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Abstract

We recast syntactic parsing as a language
modeling problem and use recent advances in
neural network language modeling to achieve
a new state of the art for constituency Penn
Treebank parsing — 93.8 F1 on section 23, us-
ing 2-21 as training, 24 as development, plus
tri-training. When trees are converted to Stan-
ford dependencies, UAS and LAS are 95.9%
and 94.1%.

1 Introduction

Recent work on deep learning syntactic parsing
models has achieved notably good results, e.g., Dyer
et al. (2016) with 92.4 F1 on Penn Treebank con-
stituency parsing and Vinyals et al. (2015) with
92.8 F1. In this paper we borrow from the ap-
proaches of both of these works and present a
neural-net parse reranker that achieves very good re-
sults, 93.8 F1, with a comparatively simple architec-
ture.

In the remainder of this section we outline the ma-
jor difference between this and previous work —
viewing parsing as a language modeling problem.
Section 2 looks more closely at three of the most
relevant previous papers. We then describe our ex-
act model (Section 3), followed by the experimental
setup and results (Sections 4 and 5).
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Figure 1: A tree (a) and its sequential form (b).
There is a one-to-one mapping between a tree and its
sequential form. (Part-of-speech tags are not used.)

1.1 Language Modeling
Formally, a language model (LM) is a probability
distribution over strings of a language:

P (x) = P (x1, · · · , xn)

=

n∏

t=1

P (xt|x1, · · · , xt−1), (1)

where x is a sentence and t indicates a word posi-
tion. The efforts in language modeling go into com-
puting P (xt|x1, · · · , xt−1), which as described next
is useful for parsing as well.

1.2 Parsing as Language Modeling
A generative parsing model parses a sentence (x)
into its phrasal structure (y) according to

argmax
y′∈Y(x)

P (x,y′),

where Y(x) lists all possible structures of x. If we
think of a tree (x,y) as a sequence (z) (Vinyals et
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al., 2015) as illustrated in Figure 1, we can define a
probability distribution over (x,y) as follows:

P (x,y) = P (z) = P (z1, · · · , zm)

=
m∏

t=1

P (zt|z1, · · · , zt−1), (2)

which is equivalent to Equation (1). We have
reduced parsing to language modeling and can
use language modeling techniques of estimating
P (zt|z1, · · · , zt−1) for parsing.

2 Previous Work

We look here at three neural net (NN) models clos-
est to our research along various dimensions. The
first (Zaremba et al., 2014) gives the basic language
modeling architecture that we have adopted, while
the other two (Vinyals et al., 2015; Dyer et al., 2016)
are parsing models that have the current best results
in NN parsing.

2.1 LSTM-LM

The LSTM-LM of Zaremba et al. (2014) turns
(x1, · · · , xt−1) into ht, a hidden state of an
LSTM (Hochreiter and Schmidhuber, 1997; Gers et
al., 2003; Graves, 2013), and uses ht to guess xt:

P (xt|x1, · · · , xt−1) = P (xt|ht)
= softmax(Wht)[xt],

where W is a parameter matrix and [i] indexes ith
element of a vector. The simplicity of the model
makes it easily extendable and scalable, which has
inspired a character-based LSTM-LM that works
well for many languages (Kim et al., 2016) and
an ensemble of large LSTM-LMs for English with
astonishing perplexity of 23.7 (Jozefowicz et al.,
2016). In this paper, we build a parsing model based
on the LSTM-LM of Zaremba et al. (2014).

2.2 MTP

Vinyals et al. (2015) observe that a phrasal struc-
ture (y) can be expressed as a sequence and build
a machine translation parser (MTP), a sequence-to-
sequence model, which translates x into y using a

conditional probability:

P (y|x) = P (y1, · · · , yl|x)

=
l∏

t=1

P (yt|x, y1, · · · , yt−1),

where the conditioning event (x, y1, · · · , yt−1) is
modeled by an LSTM encoder and an LSTM de-
coder. The encoder maps x into he, a set of vectors
that represents x, and the decoder obtains a sum-
mary vector (h′t) which is concatenation of the de-
coder’s hidden state (hdt ) and weighted sum of word
representations (

∑n
i=1 αih

e
i ) with an alignment vec-

tor (α). Finally the decoder predicts yt given h′t.
Inspired by MTP, our model processes sequential
trees.

2.3 RNNG
Recurrent Neural Network Grammars (RNNG), a
generative parsing model, defines a joint distribution
over a tree in terms of actions the model takes to gen-
erate the tree (Dyer et al., 2016):

P (x,y) = P (a) =

m∏

t=1

P (at|a1, · · · , at−1), (3)

where a is a sequence of actions whose output pre-
cisely matches the sequence of symbols in z, which
implies Equation (3) is the same as Equation (2).
RNNG and our model differ in how they compute
the conditioning event (z1, · · · , zt−1): RNNG com-
bines hidden states of three LSTMs that keep track
of actions the model has taken, an incomplete tree
the model has generated and words the model has
generated whereas our model uses one LSTM’s hid-
den state as shown in the next section.

3 Model

Our model, the model of Zaremba et al. (2014) ap-
plied to sequential trees and we call LSTM-LM from
now on, is a joint distribution over trees:

P (x,y) = P (z) =
m∏

t=1

P (zt|z1, · · · , zt−1)

=

m∏

t=1

P (zt|ht)

=
m∏

t=1

softmax(Wht)[zt],
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where ht is a hidden state of an LSTM. Due to lack
of an algorithm that searches through an exponen-
tially large phrase-structure space, we use an n-best
parser to reduce Y(x) to Y ′(x), whose size is poly-
nomial, and use LSTM-LM to find y that satisfies

argmax
y′∈Y ′(x)

P (x,y′). (4)

3.1 Hyper-parameters
The model has three LSTM layers with 1,500 units
and gets trained with truncated backpropagation
through time with mini-batch size 20 and step size
50. We initialize starting states with previous mini-
batch’s last hidden states (Sutskever, 2013). The
forget gate bias is initialized to be one (Jozefowicz
et al., 2015) and the rest of model parameters are
sampled from U(−0.05, 0.05). Dropout is applied
to non-recurrent connections (Pham et al., 2014)
and gradients are clipped when their norm is big-
ger than 20 (Pascanu et al., 2013). The learning
rate is 0.25 · 0.85max(ε−15, 0) where ε is an epoch
number. For simplicity, we use vanilla softmax over
an entire vocabulary as opposed to hierarchical soft-
max (Morin and Bengio, 2005) or noise contrastive
estimation (Gutmann and Hyvärinen, 2012).

4 Experiments

We describe datasets we use for evaluation, detail
training and development processes.1

4.1 Data
We use the Wall Street Journal (WSJ) of the Penn
Treebank (Marcus et al., 1993) for training (2-21),
development (24) and testing (23) and millions of
auto-parsed “silver” trees (McClosky et al., 2006;
Huang et al., 2010; Vinyals et al., 2015) for tri-
training. To obtain silver trees, we parse the en-
tire section of the New York Times (NYT) of the
fifth Gigaword (Parker et al., 2011) with a prod-
uct of eight Berkeley parsers (Petrov, 2010)2 and
ZPar (Zhu et al., 2013) and select 24 million trees
on which both parsers agree (Li et al., 2014). We do
not resample trees to match the sentence length dis-
tribution of the NYT to that of the WSJ (Vinyals et

1The code and trained models used for experiments are
available at github.com/cdg720/emnlp2016.

2We use the reimplementation by Huang et al. (2010).

Figure 2: Perplexity and F1 on the development set
at each epoch during training.

n Oracle Final Exact
10 94.0 91.2 39.8
50 96.7 91.7 40.0
51o 100 93.9 49.7
100 96.3 91.7 39.9
500 97.0 91.8 40.0

Table 1: The performance of LSTM-LM (G) with
varying n-best parses on the dev set. Oracle refers
to Charniak parser’s oracle F1. Final and Exact re-
port LSTM-LM (G)’s F1 and exact match percent-
age respectively. To simulate an optimal scenario,
we include gold trees to 50-best trees and rerank
them with LSTM-LM (G) (51o).

al., 2015) because in preliminary experiments Char-
niak parser (Charniak, 2000) performed better when
trained on all of 24 million trees than when trained
on resampled two million trees.

Given x, we produce Y ′(x), 50-best trees, with
Charniak parser and find y with LSTM-LM as Dyer
et al. (2016) do with their discriminative and gener-
ative models.3

4.2 Training and Development
4.2.1 Supervision

We unk words that appear fewer than 10 times
in the WSJ training (6,922 types) and drop activa-
tions with probability 0.7. At the beginning of each
epoch, we shuffle the order of trees in the training
data. Both perplexity and F1 of LSTM-LM (G) im-
prove and then plateau (Figure 2). Perplexity, the

3Dyer et al. (2016)’s discriminative model performs compa-
rably to Charniak (89.8 vs. 89.7).
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Base Final
Vinyals et al. (2015) 88.3 90.5
Dyer et al. (2016) 89.8 92.4
LSTM-LM (G) 89.7 92.6

Table 2: F1 of models trained on WSJ. Base refers
to performance of a single base parser and Final that
of a final parser.

model’s training objective, nicely correlates with F1,
what we care about. Training takes 12 hours (37
epochs) on a Titan X. We also evaluate our model
with varying n-best trees including optimal 51-best
trees that contain gold trees (51o). As shown in Ta-
ble 1, the LSTM-LM (G) is robust given sufficiently
large n, i.e. 50, but does not exhibit its full capac-
ity because of search errors in Charniak parser. We
address this problem in Section 5.3.

4.2.2 Semi-supervision
We unk words that appear at most once in the

training (21,755 types). We drop activations with
probability 0.45, smaller than 0.7, thanks to many
silver trees, which help regularization. We train
LSTM-LM (GS) on the WSJ and a different set of
400,000 NYT trees for each epoch except for the
last one during which we use the WSJ only. Training
takes 26 epochs and 68 hours on a Titan X. LSTM-
LM (GS) achieves 92.5 F1 on the development.

5 Results

5.1 Supervision

As shown in Table 2, with 92.6 F1 LSTM-LM (G)
outperforms an ensemble of five MTPs (Vinyals et
al., 2015) and RNNG (Dyer et al., 2016), both of
which are trained on the WSJ only.

5.2 Semi-supervision

We compare LSTM-LM (GS) to two very strong
semi-supervised NN parsers: an ensemble of five
MTPs trained on 11 million trees of the high-
confidence corpus4 (HC) (Vinyals et al., 2015); and
an ensemble of six one-to-many sequence models

4The HC consists of 90,000 gold trees, from the WSJ, En-
glish Web Treebank and Question Treebank, and 11 million sil-
ver trees, whose sentence length distribution matches that of the
WSJ, parsed and agreed on by Berkeley parser and ZPar.

trained on the HC and 4.5 millions of English-
German translation sentence pairs (Luong et al.,
2016). We also compare LSTM-LM (GS) to
best performing non-NN parsers in the literature.
Parsers’ parsing performance along with their train-
ing data is reported in Table 3. LSTM-LM (GS) out-
performs all the other parsers with 93.1 F1.

5.3 Improved Semi-supervision
Due to search errors – good trees are missing in
50-best trees – in Charniak (G), our supervised and
semi-supervised models do not exhibit their full po-
tentials when Charniak (G) provides Y ′(x). To mit-
igate the search problem, we tri-train Charniak (GS)
on all of 24 million NYT trees in addition to the
WSJ, to yield Y ′(x). As shown in Table 3, both
LSTM-LM (G) and LSTM-LM (GS) are affected
by the quality of Y ′(x). A single LSTM-LM (GS)
together with Charniak (GS) reaches 93.6 and an
ensemble of eight LSTM-LMs (GS) with Charniak
(GS) achieves a new state of the art, 93.8 F1. When
trees are converted to Stanford dependencies,5 UAS
and LAS are 95.9% and 94.1%,6 more than 1%
higher than those of the state of the art dependency
parser (Andor et al., 2016). Why an indirect method
(converting trees to dependencies) is more accu-
rate than a direct one (dependency parsing) remains
unanswered (Kong and Smith, 2014).

6 Conclusion

The generative parsing model we presented in this
paper is very powerful. In fact, we see that a gen-
erative parsing model, LSTM-LM, is more effec-
tive than discriminative parsing models (Dyer et al.,
2016). We suspect building large models with char-
acter embeddings would lead to further improve-
ment as in language modeling (Kim et al., 2016;
Jozefowicz et al., 2016). We also wish to de-
velop a complete parsing model using the LSTM-
LM framework.
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Base Oracle Final Gold Silver
Huang et al. (2010) - - 92.8 WSJ (40K) BLLIP (1.8M)
Shindo et al. (2012) - - 92.4 WSJ (40K) -
Choe et al. (2015) - - 92.6 WSJ (40K) NYT (2M)
Vinyals et al. (2015) - - 92.8 HC (90K) HC (11M)
Luong et al. (2016) - - 93.0 HC (90K) HC (11M)
Charniak (G) + LSTM-LM (G) 89.7 96.7 92.6 WSJ (40K) -
Charniak (G) + LSTM-LM (GS) 89.7 96.7 93.1 WSJ (40K) NYT (0/10M)
Charniak (GS) + LSTM-LM (G) 91.2 97.1 92.9 WSJ (40K) NYT (24M/0)
Charniak (GS) + LSTM-LM (GS) 91.2 97.1 93.6 WSJ (40K) NYT (24M/10M)
Charniak (GS) + E(LSTM-LMs (GS)) 91.2 97.1 93.8 WSJ (40K) NYT (24M/11.2M)

Table 3: Evaluation of models trained on the WSJ and additional resources. Note that the numbers of Vinyals
et al. (2015) and Luong et al. (2016) are not directly comparable as their models are evaluated on OntoNotes-
style trees instead of PTB-style trees. E(LSTM-LMs (GS)) is an ensemble of eight LSTM-LMs (GS). X/Y
in Silver column indicates the number of silver trees used to train Charniak parser and LSTM-LM. For the
ensemble model, we report the maximum number of trees used to train one of LSTM-LMs (GS).
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