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Abstract

Annotating large numbers of sentences
with senses is the heaviest requirement
of current Word Sense Disambiguation.
We present Train-O-Matic, a language-
independent method for generating mil-
lions of sense-annotated training instances
for virtually all meanings of words in
a language’s vocabulary. The approach
is fully automatic: no human interven-
tion is required and the only type of hu-
man knowledge used is a WordNet-like
resource. Train-O-Matic achieves consis-
tently state-of-the-art performance across
gold standard datasets and languages,
while at the same time removing the bur-
den of manual annotation. All the training
data is available for research purposes at
http://trainomatic.org.

1 Introduction

Word Sense Disambiguation (WSD) is a key task
in computational lexical semantics, inasmuch as
it addresses the lexical ambiguity of text by mak-
ing explicit the meaning of words occurring in a
given context (Navigli, 2009). Anyone who has
struggled with frustratingly unintelligible transla-
tions from an automatic system, or with the mean-
ing bias of search engines, can understand the im-
portance for an intelligent system to go beyond the
surface appearance of text.

There are two mainstream lines of research in
WSD: supervised and knowledge-based WSD. Su-
pervised WSD frames the problem as a classi-
cal machine learning task in which, first a train-
ing phase occurs aimed at learning a classification
model from sentences annotated with word senses
and, second the model is applied to previously-
unseen sentences focused on a target word. A key
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difference from many other problems, however, is
that the classes to choose from (i.e., the senses of a
target word) vary for each word, therefore requir-
ing a separate training process to be performed on
a word by word basis. As a result, hundreds of
training instances are needed for each ambiguous
word in the vocabulary. This would necessitate
a million-item training set to be manually created
for each language of interest, an endeavour that is
currently beyond reach even in resource-rich lan-
guages like English.

The second paradigm, i.e., knowledge-based
WSD, takes a radically different approach: the
idea is to exploit a general-purpose knowledge
resource like WordNet (Fellbaum, 1998) to de-
velop an algorithm which can take advantage of
the structural and lexical-semantic information in
the resource to choose among the possible senses
of a target word occurring in context. For ex-
ample, a PageRank-based algorithm can be devel-
oped to determine the probability of a given sense
being reached starting from the senses of its con-
text words. Recent approaches of this kind have
been shown to obtain competitive results (Agirre
et al., 2014; Moro et al., 2014). However, due to
its inherent nature, knowledge-based WSD tends
to adopt bag-of-word approaches which do not ex-
ploit the local lexical context of a target word,
including function and collocation words, which
limits this approach in some cases.

In this paper we get the best of both worlds and
present Train-O-Matic, a novel method for gen-
erating huge high-quality training sets for all the
words in a language’s vocabulary. The approach is
language-independent, thanks to its use of a mul-
tilingual knowledge resource, BabelNet (Navigli
and Ponzetto, 2012), and it can be applied to any
kind of corpus. The training sets produced with
Train-O-Matic are shown to provide competitive
performance with those of manually and semi-
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automatically tagged corpora. Moreover, state-of-
the-art performance is also reported for low re-
sourced languages (i.e., Italian and Spanish) and
domains, where manual training data is not avail-
able.

2 Building a Training Set from Scratch

In this Section we present Train-O-Matic, a
language-independent approach to the automatic
construction of a sense-tagged training set. Train-
O-Matic takes as input a corpus C (e.g.,
Wikipedia) and a semantic network G = (V, E).
We assume a WordNet-like structure of G, i.e., V'
is the set of concepts (i.e., synsets) such that, for
each word w in the vocabulary, Senses(w) is the
set of vertices in V' that are expressed by w, e.g.,
the WordNet synsets that include w as one of their
senses.
Train-O-Matic consists of three steps:

e Lexical profiling: for each vertex in the se-
mantic network, we compute its Personalized
PageRank vector, which provides its lexical-
semantic profile (Section 2.1).

Sentence scoring: For each sentence con-
taining a word w, we compute a probability
distribution over all the senses of w based on
its context (Section 2.2).

Sentence ranking and selection: for each
sense s of a word w in the vocabulary, we
select those sentences that are most likely to
use w in the sense of s (Section 2.3).

2.1 Lexical profiling

In terms of semantic networks the probability of
reaching a node v’ starting from v can be inter-
preted as a measure of relatedness between the
synsets v and v’. Thus we define the lexical profile
of a vertex v in a graph G = (V, E)) as the prob-
ability distribution over all the vertices v’ in the
graph. Such distribution is computed by applying
the Personalized PagaRank algorithm, a variant of
the traditional PageRank (Brin and Page, 1998).
While the latter is equivalent to performing ran-
dom walks with uniform restart probability on ev-
ery vertex at each step, PPR, on the other hand,
makes the restart probability non-uniform, thereby
concentrating more probability mass in the sur-
roundings of those vertices having higher restart
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probability. Formally, (P)PR is computed as fol-
lows:

o) = (1 — )o@ + aMo® (1)
where M is the row-normalized adjacency ma-
trix of the semantic network, the restart probabil-
ity distribution is encoded by vector v, and a
is the well-known damping factor usually set to
0.85 (Brin and Page, 1998). If we set v to a
unit probability vector (0,...,0,1,0,...,0), i.e.,
restart is always on a given vertex, PPR outputs the
probability of reaching every vertex starting from
the restart vertex after a certain number of steps.
This approach has been used in the literature to
create semantic signatures (i.e., profiles) of indi-
vidual concepts, i.e., vertices of the semantic net-
work (Pilehvar et al., 2013), and then to determine
the semantic similarity of concepts. As also done
by Pilehvar and Collier (2016), we instead use the
PPR vector as an estimate of the conditional prob-
ability of a word w’ given the target sense! s € V
of word w:

/
mMaXs/cSenses(w’) vs(s')

Pw'ls, w) = y

2

where Z = ) » P(w”|s,w) is a normalization
constant, v, is the vector resulting from an ade-
quate number of random walks used to calculate
PPR, and vs(s’) is the vector component corre-
sponding to sense s’. To fix the number of iter-
ations needed to have a sufficiently accurate vec-
tor, we follow Lofgren et al. (2014) and set the
error § = 0.00001 and the number of iterations to
=100, 000.

As a result of this lexical profiling step we have
a probability distribution over vocabulary words
for each given word sense of interest.

2.2 Sentence scoring

The objective of the second step is to score the im-
portance of word senses for each of the corpus sen-
tences which contain the word of interest. Given
a sentence o = wi, wa, . . . , Wy, for a given target
word w in the sentence (w € o), and for each of its
senses s € Senses(w), we compute the probabil-
ity P(s|o,w). Thanks to Bayes’ theorem we can
determine the probability of sense s of w given the

"Note that we use senses and concepts (synsets) inter-
changeably, because — given a word — a word sense unam-
biguously determines a concept (i.e., the synset it is contained
in) and vice versa.



sentence as follows:

P P
Pl = PPl o
_ P(ws, ..., wy|s,w)P(s|lw)
N P(wy, ..., wy|w)
x P(wi,...,wy|s,w)P(s|w) 4)
~ P(wi|s,w) ... P(wy|s, w)P(s|w)

&)

where Formula 4 is proportional to the original
probability (due to removing the constant in the
denominator) and is approximated with Formula
5 due to the assumption of independence of the
words in the sentence. P(w;|s, w) is calculated as
in Formula 2 and P(s|w) is set to 1/|Senses(w)|
(recall that s is a sense of w). For example, given
the sentence 0 = “A match is a tool for starting
a fire”, the target word w = match and its set of
senses Smatch = {S7lnatch’ S?’natch}’ where S%natch
is the sense of lighter and sgnat ., 18 the sense of
game match, we want to calculate the probability
of each sin ateh € Smatch of being the correct sense

of match in the sentence o. Following Formula 5
we have:

P(sl ionlo, match) ~

P (0018 11
'P(Start|5%mtch’
. P(firel|s} .,, match)
- P(s}

match ’matc}l)
=21-107%.2-10%.-107%2.5.10"!
=21-107"

match)

match)

P(sfmmh\a, match) ~
P(t001|872natch7

- P(start|s>

match>
2
- P (ﬁre ‘ Smatch>

match)
match)
match)
’ P(Srznatch’mawh)
=107°-2.9-107*-107%.5.107*
=1.45-1071°
As can be seen, the first sense of match has a much
higher probability due to its stronger relatedness to
the other words in the context (i.e. start, fire and
tool). Note also that all the probabilities for the

second sense are at least one magnitude less than
the probability of the first sense.
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2.3 Sense-based sentence ranking and
selection

Finally, for a given word w and a given sense
s1 € Senses(w), we score each sentence o in
which w appears and s; is its most likely sense
according to a formula that takes into account the
difference between the first (i.e., s1) and the sec-
ond most likely sense of w in o

Asl (U) = P(81|Ua w) - P(82|07w) (6)
where 51 = argmaXegenses(w) P(slo, w), and
S2 = aIgINaXscSenses(w)\{s1} P(slo,w). We

then sort all sentences based on Ay, (+) and return
a ranked list of sentences where word w is most
likely to be sense-annotated with s;. Although we
recognize that other scoring strategies could have
been used, this was experimentally the most effec-
tive one when compared to alternative strategies,
i.e., the sense probability, the number of words re-
lated to the target word w, the sentence length or a
combination thereof.

3 Creating a Denser and Multilingual
Semantic Network

In the previous Section we assumed that WordNet
was our semantic network, with synsets as vertices
and edges represented by its semantic relations.
However, while its lexical coverage is high, with
a rich set of fine-grained synsets, at the relation
level WordNet provides mainly paradigmatic in-
formation, i.e., relations like hypernymy (is-a) and
meronymy (part-of). It lacks, on the other hand,
syntagmatic relations, such as those that connect
verb synsets to their arguments (e.g., the appro-
priate senses of eat, and food,,), or pairs of noun
synsets (e.g., the appropriate senses of bus,, and
driver,).

Intuitively, Train-O-Matic would suffer from
such a lack of syntagmatic relations, as the rel-
evance of a sense for a given word in a sen-
tence depends directly on the possibility of vis-
iting senses of the other words in the same sen-
tence (cf. Formula 5) via random walks as calcu-
lated with Formula 1. Such reachability depends
on the connections available between synsets. Be-
cause syntagmatic relations are sparse in Word-
Net, if it was used on its own, we would end
up with a poor ranking of sentences for any
given word sense. Moreover, even though the
methodology presented in Section 2 is language-
independent, Train-O-Matic would lack informa-



mouse (animal) mouse (device)
WordNet ‘ WordNetgy || WordNet ‘ WordNetgn
mouse,, mouse,, mouse; mouse;
tail little} wheell computer},
hairless} rodent), electronic_device), | pad:}
rodent), cheesel ball3 cursory,
trunk? cat! hand_operated} operating_system?
elongate? rat} mouse_button} trackball®
house _mouse’ | elephant} cursor), wheell
minuteness) | pet} operate joystick}
nude_mouse), | experiment. || object} Windows )

Table 1: Top-ranking synsets of the PPR vectors computed on WordNet (first and third columns) and
WordNetg v (second and fourth columns) for mouse as animal (left) and as device (right).

tion (e.g. senses for a word in an arbitrary vocab-
ulary) for languages other than English.

To cope with these issues, we exploit Babel-
Net,” a huge multilingual semantic network ob-
tained from the automatic integration of WordNet,
Wikipedia, Wiktionary and other resources (Nav-
igli and Ponzetto, 2012), and create the Babel-
Net subgraph induced by the WordNet vertices.
The result is a graph whose vertices are BabelNet
synsets that contain at least one WordNet synset
and whose edge set includes all those relations in
BabelNet coming either from WordNet itself or
from links in other resources mapped to Word-
Net (such as hyperlinks in a Wikipedia article con-
necting it to other articles). The greatest contribu-
tion of syntagmatic relations comes, indeed, from
Wikipedia, as its articles are linked to related ar-
ticles (e.g., the English Wikipedia Bus article? is
linked to Passenger, Tourism, Bus lane, Timetable,
School, and many more).

Because not all Wikipedia (and other re-
sources’) pages are connected with the same
degree of relatedness (e.g., countries are often
linked, but they are not necessarily closely related
to the source article in which the link occurs),
we apply the following weighting strategy to each
edge (s,s') € E of our WordNet-induced sub-
graph of BabelNet G = (V, E):

(s,s') € E(WordNet)

otherwise

w(s, s')

1
WO(s,s)
(7)

where F/(WordNet) is the edge set of the origi-
nal WordNet graph and WO(s, s’) is the weighted

http://babelnet.org
3Retrieved on February 3rd, 2017.
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overlap measure which calculates the similarity
between two synsets:

Sl )
S (20)-

where 7} and r? are the rankings of the i-th synsets
in the set .S of the components in common between
the vectors associated with s and s’, respectively.
Because at this stage we still have to calculate
our synset vector representation, we use the pre-
computed NASARI vectors (Camacho-Collados
et al., 2015) to calculate WO. This choice is due
to WO’s higher performance over cosine similar-
ity for vectors with explicit dimensions (Pilehvar
etal., 2013).

As a result, each row of the original adjacency
matrix M of G will be replaced with the weights
calculated in Formula 7 and then normalized in
order to be ready for PPR calculation (see For-
mula 1). An idea of why a denser semantic net-
work has more useful connections and thus leads
to better results is provided by the example in
Table 14, where we show the highest-probability
synsets in the PPR vectors calculated with For-
mula 1 for two different senses of mouse (its
animal and device senses) when WordNet (left)
and our WordNet-induced subgraph of BabelNet
(WordNetpy, right) are used as the underlying
semantic network for PPR computation. Note
that WordNet’s top synsets are related to the tar-
get synset via paradigmatic (i.e., hypernymy and
meronymy) relations, while WordNetp includes
many syntagmatically-related synsets (e.g., exper-

WO(s,s') =

“We use the notation w’; introduced in (Navigli, 2009) to

denote the k-th sense of word w with part-of-speech tag p.



iment for the animal, and operating system and
Windows for the device sense, among others).

4 Experimental Setup

Corpora for sense annotation We used two dif-
ferent corpora to extract sentences: Wikipedia and
the United Nations Parallel Corpus (Ziemski et al.,
2016). The first is the largest and most up-to-date
encyclopedic resource, containing definitional in-
formation, the second, on the other hand, is a
public collection of parliamentary documents of
the United Nations. The application of Train-
O-Matic to the two corpora produced two sense-
annotated datasets, which we named T-O-Myy;.;
and T-O-My n, respectively.

Semantic Network We created sense-annotated
corpora with Train-O-Matic both when using PPR
vectors computed from vanilla WordNet and when
using WordNetg, our denser network obtained
from the WordNet-induced subgraph of BabelNet
(see Section 3).

Gold standard datasets We performed our
evaluations using the framework made available
by Raganato et al. (2017a) on five different all-
words datasets, namely: the Senseval-2 (Ed-
monds and Cotton, 2001), Senseval-3 (Snyder
and Palmer, 2004), SemEval-2007 (Pradhan et al.,
2007), SemEval-2013 (Navigli et al., 2013) and
SemEval-2015 (Moro and Navigli, 2015) WSD
datasets. We focused on nouns only, given the
fact that Wikipedia provides connections between
nominal synsets only, and therefore contributes
mainly to syntagmatic relations between nouns.

Comparison sense-annotated corpora To
show the impact of our T-O-M corpora in WSD,
we compared its performance on the above gold
standard datasets, against training with:

e SemCor (Miller et al., 1993), a corpus con-
taining about 226,000 words annotated man-
ually with WordNet senses.

One Million Sense-Tagged Instances
(Taghipour and Ng, 2015, OMSTI), a
sense-annotated dataset obtained via a
semi-automatic approach based on the
disambiguation of a parallel corpus, i.e., the
United Nations Parallel Corpus, performed
by exploiting manually translated word
senses. Because OMSTI integrates SemCor
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to increase coverage, to keep a level playing
field we excluded the latter from the corpus.

We note that T-O-M, instead, is fully automatic
and does not require any WSD-specific human in-
tervention nor any aligned corpus.

Reference system In all our experiments, we
used It Makes Sense (Zhong and Ng, 2010, IMS),
a state-of-the-art WSD system based on linear
Support Vector Machines, as our reference system
for comparing its performance when trained on T-
O-M, against the same WSD system trained on
other sense-annotated corpora (i.e., SemCor and
OMSTI). Following the WSD literature, unless
stated otherwise, we report performance in terms
of F1, i.e., the harmonic mean of precision and re-
call.

We note that it is not the purpose of this paper to
show that T-O-M, when integrated into IMS, beats
all other configurations or alternative systems, but
rather to fully automatize the WSD pipeline with
performances which are competitive with the state
of the art.

Baseline As a traditional baseline in WSD, we
used the Most Frequent Sense (MFS) baseline
given by the first sense in WordNet. The MFS is a
very competitive baseline, due to the sense skew-
ness phenomenon in language (Navigli, 2009).

Number of training sentences per sense Given
a target word w, we sorted its senses Senses(w)
following the WordNet ordering and selected the
top k; training sentences for the ¢-th sense accord-
ing to Formula 6, where:

1
ki=—+ K ®)
1

with K = 500 and z = 2 which were tuned on a
separate small in-house development dataset’.

5 Results

5.1 Impact of syntagmatic relations

The first result we report regards the impact of
vanilla WordNet vs. our WordNet-induced sub-
graph of BabelNet (WordNetpy) when calculat-
ing PPR vectors. As can be seen from Table 2 —
which shows the performance of the T-O-Myy;;
corpora generated with the two semantic networks
— using WordNet for PPR computation decreases

350 word-sense pairs annotated manually.



Dataset T-O-Myyiri BN | T-O-Myy i WN |
Senseval-2 70.5 70.0
Senseval-3 67.4 63.1
SemEval-07 59.8 57.9
SemEval-13 65.5 63.7
SemEval-15 68.6 69.5

| ALL | 67.3 | 65.7 |

Table 2: F1 of IMS trained on T-O-M when PPR is
obtained from the WordNet graph (WN) and from
the WordNet-induced subgraph of BabelNet (BN).

the overall performance of IMS from 0.5 to around
4 points across the five datasets, with an overall
loss of 1.6 F1 points. Similar performance losses
were observed when using T-O-Myn (see Table
3). This corroborates our hunch discussed in Sec-
tion 3 that a resource like BabelNet can contribute
important syntagmatic relations that are beneficial
for identifying (and ranking high) sentences which
are semantically relevant for the target word sense.
In the following experiments, we report only re-
sults using WordNetpy .

5.2 Comparison against sense-annotated
corpora

We now move to comparing the performance of
T-O-M, which is fully automatic, against cor-
pora which are annotated manually (SemCor) and
semi-automatically (OMSTI). In Table 3 we show
the F1-score of IMS on each gold standard dataset
in the evaluation framework and on all datasets
merged together (last row), when it is trained with
the various corpora described above.

As can be seen, T-O-Myy;; and T-O-My; 5 ob-
tain higher performance than OMSTI (up to 5.5
points above) on 3 out of 5 datasets, and, over-
all, T-O-Myy;1; scores 1 point above OMSTI. The
MES is in the same ballpark as T-O-Myy;x;, per-
forming better on some datasets and worse on oth-
ers. We note that IMS trained on T-O-Myy;z;
succeeds in surpassing or obtaining the same re-
sults as IMS trained on SemCor on SemEval-
15 and SemEval-13. We view this as a signifi-
cant achievement given the total absence of man-
ual effort involved in T-O-M. Because overall
T-O-Myy;; outperforms T-O-Myy, in what fol-
lows we report all the results with T-O-Myy 1, €x-
cept for the domain-oriented evaluation (see Sec-
tion 5.4).

83

5.3 Performance without backoff strategy

IMS uses the MFS as a backoff strategy when no
sense can be output for a target word in context
(Zhong and Ng, 2010). Consequently, the perfor-
mance of the MFS is mixed up with that of the
SVM classifier. As shown in Table 4, OMSTI is
able to provide annotated sentences for roughly
half of the tokens in the datasets. Train-O-Matic,
on the other hand, is able to cover almost all words
in each dataset with at least one training sentence.
This means that in around 50% of cases OMSTI
gives an answer based on the IMS backoff strat-
egy.

To determine the real impact of the different
training data, we therefore decided to perform an
additional analysis of the IMS performance when
the MFS backoff strategy is disabled. Because
we suspected the system would not always return
a sense for each target word, in this experiment
we measured precision, recall and their harmonic
mean, i.e., F1. The results in Table 5 confirm our
hunch, showing that OMSTI’s recall drops heav-
ily, thereby affecting F1 considerably. T-O-M per-
formances, instead, remain high in terms of pre-
cision, recall and F1. This confirms that OMSTI
relies heavily on data (those obtained for the MFS
and from SemCor) that are produced manually,
rather than semi-automatically.

5.4 Domain-oriented WSD

To further inspect the ability of T-O-M to enable
disambiguation in different domains, we decided
to evaluate on specific documents from the vari-
ous gold standard datasets which could be clearly
assigned a domain label. Specifically, we tested on
13 SemEval-13 documents from various domains®
and 2 SemEval-15 documents (namely, maths &
computers, and biomedicine) and carried out two
separate tests and evaluations of T-O-M on each
domain: once using the MFS backoff strategy, and
once not using it. In Tables 6 and 7 we report the
results of both T-O-Myy;; and T-O-My n to deter-
mine the impact of the corpus type.

As can be seen in the tables, T-O-Myy;; Sys-
tematically attains higher scores than OMSTI (ex-
cept for the biology domain), and, in most cases,
attains higher scores than MFS when the backoff
is used, with a drastic, systematic increase over
OMSTI with both Train-O-Matic configurations

®Namely biology, climate, finance, health care, politics,
social issues and sport.



Dataset Train-O-Maticyy;; | Train-O-Maticyy | OMSTI | SemCor ‘ MFS ‘
Senseval-2 70.5 69.0 74.1 76.8 | 72.1
Senseval-3 67.4 68.3 67.2 73.8 | 72.0
SemEval-07 59.8 57.9 62.3 673 | 654
SemEval-13 65.5 62.5 62.8 65.5 | 63.0
SemEval-15 68.6 63.5 63.1 66.1 | 66.3
ALL 67.3 65.3 66.4 70.4 | 676 |

Table 3:

F1 of IMS trained on Train-O-Matic, OMSTI and SemCor, and MFS for the Senseval-2,

Senseval-3, SemEval-07, SemEval-13 and SemEval-15 datasets.

Dataset OMSTI | Train-O-Matic \ Total ‘
Senseval-2 469 1005 | 1066
Senseval-3 494 860 900
Semeval-07 89 159 159
Semeval-13 757 1428 | 1644
Semeval-15 249 494 531
ALL 2058 3946 | 4300 |

Table 4: Number of nominal tokens for which at
least one training example is provided by OMSTI
or Train-O-Matic for each dataset.

Dataset OMSTI Train-O-Matic
P[ R[ FI| P[] RJ FI
Senseval-2 | 64.8 [ 285 [39.6 [ 69.5[ 655 | 67.4
Senseval-3 | 55.7 | 31.0 | 39.8 | 66.1 | 63.1 | 64.6
SemEval-07 | 64.1 | 35.9 | 46.0 | 59.8 | 59.8 | 59.8
SemEval-13 | 50.7 | 23.4 | 32.0 | 61.3 | 533 | 57.0
SemEval-15 | 57.0 | 26.7 | 36.4 | 67.0 | 62.3 | 64.6
[ ALL [56.5[27.0 [ 36.5]65.1]59.7 ] 62.3 |

Table 5: Precision, Recall and F1 of IMS trained
on OMSTI and Train-O-Matic corpus without
MES backoff strategy for Senseval-2, Senseval-3,
SemEval-07, SemEval-13 and SemEval-15.

in recall and F1 when the backoff strategy is dis-
abled. This demonstrates the usefulness of the cor-
pora annotated by Train-O-Matic not only on open
text, but also on specific domains. We note that
T-O-My v obtains the best results in the politics
domain, which is the closest domain to the UN
corpus from which its training sentences are ob-
tained.

6 Scaling up to Multiple Languages

Experimental Setup In this section we investi-
gate the ability of Train-O-Matic to scale to low-
resourced languages, such as Italian and Spanish,
for which training data for WSD is not available.
Thanks to BabelNet, in fact, Train-O-Matic can
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be used to generate sense-annotated data for any
language supported by the knowledge base. Thus,
in order to build new training datasets for the two
languages, we ran Train-O-Matic on their corre-
sponding versions of Wikipedia, then we tuned the
two parameters K and z on an in-house develop-
ment dataset’. In contrast to the English setting, in
order to calculate Formula 8 we sorted the senses
of each word by vertex degree. Finally we used
the output data to train IMS.

Results To perform our evaluation we chose
the most recent multilingual task (SemEval 2015
task 13) which includes gold data for Italian and
Spanish. As can be seen from Table 8 Train-
O-Matic enabled IMS to perform better than the
best participating system (Manion and Sainudiin,
2014, SUDOKU) in all three settings (All do-
mains, Maths & Computer and Biomedicine). Its
performance was in fact, 1 to 3 points higher, with
a 6-point peak on Maths & Computer in Span-
ish and on Biomedicine in Italian. This demon-
strates the ability of Train-O-Matic to enable su-
pervised WSD systems to surpass state-of-the-
art knowledge-based WSD approaches in low-
resourced languages without relying on manually
curated data for training.

7 Related Work

There are two mainstream approaches to
Word Sense Disambiguation: supervised and
knowledge-based approaches. Both suffer in
different ways from the so-called knowledge
acquisition bottleneck, that is, the difficulty in
obtaining an adequate amount of lexical-semantic
data: for training in the case of supervised sys-
tems, and for enriching semantic networks in
the case of knowledge-based ones (Pilehvar and

"We set K = 100 and z = 2.3 for Spanish and K = 100
and z = 2.5 for Italian.



. T-O-Muwirs T-O-Mun~ OMSTI SemCor || MFS ]
Domain Backoff P [ R [ Fi P [ R [ F P [ R [ F FI F Size
Biolo MFS 63.0 | 63.0 | 63.0 65.9 | 659 | 65.9 65.9 | 659 | 65.9 66.3 64.4 135

gy - 59.0 | 53.3 | 56.0 62.3 | 56.3 | 59.2 48.1 18.5 | 26.7 - :

Climate MFS 68.1 | 68.1 | 68.1 634 | 634 | 634 68.0 | 68.0 | 68.0 70.1 675 194
- 63.4 | 50.0 | 55.9 57.5 | 454 | 50.7 58.0 | 242 | 34.2 - ’
Finan MFS 68.0 | 68.0 | 68.0 56.6 | 56.6 | 56.6 644 | 644 | 644 63.7 562 219
ance - 62.1 | 51.6 | 56.4 || 48.4 | 402 | 439 || 57.4 | 28.3 | 37.9 - :
MFS 65.2 | 652 | 65.2 60.1 | 60.1 | 60.1 529 | 529 | 52.9 62.7
Health Care - 613 | 551 | 58.0 || 556 | 500 | 52.6 || 34.6 | 18.4 | 24.0 A 365 | 138
Politics MFS 65.2 | 652 | 65.2 66.3 | 66.3 | 66.3 634 | 634 | 634 69.5 677 279

) - 62.5 | 548 | 58.4 63.9 | 559 | 59.6 54.1 | 21.5 | 30.8 - ’

Social Tssues MFS 68.5 | 68.5 | 68.5 63.6 | 63.6 | 63.6 65.6 | 65.6 | 65.6 66.8 676 349
u - 63.1 | 53.0 | 57.6 572 | 479 | 52.1 547 | 25.2 | 34.5 - ’

Sport MFS 60.3 | 60.3 | 60.3 60.9 | 609 | 60.9 58.8 | 58.8 | 58.8 60.4 576 330
po - 583 | 54.6 | 56.4 58.1 | 53.3 | 55.5 45.0 | 23.0 | 304 - ’

Table 6: Performance comparison over SemEval-2013 domain-specific datasets.

T-O-Mw ki T-O-My n OMSTI SemCor MES Size
Domain Backoff [ P [ R [ FI || P [ R | FI [| P | R [ FI || FI F1

Biomedicine | MES 763 | 763 | 763 || 66.0 | 66.0 | 66.0 || 64.9 | 64.9 | 64.9 70.3 211 1 100
- 76.1 | 722 | 741 || 64.4 | 59.8 | 62.0 || 60.5 | 26.8 | 37.2 - :

Maths & MEFS 50.0 | 50.0 | 50.0 48.0 | 48.0 | 48.0 36.0 | 36.0 | 36.0 40.6 40.9 97
Computer - 50.0 | 47.0 | 48.5 478 | 44.0 | 45.8 21.2 | 11.0 | 145 - ’

Table 7: Performance comparison over the Biomedical and Maths & Computer domains in SemEval-15.

Language | Dataset Best System Train-O-Matic
Fl P | R | FI

ALL 56.6 65.1 | 55.6 | 59.9

Italian Computers & Math 46.6 52.7 | 43.3 | 47.6
Biomedicine 65.9 76.6 | 67.6 | 71.8
ALL 56.3 61.3 | 54.8 | 57.9

Spanish Computers & Math 42.4 533 | 444 | 48.5
Biomedicine 65.5 71.8 | 65.5 | 68.5

Table 8: Performance comparison between T-O-M and SemEval-2015’s best SUDOKU Run.

Navigli, 2014; Navigli, 2009).

State-of-the-art supervised systems include
Support Vector Machines such as IMS (Zhong and
Ng, 2010) and, more recently, LSTM neural net-
works with attention and multitask learning (Ra-
ganato et al., 2017b) as well as LSTMs paired
with nearest neighbours classification (Melamud
et al., 2016; Yuan et al., 2016). The latter also in-
tegrates a label propagation algorithm in order to
enrich the sense annotated dataset. The main dif-
ference from our approach is its need for a man-
ually annotated dataset to start the label propaga-
tion algorithm, whereas Train-O-Matic is fully au-
tomatic. An evaluation against this system would
have been interesting, but neither the proprietary
training data nor the code are available at the time
of writing.

In order to generalize effectively, these super-
vised systems require large numbers of training in-

stances annotated with senses for each target word
occurrence. Overall, this amounts to millions of
training instances for each language of interest,
a number that is not within reach for any lan-
guage. In fact, no supervised system has been sub-
mitted in major multilingual WSD competitions
for languages other than English (Navigli et al.,
2013; Moro and Navigli, 2015). To overcome this
problem, new methodologies have recently been
developed which aim to create sense-tagged cor-
pora automatically. Raganato et al. (2016) devel-
oped 7 heuristics to grow the number of hyperlinks
in Wikipedia pages. Otegi et al. (2016) applied
a different disambiguation pipeline for each lan-
guage to parallel text in Europarl (Koehn, 2005)
and QTLeap (Agirre et al., 2015) in order to enrich
them with semantic annotations. Taghipour and
Ng (2015), the work closest to ours, exploits the
alignment from English to Chinese sentences of
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the United Nation Parallel Corpus (Ziemski et al.,
2016) to reduce the ambiguity of English words
and sense-tag English sentences. The assump-
tion is that the second language is less ambiguous
than the first one and that hand-made translations
of senses are available for each WordNet synset.
This approach is, therefore, semi-automatic and
relies on certain assumptions, in contrast to Train-
O-Matic which is, instead, fully automatic and
can be applied to any kind of corpus (and lan-
guage) depending on the specific need. Earlier
attempts at the automatic extraction of training
samples were made by Agirre and De Lacalle
(2004) and Fernandez et al. (2004). Both exploited
the monosemous relatives method (Leacock et al.,
1998) in order to retrieve sentences from the Web
which contained a given monosemous noun or a
relative monosemous word (e.g., a synonym, a hy-
pernym, etc.). As can be seen in (Ferndndez et al.,
2004) this approach can lead to the retrieval of
very accurate examples, but its main drawback lies
in the number of senses covered. In fact, for all
those synsets that do not have any monosemous
relative, the system is unable to retrieve examples,
thus heavily affecting the performance in terms of
recall and F1.

Knowledge-based WSD, instead, bypasses the
heavy requirement of sense-annotated corpora by
applying algorithms that exploit a general-purpose
semantic network, such as WordNet, which en-
codes the relational information that interconnects
synsets via different kinds of relation. Approaches
include variants of Personalized PageRank (Agirre
et al., 2014) and densest subgraph approxima-
tion algorithms (Moro et al., 2014) which, thanks
to the availability of multilingual resources such
as BabelNet, can easily be extended to perform
WSD in arbitrary languages. Other approaches
to knowledge-based WSD exploit the definitional
knowledge contained in a dictionary. The Lesk al-
gorithm (Lesk, 1986) and its variants (Banerjee
and Pedersen, 2002; Kilgarriff and Rosenzweig,
2000; Vasilescu et al., 2004) aim to determine the
correct sense of a word by comparing each word-
sense definition with the context in which the tar-
get word appears. The limit of knowledge-based
WSD, however, lies in the absence of mechanisms
that can take into account the very local context of
a target word occurrence, including non-content
words such as prepositions and articles. Further-
more, recent studies seem to suggest that such
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approaches are barely able to surpass supervised
WSD systems when they enrich their networks
starting from a comparable amount of annotated
data (Pilehvar and Navigli, 2014). With T-O-M,
rather than further enriching an existing semantic
network, we exploit the information available in
the network to annotate raw sentences with sense
information and train a state-of-the-art supervised
WSD system without task-specific human annota-
tions.

8 Conclusion

In this paper we presented Train-O-Matic, a novel
approach to the automatic construction of large
training sets for supervised WSD in an arbitrary
language. Train-O-Matic removes the burden of
manual intervention by leveraging the structural
semantic information available in the WordNet
graph enriched with additional relational infor-
mation from BabelNet, and achieves performance
competitive to that of semi-automatic approaches
and, in some cases, of manually-curated train-
ing data. T-O-M was shown to provide training
data for virtually all the target ambiguous nouns,
in marked contrast to alternatives like OMSTI,
which covers in many cases around half of the to-
kens, resorting to the MFS otherwise. Moreover
Train-O-Matic has proven to scale well to low-
resourced languages, for which no manually an-
notated dataset exists, surpassing the current state
of the art of knowledge-based systems.

We believe that the ability of T-O-M to over-
come the current paucity of annotated data for
WSD, coupled with video games with a pur-
pose for validation purposes (Jurgens and Nav-
igli, 2014; Vannella et al., 2014), paves the way
for high-quality multilingual supervised WSD. All
the training corpora, including approximately one
million sentences which cover English, Italian and
Spanish, are made available to the community at
http://trainomatic.orgq.

As future work we plan to extend our approach
to verbs, adjectives and adverbs. Following Ben-
nett et al. (2016) we will also experiment on more
realistic estimates of P(s|w) in Formula 5 as well
as other assumptions made in our work.
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