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Abstract

This paper presents a novel neural ma-
chine translation model which jointly
learns translation and source-side latent
graph representations of sentences. Un-
like existing pipelined approaches using
syntactic parsers, our end-to-end model
learns a latent graph parser as part of
the encoder of an attention-based neu-
ral machine translation model, and thus
the parser is optimized according to the
translation objective. In experiments, we
first show that our model compares favor-
ably with state-of-the-art sequential and
pipelined syntax-based NMT models. We
also show that the performance of our
model can be further improved by pre-
training it with a small amount of tree-
bank annotations. Our final ensemble
model significantly outperforms the previ-
ous best models on the standard English-
to-Japanese translation dataset.

1 Introduction

Neural Machine Translation (NMT) is an active
area of research due to its outstanding empiri-
cal results (Bahdanau et al., 2015; Luong et al.,
2015; Sutskever et al., 2014). Most of the exist-
ing NMT models treat each sentence as a sequence
of tokens, but recent studies suggest that syntac-
tic information can help improve translation accu-
racy (Eriguchi et al., 2016b, 2017; Sennrich and
Haddow, 2016; Stahlberg et al., 2016). The exist-
ing syntax-based NMT models employ a syntactic
parser trained by supervised learning in advance,
and hence the parser is not adapted to the transla-
tion tasks. An alternative approach for leveraging
syntactic structure in a language processing task
is to jointly learn syntactic trees of the sentences
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Figure 1: An example of the learned latent graphs.
Edges with a small weight are omitted.

along with the target task (Socher et al., 2011; Yo-
gatama et al., 2017).

Motivated by the promising results of recent
joint learning approaches, we present a novel
NMT model that can learn a task-specific latent
graph structure for each source-side sentence. The
graph structure is similar to the dependency struc-
ture of the sentence, but it can have cycles and is
learned specifically for the translation task. Un-
like the aforementioned approach of learning sin-
gle syntactic trees, our latent graphs are composed
of “soft” connections, i.e., the edges have real-
valued weights (Figure 1). Our model consists of
two parts: one is a task-independent parsing com-
ponent, which we call a latent graph parser, and
the other is an attention-based NMT model. The
latent parser can be independently pre-trained with
human-annotated treebanks and is then adapted to
the translation task.

In experiments, we demonstrate that our model
can be effectively pre-trained by the treebank
annotations, outperforming a state-of-the-art se-
quential counterpart and a pipelined syntax-based
model. Our final ensemble model outperforms the
previous best results by a large margin on the WAT
English-to-Japanese dataset.

2 Latent Graph Parser

We model the latent graph parser based on de-
pendency parsing. In dependency parsing, a sen-
tence is represented as a tree structure where each
node corresponds to a word in the sentence and
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a unique root node (ROOT) is added. Given a
sentence of length N , the parent node Hwi ∈
{w1, . . . , wN , ROOT} (Hwi 6= wi) of each word
wi (1 ≤ i ≤ N) is called its head. The sentence is
thus represented as a set of tuples (wi, Hwi , `wi),
where `wi is a dependency label.

In this paper, we remove the constraint of us-
ing the tree structure and represent a sentence as
a set of tuples (wi, p(Hwi |wi), p(`wi |wi)), where
p(Hwi |wi) is the probability distribution of wi’s
parent nodes, and p(`wi |wi) is the probability dis-
tribution of the dependency labels. For example,
p(Hwi = wj |wi) is the probability that wj is the
parent node of wi. Here, we assume that a spe-
cial token 〈EOS〉 is appended to the end of the
sentence, and we treat the 〈EOS〉 token as ROOT.
This approach is similar to that of graph-based de-
pendency parsing (McDonald et al., 2005) in that a
sentence is represented with a set of weighted arcs
between the words. To obtain the latent graph rep-
resentation of the sentence, we use a dependency
parsing model based on multi-task learning pro-
posed by Hashimoto et al. (2017).

2.1 Word Representation

The i-th input word wi is represented with the con-
catenation of its d1-dimensional word embedding
vdp(wi) ∈ Rd1 and its character n-gram embed-
ding c(wi) ∈ Rd1 : x(wi) = [vdp(wi); c(wi)].
c(wi) is computed as the average of the embed-
dings of the character n-grams in wi.

2.2 POS Tagging Layer

Our latent graph parser builds upon multi-
layer bi-directional Recurrent Neural Networks
(RNNs) with Long Short-Term Memory (LSTM)
units (Graves and Schmidhuber, 2005). In the first
layer, POS tagging is handled by computing a hid-
den state h
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h

(1)
i ;
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h

(1)
i ] ∈ R2d1 for wi,

where
−→
h

(1)
i = LSTM(

−→
h

(1)
i−1, x(wi)) ∈ Rd1 and←−

h
(1)
i = LSTM(
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states of the forward and backward LSTMs, re-
spectively. h

(1)
i is then fed into a softmax classifier

to predict a probability distribution p
(1)
i ∈ RC(1)

for word-level tags, where C(1) is the number of
POS classes. The model parameters of this layer
can be learned not only by human-annotated data,
but also by backpropagation from higher layers,
which are described in the next section.

2.3 Dependency Parsing Layer
Dependency parsing is performed in the second
layer. A hidden state h
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where y(wi) = W
(1)
` p

(1)
i ∈ Rd2 is the POS in-

formation output from the first layer, and W
(1)
` ∈

Rd2×C(1)
is a weight matrix.

Then, (soft) edges of our latent graph represen-
tation are obtained by computing the probabilities

p(Hwi = wj |wi) =
exp (m(i, j))∑

k 6=i exp (m(i, k))
, (1)

where m(i, k) = h
(2)T
k Wdph

(2)
i (1 ≤ k ≤ N +

1, k 6= i) is a scoring function with a weight
matrix Wdp ∈ R2d1×2d1 . While the models of
Hashimoto et al. (2017), Zhang et al. (2017), and
Dozat and Manning (2017) learn the model pa-
rameters of their parsing models only by human-
annotated data, we allow the model parameters to
be learned by the translation task.

Next, [h(2)
i ; z(Hwi)] is fed into a softmax

classifier to predict the probability distribu-
tion p(`wi |wi), where z(Hwi) ∈ R2d1 is the
weighted average of the hidden states of the
parent nodes:

∑
j 6=i p(Hwi = wj |wi)h

(2)
j .

This results in the latent graph representation
(wi, p(Hwi |wi), p(`wi |wi)) of the input sentence.

3 NMT with Latent Graph Parser

The latent graph representation described in Sec-
tion 2 can be used for any sentence-level tasks,
and here we apply it to an Attention-based NMT
(ANMT) model (Luong et al., 2015). We modify
the encoder and the decoder in the ANMT model
to learn the latent graph representation.

3.1 Encoder with Dependency Composition
The ANMT model first encodes the information
about the input sentence and then generates a sen-
tence in another language. The encoder represents
the word wi with a word embedding venc(wi) ∈
Rd3 . It should be noted that venc(wi) is differ-
ent from vdp(wi) because each component is sep-
arately modeled. The encoder then takes the word
embedding venc(wi) and the hidden state h

(2)
i as

the input to a uni-directional LSMT:

h
(enc)
i = LSTM(h(enc)

i−1 , [venc(wi); h
(2)
i ]), (2)
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where h
(enc)
i ∈ Rd3 is the hidden state correspond-

ing to wi. That is, the encoder of our model is
a three-layer LSTM network, where the first two
layers are bi-directional.

In the sequential LSTMs, relationships between
words in distant positions are not explicitly con-
sidered. In our model, we explicitly incorporate
such relationships into the encoder by defining a
dependency composition function:

dep(wi) = tanh(Wdep[henc
i ; h(Hwi); p(`wi |wi)]),

(3)
where h(Hwi) =

∑
j 6=i p(Hwi = wj |wi)h

(enc)
j is

the weighted average of the hidden states of the
parent nodes.

Note on character n-gram embeddings In
NMT models, sub-word units are widely used to
address rare or unknown word problems (Sennrich
et al., 2016). In our model, the character n-gram
embeddings are fed through the latent graph pars-
ing component. To the best of our knowledge,
the character n-gram embeddings have never been
used in NMT models. Wieting et al. (2016), Bo-
janowski et al. (2017), and Hashimoto et al. (2017)
have reported that the character n-gram embed-
dings are useful in improving several NLP tasks
by better handling unknown words.

3.2 Decoder with Attention Mechanism
The decoder of our model is a single-layer LSTM
network, and the initial state is set with h

(enc)
N+1 and

its corresponding memory cell. Given the t-th hid-
den state h

(dec)
t ∈ Rd3 , the decoder predicts the

t-th word in the target language using an attention
mechanism. The attention mechanism in Luong
et al. (2015) computes the weighted average of the
hidden states h

(enc)
i of the encoder:

s(i, t) = exp (h
(dec)
t ·h(enc)

i )∑N+1
j=1 exp (h

(dec)
t ·h(enc)

j )
, (4)

at =
∑N+1

i=1 s(i, t)h(enc)
i , (5)

where s(i, t) is a scoring function which speci-
fies how much each source-side hidden state con-
tributes to the word prediction.

In addition, like the attention mechanism over
constituency tree nodes (Eriguchi et al., 2016b),
our model uses attention to the dependency com-
position vectors:

s′(i, t) = exp (h
(dec)
t ·dep(wi))∑N

j=1 exp (h
(dec)
t ·dep(wj))

, (6)

a′t =
∑N

i=1 s′(i, t)dep(wi), (7)

To predict the target word, a hidden state h̃
(dec)
t ∈

Rd3 is then computed as follows:

h̃
(dec)
t = tanh(W̃ [h(dec)

t ; at; a′t]), (8)

where W̃ ∈ Rd3×3d3 is a weight matrix. h̃
(dec)
t

is fed into a softmax classifier to predict a target
word distribution. h̃

(dec)
t is also used in the tran-

sition of the decoder LSTMs along with a word
embedding vdec(wt) ∈ Rd3 of the target word wt:

h
(dec)
t+1 = LSTM(h(dec)

t , [vdec(wt); h̃
(dec)
t ]), (9)

where the use of h̃
(dec)
t is called input feeding pro-

posed by Luong et al. (2015).
The overall model parameters, including those

of the latent graph parser, are jointly learned by
minimizing the negative log-likelihood of the pre-
diction probabilities of the target words in the
training data. To speed up the training, we use
BlackOut sampling (Ji et al., 2016). By this joint
learning using Equation (3) and (7), the latent
graph representations are automatically learned
according to the target task.

Implementation Tips Inspired by Zoph et al.
(2016), we further speed up BlackOut sampling
by sharing noise samples across words in the
same sentences. This technique has proven to
be effective in RNN language modeling, and we
have found that it is also effective in the NMT
model. We have also found it effective to share
the model parameters of the target word embed-
dings and the softmax weight matrix for word pre-
diction (Inan et al., 2016; Press and Wolf, 2017).
Also, we have found that a parameter averaging
technique (Hashimoto et al., 2013) is helpful in
improving translation accuracy.

Translation At test time, we use a novel beam
search algorithm which combines statistics of sen-
tence lengths (Eriguchi et al., 2016b) and length
normalization (Cho et al., 2014). During the
beam search step, we use the following scor-
ing function for a generated word sequence y =
(y1, y2, . . . , yLy) given a source word sequence
x = (x1, x2, . . . , xLx):

1
Ly

 Ly∑
i=1

log p(yi|x, y1:i−1) + log p(Ly|Lx)

 ,

(10)
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where p(Ly|Lx) is the probability that sentences
of length Ly are generated given source-side sen-
tences of length Lx. The statistics are taken by
using the training data in advance. In our exper-
iments, we have empirically found that this beam
search algorithm helps the NMT models to avoid
generating translation sentences that are too short.

4 Experimental Settings

4.1 Data
We used an English-to-Japanese translation task
of the Asian Scientific Paper Excerpt Corpus (AS-
PEC) (Nakazawa et al., 2016b) used in the Work-
shop on Asian Translation (WAT), since it has
been shown that syntactic information is useful
in English-to-Japanese translation (Eriguchi et al.,
2016b; Neubig et al., 2015). We followed the
data preprocessing instruction for the English-to-
Japanese task in Eriguchi et al. (2016b). The En-
glish sentences were tokenized by the tokenizer in
the Enju parser (Miyao and Tsujii, 2008), and the
Japanese sentences were segmented by the KyTea
tool1. Among the first 1,500,000 translation pairs
in the training data, we selected 1,346,946 pairs
where the maximum sentence length is 50. In
what follows, we call this dataset the large training
dataset. We further selected the first 20,000 and
100,000 pairs to construct the small and medium
training datasets, respectively. The development
data include 1,790 pairs, and the test data 1,812
pairs.

For the small and medium datasets, we built
the vocabulary with words whose minimum fre-
quency is two, and for the large dataset, we used
words whose minimum frequency is three for En-
glish and five for Japanese. As a result, the vo-
cabulary of the target language was 8,593 for the
small dataset, 23,532 for the medium dataset, and
65,680 for the large dataset. A special token
〈UNK〉 was used to replace words which were not
included in the vocabularies. The character n-
grams (n = 2, 3, 4) were also constructed from
each training dataset with the same frequency set-
tings.

4.2 Parameter Optimization and Translation
We turned hyper-parameters of the model using
development data. We set (d1, d2) = (100, 50)
for the latent graph parser. The word and charac-
ter n-gram embeddings of the latent graph parser

1http://www.phontron.com/kytea/.

were initialized with the pre-trained embeddings
in Hashimoto et al. (2017).2 The weight matrices
in the latent graph parser were initialized with uni-
form random values in [−

√
6√

row+col
, +

√
6√

row+col
],

where row and col are the number of rows and
columns of the matrices, respectively. All the bias
vectors and the weight matrices in the softmax lay-
ers were initialized with zeros, and the bias vectors
of the forget gates in the LSTMs were initialized
by ones (Jozefowicz et al., 2015).

We set d3 = 128 for the small training dataset,
d3 = 256 for the medium training dataset, and
d3 = 512 for the large training dataset. The
word embeddings and the weight matrices of the
NMT model were initialized with uniform ran-
dom values in [−0.1, +0.1]. The training was per-
formed by mini-batch stochastic gradient descent
with momentum. For the BlackOut objective (Ji
et al., 2016), the number of the negative samples
was set to 2,000 for the small and medium training
datasets, and 2,500 for the large training dataset.
The mini-batch size was set to 128, and the mo-
mentum rate was set to 0.75 for the small and
medium training datasets and 0.70 for the large
training dataset. A gradient clipping technique
was used with a clipping value of 1.0. The ini-
tial learning rate was set to 1.0, and the learn-
ing rate was halved when translation accuracy de-
creased. We used the BLEU scores obtained by
greedy translation as the translation accuracy and
checked it at every half epoch of the model train-
ing. We saved the model parameters at every half
epoch and used the saved model parameters for
the parameter averaging technique. For regulariza-
tion, we used L2-norm regularization with a coef-
ficient of 10−6 and applied dropout (Hinton et al.,
2012) to Equation (8) with a dropout rate of 0.2.

The beam size for the beam search algorithm
was 12 for the small and medium training datasets,
and 50 for the large training dataset. We used
BLEU (Papineni et al., 2002), RIBES (Isozaki
et al., 2010), and perplexity scores as our evalu-
ation metrics. Note that lower perplexity scores
indicate better accuracy.

4.3 Pre-Training of Latent Graph Parser

The latent graph parser in our model can be op-
tionally pre-trained by using human annotations
for dependency parsing. In this paper we used

2The pre-trained embeddings can be found at https:
//github.com/hassyGo/charNgram2vec.
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the widely-used Wall Street Journal (WSJ) train-
ing data to jointly train the POS tagging and de-
pendency parsing components. We used the stan-
dard training split (Section 0-18) for POS tagging.
We followed Chen and Manning (2014) to gener-
ate the training data (Section 2-21) for dependency
parsing. From each training dataset, we selected
the first K sentences to pre-train our model. The
training dataset for POS tagging includes 38,219
sentences, and that for dependency parsing in-
cludes 39,832 sentences.

The parser including the POS tagger was first
trained for 10 epochs in advance according to
the multi-task learning procedure of Hashimoto
et al. (2017), and then the overall NMT model was
trained. When pre-training the POS tagging and
dependency parsing components, we did not ap-
ply dropout to the model and did not fine-tune the
word and character n-gram embeddings to avoid
strong overfitting.

4.4 Model Configurations
LGP-NMT is our proposed model that learns
the Latent Graph Parsing for NMT.

LGP-NMT+ is constructed by pre-training the
latent parser in LGP-NMT as described in Sec-
tion 4.3.

SEQ is constructed by removing the depen-
dency composition in Equation (3), forming a se-
quential NMT model with the multi-layer encoder.

DEP is constructed by using pre-trained depen-
dency relations rather than learning them. That is,
p(Hwi = wj |wi) is fixed to 1.0 such that wj is the
head of wi. The dependency labels are also given
by the parser which was trained by using all the
training samples for parsing and tagging.

UNI is constructed by fixing p(Hwi = wj |wi) to
1
N for all the words in the same sentence. That is,
the uniform probability distributions are used for
equally connecting all the words.

5 Results on Small and Medium Datasets

We first show our translation results using the
small and medium training datasets. We report av-
eraged scores with standard deviations across five
different runs of the model training.

5.1 Small Training Dataset
Table 1 shows the results of using the small train-
ing dataset. LGP-NMT performs worse than SEQ

BLEU RIBES Perplexity
LGP-NMT 14.31±1.49 65.96±1.86 41.13±2.66
LGP-NMT+ 16.81±0.31 69.03±0.28 38.33±1.18
SEQ 15.37±1.18 67.01±1.55 38.12±2.52
UNI 15.13±1.67 66.95±1.94 39.25±2.98
DEP 13.34±0.67 64.95±0.75 43.89±1.52

Table 1: Evaluation on the development data using
the small training dataset (20,000 pairs).

K BLEU RIBES Perplexity
0 14.31±1.49 65.96±1.86 41.13±2.66

5,000 16.99±1.00 69.03±0.93 37.14±1.96
10,000 16.81±0.31 69.03±0.28 38.33±1.18

All 16.09±0.56 68.19±0.59 39.24±1.88

Table 2: Effects of the size K of the training
datasets for POS tagging and dependency parsing.

and UNI, which shows that the small training
dataset is not enough to learn useful latent graph
structures from scratch. However, LGP-NMT+
(K = 10,000) outperforms SEQ and UNI, and the
standard deviations are the smallest. Therefore,
the results suggest that pre-training the parsing and
tagging components can improve the translation
accuracy of our proposed model. We can also see
that DEP performs the worst. This is not surpris-
ing because previous studies, e.g., Li et al. (2015),
have reported that using syntactic structures do not
always outperform competitive sequential models
in several NLP tasks.

Now that we have observed the effectiveness of
pre-training our model, one question arises natu-
rally:

how many training samples for parsing and
tagging are necessary for improving the
translation accuracy?

Table 2 shows the results of using different num-
bers of training samples for parsing and tagging.
The results of K= 0 and K= 10,000 correspond
to those of LGP-NMT and LGP-NMT+ in Ta-
ble 1, respectively. We can see that using the
small amount of the training samples performs
better than using all the training samples.3 One
possible reason is that the domains of the trans-
lation dataset and the parsing (tagging) dataset
are considerably different. The parsing and tag-
ging datasets come from WSJ, whereas the trans-
lation dataset comes from abstract text of scien-
tific papers in a wide range of domains, such as

3We did not observe such significant difference when us-
ing the larger datasets, and we used all the training samples
in the remaining part of this paper.
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BLEU RIBES Perplexity
LGP-NMT 28.70±0.27 77.51±0.13 12.10±0.16
LGP-NMT+ 29.06±0.25 77.57±0.24 12.09±0.27
SEQ 28.60±0.24 77.39±0.15 12.15±0.12
UNI 28.25±0.35 77.13±0.20 12.37±0.08
DEP 26.83±0.38 76.05±0.22 13.33±0.23

Table 3: Evaluation on the development data using
the medium training dataset (100,000 pairs).

biomedicine and computer science. These results
suggest that our model can be improved by a small
amount of parsing and tagging datasets in differ-
ent domains. Considering the recent universal de-
pendency project4 which covers more than 50 lan-
guages, our model has the potential of being ap-
plied to a variety of language pairs.

5.2 Medium Training Dataset
Table 3 shows the results of using the medium
training dataset. In contrast with using the small
training dataset, LGP-NMT is slightly better than
SEQ. LGP-NMT significantly outperforms UNI,
which shows that our adaptive learning is more
effective than using the uniform graph weights.
By pre-training our model, LGP-NMT+ signifi-
cantly outperforms SEQ in terms of the BLEU
score. Again, DEP performs the worst among all
the models.

By using our beam search strategy, the Brevity
Penalty (BP) values of our translation results are
equal to or close to 1.0, which is important when
evaluating the translation results using the BLEU
scores. A BP value ranges from 0.0 to 1.0, and
larger values mean that the translated sentences
have relevant lengths compared with the reference
translations. As a result, our BLEU evaluation re-
sults are affected only by the word n-gram preci-
sion scores. BLEU scores are sensitive to the BP
values, and thus our beam search strategy leads to
more solid evaluation for NMT models.

6 Results on Large Dataset

Table 4 shows the BLEU and RIBES scores on the
development data achieved with the large train-
ing dataset. Here we focus on our models and
SEQ because UNI and DEP consistently perform
worse than the other models as shown in Table 1
and 3. The averaging technique and attention-
based unknown word replacement (Jean et al.,
2015; Hashimoto et al., 2016) improve the scores.

4http://universaldependencies.org/.

B./R. Single +Averaging +UnkRep
LGP-NMT 38.05/81.98 38.44/82.23 38.77/82.29
LGP-NMT+ 38.75/82.13 39.01/82.40 39.37/82.48
SEQ 38.24/81.84 38.26/82.14 38.61/82.18

Table 4: BLEU (B.) and RIBES (R.) scores on the
development data using the large training dataset.

BLEU RIBES
LGP-NMT 39.19 82.66
LGP-NMT+ 39.42 82.83
SEQ 38.96 82.18
Ensemble of the above three models 41.18 83.40
Cromieres et al. (2016) 38.20 82.39
Neubig et al. (2015) 38.17 81.38
Eriguchi et al. (2016a) 36.95 82.45
Neubig and Duh (2014) 36.58 79.65
Zhu (2015) 36.21 80.91
Lee et al. (2015) 35.75 81.15

Table 5: BLEU and RIBES scores on the test data.

Again, we see that the translation scores of our
model can be further improved by pre-training the
model.

Table 5 shows our results on the test data, and
the previous best results summarized in Nakazawa
et al. (2016a) and the WAT website5 are also
shown. Our proposed models, LGP-NMT and
LGP-NMT+, outperform not only SEQ but also
all of the previous best results. Notice also that
our implementation of the sequential model (SEQ)
provides a very strong baseline, the performance
of which is already comparable to the previous
state of the art, even without using ensemble tech-
niques. The confidence interval (p ≤ 0.05) of the
RIBES score of LGP-NMT+ estimated by boot-
strap resampling (Noreen, 1989) is (82.27, 83.37),
and thus the RIBES score of LGP-NMT+ is sig-
nificantly better than that of SEQ, which shows
that our latent parser can be effectively pre-trained
with the human-annotated treebank.

The sequential NMT model in Cromieres et al.
(2016) and the tree-to-sequence NMT model in
Eriguchi et al. (2016b) rely on ensemble tech-
niques while our results mentioned above are ob-
tained using single models. Moreover, our model
is more compact6 than the previous best NMT
model in Cromieres et al. (2016). By applying the
ensemble technique to LGP-NMT, LGP-NMT+,

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/list.php?t=1&o=1.

6Our training time is within five days on a c4.8xlarge
machine of Amazon Web Service by our CPU-based C++
code, while it is reported that the training time is more than
two weeks in Cromieres et al. (2016) by their GPU code.
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As a result , it was found that a path which crosses a sphere obliquely existed .

Reference: その結果、球内部を斜めに横切る行路の存在することが分かった。

LGP-NMT: その結果、球を斜めに横切る経路が存在することが分かった。
LGP-NMT+: その結果、球を斜めに横切る経路が存在することが分かった。
(As a result , it was found that a path which obliquely crosses a sphere  existed .)

Google trans: その結果、球を横切る経路が斜めに存在することが判明した。
SEQ: その結果、球を横断する経路が斜めに存在することが分かった。
(As a result , it was found that a path which crosses a sphere  existed obliquely .)

The androgen controls negatively ImRNA .

Reference: ImRNA はアンドロゲンにより負に調節される。

LGP-NMT+: アンドロゲンは ImRNA を負に制御している。
(The androgen negatively controls ImRNA .)

Google trans: アンドロゲンは負の ImRNA を制御する。

LGP-NMT: アンドロゲンは負の ImRNA を制御する。
(The androgen controls negative ImRNA .)

SEQ: アンドロゲンは負の ImRNA を負に制御する。
(The androgen negatively controls negative ImRNA .)

Translation Example (1)

Translation Example (2)

Figure 2: English-to-Japanese translation exam-
ples for focusing on the usage of adverbs.

and SEQ, the BLEU and RIBES scores are further
improved, and both of the scores are significantly
better than the previous best scores.

6.1 Analysis on Translation Examples

Figure 2 shows two translation examples7 to see
how the proposed model works and what is miss-
ing in the state-of-the-art sequential NMT model,
SEQ. Besides the reference translation, the outputs
of our models with and without pre-training, SEQ,
and Google Translation8 are shown.

Selectional Preference In the translation ex-
ample (1) in Figure 2, we see that the ad-
verb “obliquely” is interpreted differently across
the systems. As in the reference translation,
“obliquely” is a modifier of the verb “crosses”.
Our models correctly capture the relationship be-
tween the two words, whereas Google Translation
and SEQ treat “obliquely” as a modifier of the
verb “existed”. This error is not a surprise since
the verb “existed” is located closer to “obliquely”
than the verb “crosses”. A possible reason for
the correct interpretation by our models is that
they can better capture long-distance dependen-
cies and are less susceptible to surface word dis-
tances. This is an indication of our models’ abil-
ity of capturing domain-specific selectional prefer-
ence that cannot be captured by purely sequential

7These English sentences were created by manual simpli-
fication of sentences in the development data.

8The translations were obtained at https:
//translate.google.com in Feb. and Mar. 2017.

models. It should be noted that simply using stan-
dard treebank-based parsers does not necessarily
address this error, because our pre-trained depen-
dency parser interprets that “obliquely” is a modi-
fier of the verb “existed”.

Adverb or Adjective The translation example
(2) in Figure 2 shows another example where
the adverb “negatively” is interpreted as an ad-
verb or an adjective. As in the reference transla-
tion, “negatively” is a modifier of the verb “con-
trols”. Only LGP-NMT+ correctly captures the
adverb-verb relationship, whereas “negatively” is
interpreted as the adjective “negative” to modify
the noun “ImRNA” in the translation results from
Google Translation and LGP-NMT. SEQ inter-
prets “negatively” as both an adverb and an adjec-
tive, which leads to the repeated translations. This
error suggests that the state-of-the-art NMT mod-
els are strongly affected by the word order. By
contrast, the pre-training strategy effectively em-
beds the information about the POS tags and the
dependency relations into our model.

6.2 Analysis on Learned Latent Graphs

Without Pre-Training We inspected the latent
graphs learned by LGP-NMT. Figure 1 shows an
example of the learned latent graph obtained for a
sentence taken from the development data of the
translation task. It has long-range dependencies
and cycles as well as ordinary left-to-right depen-
dencies. We have observed that the punctuation
mark “.” is often pointed to by other words with
large weights. This is primarily because the hid-
den state corresponding to the mark in each sen-
tence has rich information about the sentence.

To measure the correlation between the la-
tent graphs and human-defined dependencies, we
parsed the sentences on the development data of
the WSJ corpus and converted the graphs into
dependency trees by Eisner’s algorithm (Eisner,
1996). For evaluation, we followed Chen and
Manning (2014) and measured Unlabeled Attach-
ment Score (UAS). The UAS is 24.52%, which
shows that the implicitly-learned latent graphs are
partially consistent with the human-defined syn-
tactic structures. Similar trends have been re-
ported by Yogatama et al. (2017) in the case of
binary constituency parsing. We checked the most
dominant gold dependency labels which were as-
signed for the dependencies detected by LGP-
NMT. The labels whose ratio is more than 3% are
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All the calculated electronic band structures are metallic  .
0.86                 0.97         0.99

1.0

0.85
1.0

All the calculated electronic band structures are metallic  .

0.26 0.60 0.99

0.29
0.88

0.21

0.86
1.0

ROOT
1.0

0.23

0.95 0.82

0.37 0.71

(a)

(b)

Figure 3: An example of the pre-trained depen-
dency structures (a) and its corresponding latent
graph adapted by our model (b).

nn, amod, prep, pobj, dobj, nsubj, num,
det, advmod, and poss. We see that depen-
dencies between words in distant positions, such
as subject-verb-object relations, can be captured.

With Pre-Training We also inspected the pre-
trained latent graphs. Figure 3-(a) shows the de-
pendency structure output by the pre-trained latent
parser for the same sentence in Figure 1. This is an
ordinary dependency tree, and the head selection
is almost deterministic; that is, for each word, the
largest weight of the head selection is close to 1.0.
By contrast, the weight values are more evenly
distributed in the case of LGP-NMT as shown in
Figure 1. After the overall NMT model training,
the latent parser is adapted to the translation task,
and Figure 3-(b) shows the adapted latent graph.
Again, we can see that the adapted weight values
are also distributed and different from the origi-
nal pre-trained weight values, which suggests that
human-defined syntax is not always optimal for
the target task.

The UAS of the pre-trained dependency trees is
92.52%9, and that of the adapted latent graphs is
18.94%. Surprisingly, the resulting UAS (18.94%)
is lower than the UAS of our model without pre-
training (24.52%). However, in terms of the trans-
lation accuracy, our model with pre-training is bet-
ter than that without pre-training. These results
suggest that human-annotated treebanks can pro-
vide useful prior knowledge to guide the overall
model training by pre-training, but the resulting
sentence structures adapted to the target task do
not need to highly correlate with the treebanks.

9The UAS is significantly lower than the reported score
in Hashimoto et al. (2017). The reason is described in Sec-
tion 4.3.

7 Related Work

While initial studies on NMT treat each sentence
as a sequence of words (Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2014), re-
searchers have recently started investigating into
the use of syntactic structures in NMT mod-
els (Bastings et al., 2017; Chen et al., 2017;
Eriguchi et al., 2016a,b, 2017; Li et al., 2017;
Sennrich and Haddow, 2016; Stahlberg et al.,
2016; Yang et al., 2017). In particular, Eriguchi
et al. (2016b) introduced a tree-to-sequence NMT
model by building a tree-structured encoder on top
of a standard sequential encoder, which motivated
the use of the dependency composition vectors in
our proposed model. Prior to the advent of NMT,
the syntactic structures had been successfully used
in statistical machine translation systems (Neubig
and Duh, 2014; Yamada and Knight, 2001). These
syntax-based approaches are pipelined; a syntactic
parser is first trained by supervised learning using
a treebank such as the WSJ dataset, and then the
parser is used to automatically extract syntactic in-
formation for machine translation. They rely on
the output from the parser, and therefore parsing
errors are propagated through the whole systems.
By contrast, our model allows the parser to be
adapted to the translation task, thereby providing a
first step towards addressing ambiguous syntactic
and semantic problems, such as domain-specific
selectional preference and PP attachments, in a
task-oriented fashion.

Our model learns latent graph structures in a
source-side language. Eriguchi et al. (2017) have
proposed a model which learns to parse and trans-
late by using automatically-parsed data. Thus, it is
also an interesting direction to learn latent struc-
tures in a target-side language.

As for the learning of latent syntactic structure,
there are several studies on learning task-oriented
syntactic structures. Yogatama et al. (2017) used a
reinforcement learning method on shift-reduce ac-
tion sequences to learn task-oriented binary con-
stituency trees. They have shown that the learned
trees do not necessarily highly correlate with the
human-annotated treebanks, which is consistent
with our experimental results. Socher et al. (2011)
used a recursive autoencoder model to greed-
ily construct a binary constituency tree for each
sentence. The autoencoder objective works as
a regularization term for sentiment classification
tasks. Prior to these deep learning approaches,
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Wu (1997) presented a method for bilingual pars-
ing. One of the characteristics of our model is
directly using the soft connections of the graph
edges with the real-valued weights, whereas all of
the above-mentioned methods use one best struc-
ture for each sentence. Our model is based on
dependency structures, and it is a promising fu-
ture direction to jointly learn dependency and con-
stituency structures in a task-oriented fashion.

Finally, more related to our model, Kim et al.
(2017) applied their structured attention networks
to a Natural Language Inference (NLI) task for
learning dependency-like structures. They showed
that pre-training their model by a parsing dataset
did not improve accuracy on the NLI task. By
contrast, our experiments show that such a parsing
dataset can be effectively used to improve trans-
lation accuracy by varying the size of the dataset
and by avoiding strong overfitting. Moreover, our
translation examples show the concrete benefit of
learning task-oriented latent graph structures.

8 Conclusion and Future Work

We have presented an end-to-end NMT model by
jointly learning translation and source-side latent
graph representations. By pre-training our model
using treebank annotations, our model signifi-
cantly outperforms both a pipelined syntax-based
model and a state-of-the-art sequential model. On
English-to-Japanese translation, our model outper-
forms the previous best models by a large margin.
In future work, we investigate the effectiveness of
our approach in different types of target tasks.
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Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
Neural Machine Translation Systems for WMTf15.
In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 134–140.

Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish,
Michael J. Anderson, and Pradeep Dubey. 2016.
BlackOut: Speeding up Recurrent Neural Network
Language Models With Very Large Vocabularies. In
Proceedings of the 4th International Conference on
Learning Representations.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An Empirical Exploration of Re-
current Network Architectures. In Proceedings
of the 32nd International Conference on Machine
Learning, pages 2342–2350.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Deep Biaffine Attention for
Neural Dependency Parsing. In Proceedings of the
5th International Conference on Learning Represen-
tations.

Hyoung-Gyu Lee, JaeSong Lee, Jun-Seok Kim, and
Chang-Ki Lee. 2015. NAVER Machine Translation
System for WAT 2015. In Proceedings of the 2nd
Workshop on Asian Translation, pages 69–73.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard
Hovy. 2015. When Are Tree Structures Necessary
for Deep Learning of Representations? In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2304–2314.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling Source
Syntax for Neural Machine Translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers). To appear.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-Margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics, pages 91–98.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature For-
est Models for Probabilistic HPSG Parsing. Compu-
tational Linguistics, 34(1):35–80.

Toshiaki Nakazawa, Hideya Mino, Chenchen Ding,
Isao Goto, Graham Neubig, Sadao Kurohashi, and
Eiichiro Sumita. 2016a. Overview of the 3rd Work-
shop on Asian Translation. In Proceedings of the
3rd Workshop on Asian Translation (WAT2016).

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016b. ASPEC:
Asian Scientific Paper Excerpt Corpus. In Proceed-
ings of the 10th Conference on International Lan-
guage Resources and Evaluation.

Graham Neubig and Kevin Duh. 2014. On the Ele-
ments of an Accurate Tree-to-String Machine Trans-
lation System. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 143–149.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural Reranking Improves Subjec-
tive Quality of Machine Translation: NAIST at
WAT2015. In Proceedings of the 2nd Workshop on
Asian Translation (WAT2015), pages 35–41.

Eric W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses: An Introduction. Wiley-
Interscience.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings

134



of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318.

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163.

Rico Sennrich and Barry Haddow. 2016. Linguistic In-
put Features Improve Neural Machine Translation.
In Proceedings of the First Conference on Machine
Translation, pages 83–91.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-Supervised Recursive Autoencoders for Pre-
dicting Sentiment Distributions. In Proceedings of
the 2011 Conference on Empirical Methods in Nat-
ural Language Processing, pages 151–161.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically Guided Neural Machine
Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 299–305.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27, pages 3104–3112.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding Words and
Sentences via Character n-grams. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1504–1515.

Dekai Wu. 1997. Stochastic Inversion Transduction
Grammars and Bilingual Parsing of Parallel Cor-
pora. Computational Linguistics, 23(3):377–404.

Kenji Yamada and Kevin Knight. 2001. A Syntax-
based Statistical Translation Model. In Proceedings
of 39th Annual Meeting of the Association for Com-
putational Linguistics, pages 523–530.

Baosong Yang, Derek F. Wong, Tong Xiao, Lidia S.
Chao, and Jingbo Zhu. 2017. Towards Bidirec-
tional Hierarchical Representations for Attention-
Based Neural Machine Translation. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing. To appear.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
Compose Words into Sentences with Reinforcement
Learning. In Proceedings of the 5th International
Conference on Learning Representations.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency Parsing as Head Selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 665–676.

Zhongyuan Zhu. 2015. Evaluating Neural Machine
Translation in English-Japanese Task. In Proceed-
ings of the 2nd Workshop on Asian Translation,
pages 61–68.

Barret Zoph, Ashish Vaswani, Jonathan May, and
Kevin Knight. 2016. Simple, Fast Noise-Contrastive
Estimation for Large RNN Vocabularies. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1217–1222.

135


