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Abstract

We introduce a novel approach to the decoding
problem in transition-based parsing: heuris-
tic backtracking. This algorithm uses a se-
ries of partial parses on the sentence to locate
the best candidate parse, using confidence es-
timates of transition decisions as a heuristic to
guide the starting points of the search. This
allows us to achieve a parse accuracy compa-
rable to beam search, despite using fewer tran-
sitions. When used to augment a Stack-LSTM
transition-based parser, the parser shows an
unlabeled attachment score of up to 93.30%
for English and 87.61% for Chinese.

1 Introduction

Transition-based parsing, one of the most prominent
dependency parsing techniques, constructs a depen-
dency structure by reading words sequentially from
the sentence, and making a series of local decisions
(called transitions) which incrementally build the
structure. Transition-based parsing has been shown
to be both fast and accurate; the number of transi-
tions required to fully parse the sentence is linear
relative to the number of words in the sentence.

In recent years, the field has seen dramatic im-
provements in the ability to correctly predict tran-
sitions. Recent models include the greedy Stack-
LSTM model of Dyer et al. (2015) and the globally
normalized feed-forward networks of Andor et al.
(2016). These models output a local decision at each
transition point, so searching the space of possible
paths to the predicted tree is an important compo-
nent of high-accuracy parsers.

One common search technique is beam search.
(Zhang and Clark, 2008; Zhang and Nivre, 2011;
Bohnet and Nivre, 2012; Zhou et al., 2015; Weiss et
al., 2015; Yazdani and Henderson, 2015) In beam-
search, a fixed number of candidate transition se-
quences are generated, and the highest-scoring se-
quence is chosen as the answer. One downside to
beam search is that it often results in a significant
amount of wasted predictions. A constant number
of beams are explored at all points throughout the
sentence, leading to some unnecessary exploration
towards the beginning of the sentence, and poten-
tially insufficient exploration towards the end.

One way that this problem can be mitigated is by
using a dynamically-sized beam (Mejia-Lavalle and
Ramos, 2013). When using this technique, at each
step, prune all beams whose scores are below some
value s, where s is calculated based upon the distri-
bution of scores of available beams. Common meth-
ods for pruning are removing all beams below some
percentile, or any beams which scored below some
constant percentage of the highest-scoring beam.

Another approach to solving this issue is given by
Choi and McCallum (2013). They introduced se-
lectional branching, which involves performing an
initial greedy parse, and then using confidence esti-
mates on each prediction to spawn additional beams.
Relative to standard beam-search, this reduces the
average number of predictions required to parse a
sentence, resulting in a speed-up.

In this paper, we introduce heuristic backtracking,
which expands on the ideas of selectional branching
by integrating a search strategy based on a heuristic
function (Pearl, 1984): a function which estimates
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the future cost of taking a particular decision. When
paired with a good heuristic, heuristic backtracking
maintains the property of reducing wasted predic-
tions, but allows us to more fully explore the space
of possible transition sequences (as compared to se-
lectional branching). In this paper, we use a heuristic
based on the confidence of transition predictions.

We also introduce a new optimization: heuristic
backtracking with cutoff. Since heuristic backtrack-
ing produces results incrementally, it is possible to
stop the search early if we have found an answer that
we believe to be the gold parse, saving time propor-
tional to the number of backtracks remaining.

We compare the performance of these various
decoding algorithms with the Stack-LSTM parser
(Dyer et al., 2015), and achieve slightly higher ac-
curacy than beam search, in significantly less time.

2 Transition-Based Parsing With
Stack-LSTM

Our starting point is the model described by Dyer et
al. (2015).1 The parser implements the arc-standard
algorithm (Nivre, 2004) and it therefore makes use
of a stack and a buffer. In (Dyer et al., 2015), the
stack and the buffer are encoded with Stack-LSTMs,
and a third sequence with the history of actions taken
by the parser is encoded with another Stack-LSTM.
The three encoded sequences form the parser state
pt defined as follows,

pt = max {0,W[st;bt;at] + d} , (1)

where W is a learned parameter matrix, bt, st and
at are the stack LSTM encoding of buffer, stack and
the history of actions, and d is a bias term. The out-
put pt (after a component-wise rectified linear unit
(ReLU) nonlinearity (Glorot et al., 2011)) is then
used to compute the probability of the parser action
at time t as:

p(zt | pt) =
exp

(
g>
ztpt + qzt

)
∑

z′∈A(S,B) exp
(
g>
z′pt + qz′

) , (2)

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is a
bias term for action z. The set A(S,B) represents

1We refer to the original work for details.

the valid transition actions that may be taken in the
current state. The objective function is:

Lθ(w, z) =

|z|∑

t=1

log p(zt | pt) (3)

where z refers to parse transitions.

3 Heuristic Backtracking

Using the Stack-LSTM parsing model of Dyer et
al. (2015) to predict each decision greedily yields
very high accuracy; however, it can only explore one
path, and it therefore can be improved by conduct-
ing a larger search over the space of possible parses.
To do this, we introduce a new algorithm, heuristic
backtracking. We also introduce a novel cutoff ap-
proach to further increase speed.

3.1 Decoding Strategy
We model the space of possible parses as a tree,
where each node represents a certain parse state
(with complete values for stack, buffer, and action
history). Transitions connect nodes of the tree, and
leaves of the tree represent final states.

During the first iteration, we start at the root of the
tree, and greedily parse until we reach a leaf. That
is, for each node, we use the Stack-LSTM model
to calculate scores for each transition (as described
in Section 2), and then execute the highest-scoring
transition, generating a child node upon which we
repeat the procedure. Additionally, we save an or-
dered list of the transition scores, and calculate the
confidence of the node (as described in Section 3.2).

When we reach the leaf node, we backtrack to the
location that is most likely to fix a mistake. To find
this, we look at all explored nodes that still have at
least one unexplored child, and choose the node with
the lowest heuristic confidence (see Section 3.2).
We rewind our stack, buffer, and action history to
that state, and execute the highest-scoring transition
from that node that has not yet been explored. At
this point, we are again in a fully-unexplored node,
and can greedily parse just as before until we reach
another leaf.

Once we have generated b leaves, we score them
all and return the transition sequence leading up to
the highest-scoring leaf as the answer. Just as in pre-
vious studies (Collins and Roark, 2004), we use the
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(c) Selectional Branching
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(d) Heuristic Backtracking

Figure 1: Visualization of various decoding algorithms

sum of the log probabilities of all individual transi-
tions as the overall score for the parse.

3.2 Calculating Error Likelihood

Let n indicate a node, which consists of a state, a
buffer, and an action history. We may refer to a
specific node as nj

i , which means it has i actions
in its action history and it is part of the history of
the jth leaf (and possibly subsequent leaves). Let
the function T (n) represent a sorted vector contain-
ing all possible transitions from n, and S(n) rep-
resent a sorted vector containing the scores of all of
these transitions, in terms of log probabilities of each
score. We can index the scores in order of value, so
T1(n) is the highest-scoring transition and S1(n) is
its score, T2(n) is the second-highest-scoring tran-
sition, etc. Here, let un indicate the ranking of the
transition leading to the first unexplored child of a
node n. Also, let V (n) represent the total score of
all nodes in the history of n, i.e. the sum of all the
scores of individual transitions that allowed us to get
to n.

To calculate the confidence of an individual node,
Choi and McCallum (2013) simply found the score
margin, or difference in probability between the top-
scoring transition and the second-highest scoring
transition: C(n) = S1(n) − S2(n). In selectional
branching, the only states for which the confidence
was relevant were the states in the first greedy parse,
i.e. states n1

i for all i. For heuristic backtracking, we
wish to generalize this to any state nj

i for all i and j.

We do this in the following way:

H(nj
i ) = (V (n1

i )− V (nj
i )) + (S(u

n
j
i

)−1(n
j
i ) + S(u

n
j
i

)(n
j
i ))

(4)
Intuitively, this formula means that the node that will
be explored first is the node that will yield a parse
that scores as close to the greedy choice as possible.
The first term ensures that it has a history of good
choices, and the second term ensures that the new
child node being explored will be nearly as good as
the prior child.

3.3 Number of Predictions

As discussed earlier, we use number of predictions
made by the model as a proxy for the speed; exe-
cution speed may vary based on system and algo-
rithmic implementation, but prediction count gives
a good estimate of the overall work done by the al-
gorithm.

Consider a sentence of length l, which requires at
most 2l transitions with the greedy decoder (Nivre,
2004). The number of predictions required for
heuristic backtracking for b leaves is guaranteed to
be less than or equal to a beam search with b beams.

When doing a beam search, the first transition will
require 1 prediction, and then every subsequent tran-
sition will require 1 prediction per beam, or b predic-
tions. This results in a total of b(2l − 1) + 1 predic-
tions.

When doing heuristic backtracking, the first
greedy search will require 2l predictions. Every
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subsequent prediction will require a number of pre-
dictions dependent on the target of the backtrack:
backtracking to nj

i will require 2l − (i + 1) pre-
dictions. Note that 0 < i < 2l. Thus, each back-
track will require at maximum 2l − 1 predictions.
Therefore, the maximum total amount of predictions
is 2l + (b− 1)(2l − 1) = b(2l − 1) + 1.

However, note that on average, there are signifi-
cantly fewer. Assuming that all parts of a sentence
have approximately equal score distributions, the av-
erage backtrack will be where i = l, and reduce pre-
dictions by 50%.

An intuitive understanding of this difference can
be gained by viewing the graphs of various decoding
methods in Figure 1. Beam search has many nodes
which never yield children that reach an end-state;
dynamic beam search has fewer, but still several. Se-
lectional branching has none, but suffers from the re-
striction that every parse candidate can be no more
than one decision away from the greedy parse. With
heuristic backtracking, there is no such restriction,
but yet every node explored is directly useful for
generating a candidate parse.

3.4 Early Cutoff

Another inefficiency inherent to beam search is the
fact that all b beams are always fully explored.
Since the beams are calculated in parallel, this is in-
evitable. However, with heuristic backtracking, the
beams are calculated incrementally; this gives us the
opportunity to cut off our search at any point. In or-
der to leverage this into more efficient parsing, we
constructed a second Stack-LSTM model, which we
call the cutoff model. The cutoff model uses a sin-
gle Stack-LSTM2 that takes as input the sequence of
parser states (see Eq 1), and outputs a boolean vari-
able predicting whether the entire parse is correct or
incorrect.

To train the cutoff model, we used stochastic gra-
dient descent over the training set. For each training
example, we first parse it greedily using the Stack-
LSTM parser. Then, for as long as the parse has at
least one mistake, we pass it to the cutoff model as
a negative training example. Once the parse is com-
pletely correct, we pass it to the cutoff model as a
positive training example. The loss function that we

22 layers and 300 dimensions.

use is:

Lθ = − log p(t | s) (5)

where s is the LSTM encoded vector and t is the
truth (parse correct/incorrect).

When decoding using early cutoff, we follow the
exact same procedure as for normal heuristic back-
tracking, but after every candidate parse is gener-
ated, we use it as input to our cutoff model. When
our cutoff model returns our selection as correct, we
stop backtracking and return it as the answer. If we
make b attempts without finding a correct parse, we
follow the same procedure as before.

4 Experiments and Results

To test the effectiveness of heuristic backtrack-
ing, we compare it with other decoding tech-
niques: greedy, beam search,3, dynamic beam
search (Mejia-Lavalle and Ramos, 2013), and selec-
tional branching (Choi and McCallum, 2013). We
then try heuristic backtracking (see Section 3.1), and
heuristic backtracking with cutoff (see Section 3.4).
Note that beam search was not used for early-update
training (Collins and Roark, 2004). We use the same
greedy training strategy for all models, and we only
change the decoding strategy.

We tested the performance of these algorithms on
the English SD and Chinese CTB.4 A single model
was trained using the techniques described in Sec-
tion 2, and used as the transition model for all decod-
ing algorithms. Each decoding technique was tested
with varying numbers of beams; as b increased, both
the predictions per sentence and accuracy trended
upwards. The results are summarized in Table 1.5

Note that we report results for only the highest-
accuracy b (in the development set) for each.

We also report the results of the cutoff model in
Table 2. The same greedily-trained model as above
was used to generate candidate parses and confi-
dence estimates for each transition, and then the cut-
off model was trained to use these confidence esti-

3Greedy and beam-search were already explored by Dyer et
al. (2015)

4Using the exact same settings as Dyer et al. (2015) with
pretrained embeddings and part-of-speech tags.

5The development sets are used to set the model parameters;
results on the development sets are similar to the ones obtained
in the test sets.
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English
Decoding Pred/Sent UAS LAS

Greedy – Dyer et al. 47.92 93.04% 90.87%
Beam Search 542.09 93.32% 91.19%

Dynamic Beam Search 339.42 93.32% 91.19%
Sel. Branching 59.66 93.24% 91.12%
Heur. Backtr. 198.03 93.30% 91.18%

Heur. Backtr. w/ Cutoff 108.32 93.27% 91.16%
Chinese

Decoding Pred/Sent UAS LAS
Greedy – Dyer et al. 53.79 87.31% 85.88%

Beam Search 815.65 87.62% 86.17%
Dynamic Beam Search 282.32 87.62% 86.17%

Sel. Branching 91.51 87.53% 86.08%
Heur. Backtr. 352.30 87.61% 86.16%

Heur. Backtr. w/ Cutoff 162.37 87.60% 86.15%

Table 1: UAS and LAS of various decoding meth-
ods. Pred/Sent refers to number of predictions made
by the Stack-LSTM per sentence.

mates to discriminate between correctly-parsed and
incorrectly-parsed sentences.

5 Discussion

In Table 1 we see that in both English and Chi-
nese, the best heuristic backtracking performs ap-
proximately as well as the best beam search, while
making less than half the predictions. This supports
our hypothesis that heuristic backtracking can per-
form at the same level as beam search, but with in-
creased efficiency.

Dynamic beam search also performed as well
as full beam search, despite demonstrating a re-
duction in predictions on par with that of heuris-
tic backtracking. Since the implementation of dy-
namic beam search is very straightforward for sys-
tems which have already implemented beam search,
we believe this will prove to be a useful finding.

Heuristic backtracking with cutoff outperformed
greedy decoding, and reduced transitions by an addi-
tional 50%. However, it increased accuracy slightly
less than full heuristic backtracking. We believe this
difference could be mitigated with an improved cut-
off model; as can be seen in Table 2, the cutoff
model was only able to discriminate between correct
and incorrect parses around 75% of the time. Also,
note that while predictions per sentence were low,
the overall runtime was increased due to running the
cutoff LSTM multiple times per sentence.

Language Cutoff Accuracy
English 72.43%
Chinese 75.18%

Table 2: Test-set accuracy of cutoff model on En-
glish and Chinese.

6 Related Work

Heuristic backtracking is most similar to the work
of Choi and McCallum (2013), but is distinguished
from theirs by allowing new beams to be initialized
from any point in the parse, rather than only from
points in the initial greedy parse. Heuristic back-
tracking also bears similarity to greedy-best-first-
search (Pearl, 1984), but is unique in that it guaran-
tees that b candidate solutions will be found within
b(2l − 1) + 1 predictions. Our work also relates to
beam-search parsers (Zhang and Clark, 2008, inter
alia).

7 Conclusions

We have introduced a novel decoding algorithm,
called heuristic backtracking, and presented evi-
dence that it performs at the same level as beam
search for decoding, while being significantly more
efficient. We have demonstrated this for both En-
glish and Chinese, using a parser with strong re-
sults with a greedy decoder. We expect that heuris-
tic backtracking could be applied to any other
transition-based parser with similar benefits.

We plan on experimenting with various heuristics
and cutoff models, such as adapting the attention-
based models of Bahdanau et al. (2014) to act as a
guide for both the heuristic search and cutoff.
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