that word. Our algorithm
is able to correctly segment out the voxels that are
a part of the pole. Moreover, the table on the right
side of the scene has a table leg made of the same
block type as the pole — and yet, it is is assigned a
low probability. This shows that our model is ca-
pable of representing compositional objects, and
can learn to do so in an end-to-end manner.

We next examine the offset distributions com-
puted by our model. Consider the scene and de-
scription shown in Figure 5a. The offset vector
distribution at the word platform, shown in Fig-
ure 5b, shows that the model assigns high proba-

(a) To the left of the room, there is a bookcase with a
platform directly in front of it. Misty is right above the
platform.

)]
)a’) |
::))’I}) #
)))’,;i) |
)
=

(c) Misty is in front of the platform.

Figure 5: Effects of language context on offset vector distri-
butions. In (a), we show the scene and its description. In
(b), we visualize the offset vector distribution at the word
platform, i.e. the 3D convolutional filter that is applied af-
ter finding the platform location. The red dot that indicates
the center of the filter will be matched with the platform lo-
cation. In (c), we have artificially replaced the words right
above with in front of, resulting in a substantial change to this
distribution.

164

Misty is between the wall and the flowers that are
close to the corner.

Figure 6: Our algorithm interprets this sentence as Misty

is near the wall and the flowers and close to the corner.

This intersective interpretation is sufficient to correctly guess
Misty’s location in this scene (as well as others in the dataset).

bility to Misty being above the platform. In Fig-
ure Sc, we show the effects of replacing the phrase
right above with the words in front of. This ex-
ample illustrates our model’s capacity for learn-
ing spatial directions. We note that the offset dis-
tribution given the phrase in front of is not as
peaked as it is for right above, and that distribu-
tions for descriptions saying left or right are even
less peaked (and are mostly uniform on the hori-
zontal plane). One explanation for this is the am-
biguity between speaker-centric and object-centric
reference frames. The reference frame of our con-
volutional filters is the same as the initial camera
frame for our our annotators, but this may not be
the true speaker-centric frame because we man-
date that annotators move the camera before sub-
mitting a description.

We next highlight our model’s ability to incor-
porate multiple landmarks in making its decisions.
Consider the scene and description shown in Fig-
ure 6. The room has four walls, two flowers, and
four corners — no single landmark is sufficient to
correctly guess Misty’s location. Our model is
able to localize the flowers, walls, and corners
in this scene and intersect them to locate Misty.
Strictly speaking, this approach is not logically
equivalent to applying a two-argument between
operator and recognizing the role of that as a rela-
tivizer. This is a limitation of our specific model,
but the general approach of manipulating spatial
region masks need not be constrained in this way.
It would be possible to introduce operations into
the neural network to model recursive structure in
the language. In practice, however, we find that
the intersective interpretation suffices for many of
the descriptions that occur in our dataset.

165

6 Conclusion

In this paper, we define the task of interpreting
spatial descriptors, construct a new dataset based
on Minecraft, and propose a model for this task.
We show that convolutional neural networks can
be used to reason about regions in space as first-
class entities. This approach is trainable end-to-
end while also having interpretable values at the
intermediate stages of the neural network.

Our architecture handles many of the linguis-
tic phenomena needed to solve this task, includ-
ing object references and spatial regions. How-
ever, there is more work to be done before we can
say that the network completely understands the
sentences that it reads. Our dataset can be used
to investigate future models that expand to han-
dle relativization and other recursive phenomena
in language.

Acknowledgments

We thank the many workers on Mechanical Turk
who contributed to the creation of our dataset.

This work was made possible by the open
source tooling developed around and inspired by
Minecraft; in particular we would like to thank
the developers of the voxel. js project and as-
sociated plugins, as well as the developers of
mcedit2.

Nikita Kitaev is supported by an NSF Graduate
Research Fellowship. This research was supported
by DARPA through the XAI program.

References

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-
garet Mitchell, C. Lawrence Zitnick, Dhruv Batra,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. arXiv:1505.00468 [cs].

Angel X. Chang, Mihail Eric, Manolis Savva,
and Christopher D. Manning. 2017. Scene-
Seer: 3d Scene Design with Natural Language.
arXiv:1703.00050 [cs].

Dave Golland, Percy Liang, and Dan Klein. 2010. A
game-theoretic approach to generating spatial de-
scriptions. In EMNLP, pages 410-419.

Ronghang Hu, Marcus Rohrbach, Jacob Andreas,
Trevor Darrell, and Kate Saenko. 2016. Modeling
Relationships in Referential Expressions with Com-
positional Modular Networks. arXiv:1611.09978
[cs].

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross

Girshick. 2016. CLEVR: A Diagnostic Dataset
for Compositional Language and Elementary Visual
Reasoning. arXiv:1612.06890 [cs].

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara L. Berg. 2014. ReferltGame: Refer-
ring to Objects in Photographs of Natural Scenes.
In EMNLP, pages 787-798.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs].

Parisa Kordjamshidi, Martijn Van Otterlo, and Marie-
Francine Moens. 2011. Spatial role labeling: To-
wards extraction of spatial relations from natural
language. ACM Transactions on Speech and Lan-
guage Processing (TSLP), 8(3):4.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association for Computational Linguis-
tics, 1:193-206.

Daniel Maturana and Sebastian Scherer. 2015. Voxnet:
A 3d convolutional neural network for real-time ob-
ject recognition. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference
on, pages 922-928. IEEE.

Junhyuk Oh, Valliappa Chockalingam, Satinder Singh,
and Honglak Lee. 2016. Control of Mem-
ory, Active Perception, and Action in Minecraft.
arXiv:1605.09128 [cs].

James Pustejovsky, Parisa Kordjamshidi, Marie-
Francine Moens, Aaron Levine, Seth Dworman,
and Zachary Yocum. 2015. SemEval-2015 Task 8:
SpaceEval. In Proceedings of the 9th International
Workshop on Semantic Evaluation, pages 884—894.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions

of the Association for Computational Linguistics,
2:207-218.

Stefanie A. Tellex, Thomas Fleming Kollar, Steven R.
Dickerson, Matthew R. Walter, Ashis Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In AAAL

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J.
Mankowitz, and Shie Mannor. 2016. A Deep
Hierarchical Approach to Lifelong Learning in
Minecraft. arXiv:1604.07255 [cs].

166

