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Abstract

In the encoder-decoder architecture for
neural machine translation (NMT), the
hidden states of the recurrent structures in
the encoder and decoder carry the crucial
information about the sentence.These vec-
tors are generated by parameters which are
updated by back-propagation of translation
errors through time. We argue that prop-
agating errors through the end-to-end re-
current structures are not a direct way of
control the hidden vectors. In this paper,
we propose to use word predictions as a
mechanism for direct supervision. More
specifically, we require these vectors to
be able to predict the vocabulary in tar-
get sentence. Our simple mechanism en-
sures better representations in the encoder
and decoder without using any extra data
or annotation. It is also helpful in reduc-
ing the target side vocabulary and improv-
ing the decoding efficiency. Experiments
on Chinese-English and German-English
machine translation tasks show BLEU im-
provements by 4.53 and 1.3, respectively.

1 Introduction

The encoder-decoder based neural machine trans-
lation (NMT) models (Sutskever et al., 2014;
Cho et al., 2014) have been developing rapidly.
Sutskever et al. (2014) propose to encode the
source sentence as a fixed-length vector repre-
sentation, based on which the decoder gener-
ates the target sequence, where both the en-
coder and decoder are recurrent neural net-
works (RNN) (Sutskever et al., 2014) or their vari-
ants (Cho et al., 2014; Chung et al., 2014; Bah-
danau et al., 2014). In this framework, the fixed-
length vector plays the crucial role of transition-

ing the information of the sentence from the source
side to the target side.
Later, attention mechanisms are proposed to en-

hance the source side representations (Bahdanau
et al., 2014; Luong et al., 2015b). The source side
context is computed at each time-step of decod-
ing, based on the attention weights between the
source side representations and the current hidden
state of the decoder. However, the hidden states
in the recurrent decoder still originate from the
single fixed-length representation (Luong et al.,
2015b), or the average of the bi-directional repre-
sentations (Bahdanau et al., 2014). Here we refer
to the representation as initial state.
Interestingly, Britz et al. (2017) find that the

value of initial state does not affect the translation
performance, and prefer to set the initial state to
be a zero vector. On the contrary, we argue that
initial state still plays an important role of transla-
tion, which is currently neglected. We notice that
beside the end-to-end error back propagation for
the initial and transition parameters, there is no di-
rect control of the initial state in the current NMT
architectures. Due to the large number of param-
eters, it may be difficult for the NMT system to
learn the proper sentence representation as the ini-
tial state. Thus, themodel is very likely to get stuck
in local minimums, making the translation process
arbitrary and unstable.
In this paper, we propose to augment the current

NMT architecture with a word prediction mecha-
nism. More specifically, we require the initial state
of the decoder to be able to predict all the words
in the target sentence. In this way, there is a spe-
cific objective for learning the initial state. Thus
the learnt source side representation will be bet-
ter constrained. We further extend this idea by ap-
plying the word predictions mechanism to all the
hidden states of the decoder. So the transition be-
tween different decoder states could be controlled
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as well.
Our mechanism is simple and requires no ad-

ditional data or annotation. The proposed word
predictions mechanism could be used as a training
method and brings no extra computing cost during
decoding.
Experiments on the Chinese-English and

German-English translation tasks show that both
the constraining of the initial state and the decoder
hidden states bring significant improvement over
the baseline systems. Furthermore, using the word
prediction mechanism on the initial state as a word
predictor to reduce the target side vocabulary
could greatly improve the decoding efficiency,
without a significant loss on the translation
quality.

2 Related Work

Many previous works have noticed the problem
of training an NMT system with lots of parame-
ters. Some of them prefer to use the dropout tech-
nique (Srivastava et al., 2014; Luong et al., 2015b;
Meng et al., 2016). Another possible choice is
to ensemble several models with random starting
points (Sutskever et al., 2014; Jean et al., 2015; Lu-
ong and Manning, 2016). Both techniques could
bring more stable and better results. But they
are general training techniques of neural networks,
which are not specifically targeting the model-
ing of the translation process like ours. We will
make empirical comparison with them in the ex-
periments.
The way we add the word prediction is similar

to the research of multi-task learning. Dong et al.
(2015) propose to share an encoder between dif-
ferent translation tasks. Luong et al. (2015a) pro-
pose to jointly learn the translation task for dif-
ferent languages, the parsing task and the image
captioning task, with a shared encoder or decoder.
Zhang and Zong (2016) propose to use multitask
learning for incorporating source sidemonolingual
data. Different from these attempts, our method
focuses solely on the current translation task, and
does not require any extra data or annotation.
In the other sequence to sequence tasks, Suzuki

and Nagata (2017) propose the idea for predicting
words by using encoder information. However,
the purpose and the way of our mechanism are dif-
ferent from them.
The word prediction technique has been applied

in the research of both statistical machine transla-

tion (SMT) (Bangalore et al., 2007; Mauser et al.,
2009; Jeong et al., 2010; Tran et al., 2014) and
NMT (Mi et al., 2016; L’Hostis et al., 2016). In
these research, word prediction mechanisms are
employed to decide the selection of words or con-
strain the target vocabulary, while in this paper,
we use word prediction as a control mechanism for
neural model training.

3 Notations and Backgrounds

We present a popular NMT framework with the
encoder-decoder architecture (Cho et al., 2014;
Bahdanau et al., 2014) and the attention net-
works (Luong et al., 2015b), based on which we
propose our word prediction mechanism.
Denote a source-target sentence pair as {x, y}

from the training set, where x is the source word
sequence (x1, x2, · · · , x|x|) and y is the target
word sequence (y1, y2, · · · , y|y|), |x| and |y| are the
length of x and y, respectively.
In the encoding stage, a bi-directional recur-

rent neural network is used (Bahdanau et al.,
2014) to encode x into a sequence of vectors
(h1,h2, · · · ,h|x|). For each xi, the representation
hi is:

hi = [
−→hi ;
←−hi ] (1)

where [·; ·] denotes the concatenation of column
vectors;

−→hi and
←−hi denote the hidden vectors for

the word xi in the forward and backward RNNs,
respectively.
The gated recurrent unit (GRU) is used as the re-

current unit in each RNN, which is shown to have
promising results in speech recognition and ma-
chine translation (Cho et al., 2014). Formally, the
hidden state hi at time step i of the forward RNN
encoder is defined by the GRU function g−→e (·, ·),
as follows:

−→h i = g−→e (
−→h i−1, embxi) (2)

= (1−−→z i)⊙−→h i−1 +−→z i ⊙
−→
h′ i

−→z i = σ(
−→Wz[embxi ;

−→h i−1]) (3)
−→
h′ i = tanh(

−→W[embxi ; (
−→r i ⊙−→h i−1)]) (4)

−→r i = σ(
−→Wr[embxi ;

−→h i−1]) (5)

where ⊙ denotes element-wise product between
vectors and embxi is the word embedding of the
xi. tanh(·) and σ(·) are the tanh and sigmoid trans-
formation functions that can be applied element-
wise on vectors, respectively. For simplicity, we
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Figure 1: The NMT model with word prediction for the initial state.

omit the bias term in each network layer. The
backward RNN encoder is defined likewise.
In the decoding stage, the decoder starts with the

initial state s0, which is the average of source rep-
resentations (Bahdanau et al., 2014).

s0 = σ(Ws
1
|x|

|x|∑
i=1

hi) (6)

At each time step j, the decoder maximizes the
conditional probability of generating the jth target
word, which is defined as:

P (yj |y<j , x) = fd(td([embyj−1 ; sj ; cj ])) (7)
fd(u) = softmax(Wfu) (8)
td(v) = tanh(Wtv) (9)

where sj is the decoder’s hidden state, which is
computed by another GRU (as in Equation 2):

sj = gd(sj−1, [embyj−1 ; cj ]) (10)

and the context vector cj is from the attention
mechanism (Luong et al., 2015b):

cj =
|x|∑
i=1

ajihi (11)

aji =
exp(eji)∑|x|

k=1 exp(ejk)
(12)

eji = tanh(Wattd [sj−1;hi]). (13)

4 NMT with Word Predictions

4.1 Word Prediction for the Initial State
The decoder starts the generation of target sentence
from the initial state s0 (Equation 6) generated by
the encoder. Currently, the update for the encoder

only happens when a translation error occurs in the
decoder. The error is propagated through multiple
time steps in the recurrent structure until it reaches
the encoder. As there are hundreds of millions of
parameters in the NMT system, it is hard for the
model to learn the exact representation of source
sentences. As a result, the values of initial state
may not be exact during the translation process,
leading to poor translation performances.
We propose word prediction as a mechanism to

control the values of initial state. The intuition
is that since the initial state is responsible for the
translation of whole target sentence, it should at
least contain information of each word in the tar-
get sentence. Thus, we optimize the initial state by
making prediction for all target words. For sim-
plicity, we assume each target word is independent
of each other.
Here the word prediction mechanism is a sim-

pler sub-task of translation, where the order of
words is not considered. The prediction task could
be trained jointly with the translation task in a
multi-task learningway (Luong et al., 2015a; Dong
et al., 2015; Zhang and Zong, 2016), where both
tasks share the same encoder. In other words, word
prediction for the initial state could be interpreted
as an improvement for the encoder. We denote this
mechanism as WPE .
As shown in Figure 1, a prediction network is

added to the initial state. We define the conditional
probability of WPE as follows:

PWPE(y|x) =
|y|∏

j=1

PWPE(yj |x) (14)

PWPE(yj |x) = fp(tp([s0; cp])) (15)

where fp(·) and tp(·) are the softmax layer and
non-linear layer as defined in Equation 8-9, with
different parameters; cp is defined similar as the
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Figure 2: The NMT model with word predictions for the decoder’s hidden states.

attention network, so the source side information
could be enhanced.

cp =
|x|∑
i=1

aihi (16)

ai =
exp(ei)∑|x|

k=1 exp(ek)
(17)

ei = tanh(Wattp [s0,hi]). (18)

4.2 Word Predictions for Decoder’s Hidden
States

Similar intuition is also applied for the decoder.
Because the hidden states of the decoder are re-
sponsible for the translation of target words, they
should be able to predict the target words as well.
The only difference is that we remove the already
generated words from the prediction task. So each
hidden state in the decoder is required to predict
the target words which remain untranslated.
For the first state s1 of the decoder, the predic-

tion task is similar with the task for the initial state.
Since then, the prediction is no longer a separate
training task, but integrated into each time step of
the training process. We denote this mechanism as
WPD.
As shown in Figure 2, for each time step j in the

decoder, the hidden state sj is used for the predic-
tion of (yj , yj+1, · · · , y|y|). The conditional prob-
ability of WPD is defined as:

PWPD(yj , yj+1, · · · , y|y||y<j , x) (19)

=
|y|∏

k=j

PWPD(yk|y<j , x)

PWPD(yk|y<j , x) =fd(p(td([embyj−1 ; sj ; cj ])))
(20)

where fd(·) and td(·) are the softmax layer and
non-linear layer as defined in Equation 8-9; p(·)

is another non-linear transformation layer, which
prepares the current state for the prediction:

p(u) = tanh(Wpu). (21)

4.3 Training

NMT models optimize the networks by maximiz-
ing the likelihood of the target translation y given
source sentence x, denoted by LT.

LT =
1
|y|

|y|∑
j=1

logP (yj |y<j , x) (22)

where P (yj |y<j , x) is defined in Equation 7.
To optimize the word prediction mechanism, we

propose to add extra likelihood functionsLWPE and
LWPD into the training procedure.
For the WPE, we directly optimize the likeli-

hood of translation and word prediction:

L1 = LT + LWPE (23)
LWPE = logPWPE (24)

where PWPE is defined in Equation 14.
For the WPD, we optimize the likelihood as:

L2 = LT + LWPD (25)

LWPD =
|y|∑

j=1

1
|y| − j + 1

logPWPD (26)

where PWPD is defined in Equation 19; the coeffi-
cient of the logarithm is used to calculate the aver-
age probability of each prediction.
The two mechanisms could also work together,

so that both the encoder and the decoder could be
improved:

L3 = LT + LWPE + LWPD . (27)
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4.4 Making Use of the Word Predictor

The previously proposed word prediction mecha-
nism could be used only as a extra training objec-
tive, which will not be computed during the trans-
lation. Thus the computational complexity of our
models for translation stays exactly the same.
On the other hand, using a smaller and specific

vocabulary for each sentence or batch will improve
translation efficiency. If the vocabulary is accurate
enough, there is also a chance to improve the trans-
lation quality (Jean et al., 2015; Mi et al., 2016;
L’Hostis et al., 2016). Our word prediction mech-
anismWPE provides a natural solution for generat-
ing a possible set of target words at sentence level.
The prediction could be made from the initial state
s0, without using extra resources such as word dic-
tionaries, extracted phrases or frequent word lists,
as in Mi et al. (2016).

5 Experiments

5.1 Data

We perform experiments on the Chinese-English
(CH-EN) and German-English (DE-EN) machine
translation tasks. For the CH-EN, the training data
consists of about 8million sentence pairs 1. We use
NIST MT02 as our validation set, and the NIST
MT03, MT04 and MT05 as our test sets. These
sets have 878, 919, 1597 and 1082 source sen-
tences, respectively, with 4 references for each
sentence. For the DE-EN, the experiments trained
on the standard benchmark WMT14, and it has
about 4.5 million sentence pairs. We use new-
stest 2013 (NST13) as validation set, and newstest
2014(NST14) as test set. These sets have 3000 and
2737 source sentences, respectively, with 1 refer-
ence for each sentence. Sentences were encoded
using byte-pair encoding (BPE) (Britz et al., 2017).

5.2 Systems and Techniques

We implement a baseline system with the bi-
directional encoder (Bahdanau et al., 2014) and the
attention mechanism (Luong et al., 2015b) as de-
scribed in Section 3, denoted as baseNMT. Then
our proposed word prediction mechanism on ini-
tial state and hidden states of decoder are imple-
mented on the baseNMT system, denoted as WPE
and WPD, respectively. We denote the system

1includes LDC2002E18, LDC2003E07, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T06, LDC2005T10,
LDC2006E26 and LDC2007T09

use both techniques as WPED. We implement sys-
temswith variable-sized vocabulary following (Mi
et al., 2016). For comparison, we also implement
systems with dropout (with dropout rate 0.5 on the
output layer) and ensemble (ensemble of 4 systems
at the output layer) techniques.

5.3 Implementation Details

Both our CH-EN and DE-EN experiments are im-
plemented on the open source toolkit dl4mt 2, with
most default parameter settings kept the same. We
train the NMT systemswith the sentences of length
up to 50 words. The source and target vocabular-
ies are limited to the most frequent 30K words for
both Chinese and English, respectively, with the
out-of-vocabulary words mapped to a special to-
ken UNK.
The dimension of word embedding is set to 512

and the size of the hidden layer is 1024. The recur-
rent weight matrices are initialized as random or-
thogonal matrices, and all the bias vectors as zero.
Other parameters are initialized by sampling from
the Gaussian distribution N (0, 0.01).
We use the mini-batch stochastic gradient de-

scent (SGD) approach to update the parameters,
with a batch size of 32. The learning rate is con-
trolled by AdaDelta (Zeiler, 2012).
For efficient training of our system, we adopt

a simple pre-train strategy. Firstly, the baseNMT
system is trained. The training results are used as
the initial parameters for pre-training our proposed
models with word predictions.
For decoding during test time, we simply decode

until the end-of-sentence symbol eos occurs, using
a beam search with a beam width of 5.

5.4 Translation Experiments

To see the effect of word predictions in transla-
tion, we evaluate these systems in case-insensitive
IBM-BLEU (Papineni et al., 2002) on both CH-EN
and DE-EN tasks.
The detailed results are show in the Table 1

and Table 2. Compared to the baseNMT sys-
tem, all of our models achieve significant improve-
ments. On the CH-EN experiments, simply adding
word predictions to the initial state (WPE) already
brings considerable improvements. The average
improvement on test set is 2.53 BLEU, showing
that constraining the initial state does lead to a
higher translation quality. Adding word predic-

2https://github.com/nyu-dl/dl4mt-tutorial
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Models MT02(dev) MT03 MT04 MT05 Test Ave. IMP
baseNMT 34.04 34.92 36.08 33.88 34.96 −
WPE 39.36 37.17 39.11 36.20 37.49 +2.53
WPD 40.28 38.45 40.99 37.90 39.11 +4.15
WPED 40.25 39.50 40.91 38.05 39.49 +4.53

Table 1: Case-insensitive 4-gram BLEU scores of baseNMT, WPE, WPD, WPED systems on the CH-EN
experiments. (The “IMP” column presents the improvement of test average compared to the baseNMT. )

Models NST13(dev) NST14 IMP
baseNMT 23.56 20.68 −
WPE 24.44 21.09 +0.41
WPD 25.31 21.54 +0.86
WPED 25.97 21.98 +1.3

Table 2: Case-insensitive 4-gram BLEU scores of
baseNMT, WPE, WPD, WPED systems on the DE-
EN experiments.

Models Test IMP
baseNMT 34.86 −
WPED 39.49 +4.53
baseNMT-dropout 37.02 +2.06
WPED-dropout 39.25 +4.29
baseNMT-ensemble(4) 37.71 +2.75
WPED-ensemble(4) 40.75 +5.79

Table 3: Average case-insensitive 4-gram BLEU
scores on the CH-EN experiments for baseNMT
andWPED systems, with the dropout and ensemble
techniques.

tions to the hidden states in the decoder (WPD)
leads to further improvements against baseNMT
(4.15 BLEU), because WPD adds constraints to
the state transitions through different time steps
in the decoder. Using both techniques improves
the baseline by 4.53 BLEU. On the DE-EN ex-
periments, the improvement of WPE model is 0.41
BLEU and WPD model is 0.86 BLEU on test set.
When use both techniques, the WPED improves on
the test set is 1.3 BLEU.
We compare our models with systems using

dropout and ensemble techniques. The results
show in Table 3 and 4. On the CH-EN experi-
ments, the dropout method successfully improves
the baseNMT system by 2.06 BLEU. However,
it does not work on our WPED system. The en-
semble technique improves the baseNMT system
by 2.75 BLEU. It still improves WPED by 1.26

Models Test IMP
baseNMT 20.68 −
WPED 21.98 +1.3
baseNMT-dropout 21.62 +0.94
WPED-dropout 21.71 +1.03
baseNMT-ensemble(4) 21.58 +0.9
WPED-ensemble(4) 22.47 +1.79

Table 4: Case-insensitive 4-gram BLEU scores on
the DE-EN experiments for baseNMT and WPED
systems, with the dropout and ensemble tech-
niques.

BLEU, but the improvement is smaller than on the
baseNMT. On the DE-EN experiments, the phe-
nomenon of experiments is similar to CH-EN ex-
periments. The baseNMT system improves 0.94
through dropout method and 0.9 BLEU through
ensemble method. The dropout technique also
does not work on WPED and the ensemble tech-
nique improves 1.79 BLEU. These comparisons
suggests that our system already learns better and
stable values for the parameters, enjoying some
of the benefits of general training techniques like
dropout and ensemble. Compared to dropout and
ensemble, our method WPED achieves the highest
improvement against the baseline system on both
CH-EN and DE-EN experiments. Along with en-
semble method, the improvement could be up to
5.79 BLEU and 1.79 BLEU respectively.

5.5 Word Prediction Experiments

Since we include an explicit word prediction
mechanism during the training of NMT systems,
we also evaluate the prediction performance on the
CH-EN experiments to see how the training is im-
proved.
For each sentence in the test set, we use the ini-

tial state of the given model to make prediction
about the possible words. We denote the set of top
nwords as Tn, the set of words in all the references
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top-n baseNMT WPE
Prec. Recall Prec. Recall

top-10 45% 17% 73% 30%
top-20 33% 21% 63% 43%
top-50 21% 30% 41% 55%
top-100 14% 39% 28% 68%
top-1k 2% 67% 4% 89%
top-5k 0.7% 84% 0.9% 95%
top-10k 0.4% 90% 0.5% 97%

Table 5: Comparison between baseNMT andWPE
in precision and recall for the different prediction
size on the CH-EN experiments.

as R. We define the precision, recall of the word
prediction as follows:

precision =
|Tn ∩R|
|Tn| ∗ 100% (28)

recall =
|Tn ∩R|
|R| ∗ 100% (29)

We compare the prediction performance of
baseNMT and WPE. WPED has similar prediction
results withWPE, so we omit its results. As shown
in Table 5, baseNMT system has a relatively lower
prediction precision, for example, 45% in top 10
prediction. With an explicit training, the WPE
could achieve a much higher precision in all con-
ditions. Specifically, the precision reaches 73% in
top 10. This indicates that the initial state in WPE
contains more specific information about the pre-
diction of the target words, which may be a step
towards better semantic representation, and leads
to better translation quality.
Because the total words in the references are

limited (around 50), the precision goes down, as
expected, when a larger prediction set is consid-
ered. On the other hand, the recall of WPE is also
much higher than baseNMT. When given 1k pre-
dictions, WPE could successfully predict 89% of
the words in the reference. The recall goes up to
95% with 5k predictions, which is only 1/6 of the
current vocabulary.
To analyze the process of word prediction, we

draw the attention heatmap (Equation 16) between
the initial state s0 and the bi-directional represen-
tation of each source side word hi for an example
sentence. As shown in Figure 3, both examples
show that the initial states have a very strong atten-
tion with all the content words in the source sen-
tence. The blank cells are mostly functions words

Figure 3: Two examples of the attention heatmap
between the initial state s0 and the bi-directional
representation of each source side word hi from
the CH-EN test sets. (The English translation of
each source word is annotated in the parentheses
after it. )

or high frequent tokens such as “的 (’s)”, “是 (is)”,
“而 (and)”, “它 (it)”, comma and period. This in-
dicates that the initial state successfully encodes
information about most of the content words in the
source sentence, which contributes for a high pre-
diction performance and leads to better translation.

5.6 Improving Decoding Efficiency
To make use of the word prediction, we conduct
experiments using the predicted vocabulary, with
different vocabulary size (1k to 10k) on the CH-
EN experiments, denoted as WPE-V and WPED-V.
The comparison is made in both translation quality
and decoding time. As all our models with fixed
vocabulary size have exactly the same number of
parameters for decoding (extra mechanism is used
only for training), we only plot the decoding time
of the WPED for comparison. Figure 4 and 5 show
the results.
When we start the experiments with top 1k vo-

cabulary (1/30 of the baseline settings), the trans-
lation quality of both WPE-V and WPED-V are al-
ready higher than the baseNMT; while their decod-
ing time is less than 1/3 of an NMT system with
30k vocabulary. When the size of vocabulary in-
creases, the translation quality improves as well.
With a 6k predicted vocabulary (1/5 of the baseline
settings), the decoding time is about 60% of a full-
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Figure 4: BLEU scores with different vocabu-
lary sizes for each sentence on the CH-EN ex-
periments. (The performance of baseNMT, WPE,
WPD, WPED are plotted as horizontal lines for
comparison.)

Figure 5: Decoding time with different vocabulary
sizes for each sentence on the CH-EN experiments.
(The horizontal line shows the decoding time for
the systems with fixed vocabulary. )

vocabulary system; the performances of both sys-
tems with variable size vocabulary are compara-
ble their corresponding fixed-vocabulary systems,
which is higher than the baseNMT by 2.53 and
4.53 BLEU, respectively.
Although the comparison may not be fair

enough due to the language pair and training
conditions, the above relative improvements (e.g.
WPED-V v.s. baseNMT) is much higher than
previous research of manipulating the vocabular-
ies (Jean et al., 2015; Mi et al., 2016; L’Hostis
et al., 2016). This is because our mechanism is not
only about reducing the vocabulary itself for each
sentence or batch, it also brings improvement to
the overall translation model. Please note that un-

like these research, we keep the target vocabulary
to be 30k in all our experiments, becausewe are not
focusing on increasing the vocabulary size in this
paper. It will be interesting to combine our mecha-
nism with larger vocabulary to further enhance the
translation performance. Again, our mechanism
requires no extra annotation, dictionary, alignment
or separate discriminative predictor, etc.

5.7 Translation Analysis

We also analyze real-case translations to see the
difference between different systems (Table 6).
It is easy to see that the baseNMT systemmisses

the translations of several important words, such
as “advertising”, “1.5”, which are marked with un-
derline in the reference. It also wrongly translates
the company name “time warner inc.” as the re-
dundant information “internet company”; “amer-
ica online” as “us line”.
The results of dropout or ensemble show im-

provement compared to the baseNMT. But they
still make mistakes about the translation of “on-
line” and the company name “time warner inc.”.
WithWPED, most of these errors no longer exist,

because we force the encoder and decoder to carry
the exact information during translation.

6 Conclusions

The encoder-decoder architecture provides a gen-
eral paradigm for learning machine translation
from the source language to the target language.
However, due to the large amount of parameters
and relatively small training data set, the end-to-
end learning of an NMT model may not be able to
learn the best solution. We argue that at least part
of the problem is caused by the long error back-
propagation pipeline of the recurrent structures in
multiple time steps, which provides no direct con-
trol of the information carried by the hidden states
in both the encoder and decoder.
Instead of looking for other annotated data, we

notice that the words in the target language sen-
tence could be viewed as a natural annotation. We
propose to use the word prediction mechanism
to enhance the initial state generated by the en-
coder and extend the mechanism to control the
hidden states of decoder as well. Experiments
show promising results on the Chinese-English
and German-English translation tasks. As a by-
product, the word predictor could be used to im-
prove the efficiency of decoding, which may be
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source 时代华纳公司的网络公司美国线上说,它预期二 ○ ○二年的广告与商业销售将由
二 ○ ○一年的二十七亿美元减少到十五亿美元。

reference
america online , the internet arm of time warner conglomerate , said it expects
advertising and commerce revenue to decline from us $ 2.7 billion in 2001 to us $ 1.5
in 2002 .

baseNMT
in the us line , the internet company ’s internet company said on the internet that it
expected that the business sales in 2002 would fall from $ UNK billion to $ UNK billion
in 2001 .

baseNMT
+dropout

on the united states line , UNK ’s internet company said on the internet that it expects
to reduce the annual advertising and commercial sales from $ UNK billion in 2001 to
$ 1.5 billion .

baseNMT
+ensemble

in the us line , the internet company ’s internet company said that it expected that the
advertising and commercial sales volume for 2002 would be reduced from us $ UNK
billion to us $ 1.5 billion in 2001 .

WPED
the internet company of time warner inc. , the us online , said that it expects that the
advertising and commercial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .

Table 6: Comparisons of different systems in translating the same example sentence, which from CH-
EN test sets. (“source” indicates the source sentence; “reference” indicates the human translation; the
translation results are indicated by their system names, including our best “WPED” systems. The underline
words in the reference are missed in the baseNMT output; the bold font indicates improvements over the
baseNMT system; and the italic font indicates remaining translation errors.)

crucial for large scale applications.
Our attempts demonstrate that the learning of

the large scale neural network systems is still not
good enough. In the future, it might be helpful to
analyze the benefits of jointly learning other re-
lated tasks together with machine translation, to
provide further control of the learning process. It
is interesting to demonstrate the effectiveness of
the proposed mechanism on other sequence to se-
quence learning tasks as well.
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