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Abstract

Discourse parsing is considered as one of the
most challenging natural language processing
(NLP) tasks. Implicit discourse relation clas-
sification is the bottleneck for discourse pars-
ing. Without the guide of explicit discourse
connectives, the relation of sentence pairs are
very hard to be inferred. This paper proposes
a stacking neural network model to solve the
classification problem in which a convolu-
tional neural network (CNN) is utilized for
sentence modeling and a collaborative gated
neural network (CGNN) is proposed for fea-
ture transformation. Our evaluation and com-
parisons show that the proposed model outper-
forms previous state-of-the-art systems.

1 Introduction

As a fundamental task in natural language process-
ing (NLP), discourse parsing entails the discovery of
the latent relational structure in multi-sentence level
analysis. It is also central to many practical tasks
such as question answering (Liakata et al., 2013;
Jansen et al., 2014), machine translation (Meyer
and Popescu-Belis, 2012; Meyer and Webber, 2013)
and automatic summarization (Murray et al., 2006;
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Yoshida et al., 2014). Discourse parsing is also the
shared task of CoNLL 2015 and 2016 (Xue et al.,
2015; Xue et al., 2016), and many previous works
previous on this task (Qin et al., 2016b; Li et al.,
2016; Chen et al., 2015; Wang and Lan, 2016). In
a discourse parser, implicit relation recognition has
been the bottleneck due to lack of explicit connec-
tives (like “because” or “and”) that can be strong
indicators for the senses between adjacent clauses
(Qin et al., 2016b; Pitler et al., 2009; Lin et al.,
2014). This work therefore focuses on implicit re-
lation recognition that infers the senses of the dis-
course relations within adjacent sentence pairs.

Most previous works on PDTB implicit relation
recognition only focus on one-versus-others binary
classification problems of the top level four classes
(Pitler et al., 2009; Zhou et al., 2010; Park and
Cardie, 2012; Biran and McKeown, 2013; Ruther-
ford and Xue, 2014; Braud and Denis, 2015). Tra-
ditional classification methods directly rely on fea-
ture engineering, based on bag-of-words, produc-
tion rules, and some linguistically-informed fea-
tures (Zhou et al.,, 2010; Rutherford and Xue,
2014). However, discourse relations root in seman-
tics, which may be hard to recover from surface
level feature, thus these methods did not report sat-
isfactory performance. Recently, neural network
(NN) models have shown competitive or even bet-
ter results than traditional linear models with hand-
crafted sparse features (Wang et al., 2016b; Zhang
et al., 2016a; Jia and Zhao, 2014). They have been
proved to be effective for many tasks (Qin et al.,
2016a; Wang et al., 2016a; Zhang et al., 2016b;
Wang et al.,, 2015; Wang et al., 2014; Cai and
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Zhao, 2016), also including discourse parsing. Ji
and Eisenstein (2015) adopt recursive neural net-
work and incorporate with entity-augmented dis-
tributed semantics. Zhang et al. (2015) explore a
shallow convolutional neural network and achieve
competitive performance. Although simple neural
network has been shown effective, the result has not
been quite satisfactory which suggests that there is
still space for improving.

The concerned task could be straightforwardly
formalized as a sentence-pair classification problem,
which needs inferring senses solely based on the two
arguments without cues of connectives. Two prob-
lems should be carefully handled in this task: how to
model sentences and how to capture the interactions
between the two arguments. The former could be
addressed by Convolutional Neural Network (CNN)
which has been proved effective for sentence mod-
eling (Kalchbrenner et al., 2014; Kim, 2014), while
the latter is the key problem, which might need deep
semantic analysis for the interaction of two argu-
ments. To solve the latter problem, we propose
collaborative gated neural network (CGNN) which
is partially inspired by Highway Network whose
gate mechanism achieves success (Srivastava et al.,
2015). Our method will be evaluated on the bench-
mark dataset against state-of-the-art methods.

The rest of the paper is organized as follows: Sec-
tion 2 briefly describes our model, introducing the
stacking architecture of CNN and CGNN, Section 3
shows the experiments and analysis, and Section 4
concludes this paper.

2 Method

The architecture of the model, as shown in Figure 1,
is straightforward. It can be divided into three parts:
1) CNN for modeling arguments; 2) CGNN unit for
feature transformation; 3) a conventional softmax
layer for the final classification. CNN is used to
obtain the vector representations for the sentences,
CGNN further captures and transforms the features
for the final classification.

2.1 Convolutional Neural Network

As CNN has been broadly adopted for model-
ing sentences, we will explain it in brevity. For
two arguments, typical sentence modeling process
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Figure 1: Model Architecture

will be applied: sentence embedding (including
embeddings for words and part-of-speech (POS)
tags) through projection layer, convolution opera-
tions (with multiple groups of filters) through the
convolution layer, obtaining the sentence representa-
tion through one-max-pooling. The two arguments
will get their sentence vectors independently with-
out any interfering, and the convolution operation
will be the same by sharing parameters. The fi-
nal argument-pair representation will be the vector
v which is concatenated from two sentence vec-
tors and this vector will be used as the input of the
CGNN unit.



ComP. CoNT. EXp. TEMP. AVG

CNN Only 39.07 5473 6594 30.19 4748

CNN+MLP 37.81 56.30 69.44 32.29 48.96

CNN+LSTM 39.15 5344 68.85 29.79 4781

CNN+Highway | 37.72  56.35 68.94 30.56 48.39

CNN+CGNN 41.55 5732 7150 3543 5145
Table 1: F} scores (%) with different models.

2.2 Collaborative Gated Neural Network

For implicit sense classification, the key is how to
effectively capture the interactions between the two
arguments. The interactions could be word pairs,
phrase pairs or even the latent meaning of the two
full arguments. Pitler et al. (2009) has shown that
word pair features are helpful. To model these in-
teractions, we have to make a full use of the sen-
tence vectors obtained from CNN. However, com-
mon neural hidden layers might be insufficient to
deal with the challenge. We need to seek more pow-
erful neural models, i.e., gated neural network.

In recent years, gated mechanism has gained pop-
ularity in neural models. Although it is first in-
troduced in the cells of recurrent neural networks,
like Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Chung et al., 2014), traditional feed-forward
neural models such as the Highway Network could
also benefit from it (Srivastava et al., 2015). The
existing studies show that the gated mechanism in
highway network serves not only a means for eas-
ier training, but also a tool to route information in a
trained network.

Motivated by the idea of highway network,
we propose a collaborative gated neural network
(CGNN) for this task. The architecture of CGNN
is illustrated in Figure 1, and it contains a sequence
of transformations. First, the inner-cell ¢ is obtained
through linear transformation and non-linear activa-
tion on the input v, and this process is exactly the
operation of an ordinary neural layer.

¢ = tanh(W°€. v + b°)

Meanwhile, the two gates g; and g, are calculated
independently because they are only influenced by
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the original input through different parameters:

gi:O'(Wi-V—{—bi)
g, =0(W?.v+Db°)

where the o denotes sigmoid function which guar-
antees the values in the gates are in [0,1]. Two gated
operations are applied sequentially, where a gated
operation indicates the element-wise multiplication
of an inner-cell and a gate. Between the two gated
operations, a non-linear activation operation is ap-
plied. The procedure could be formulated as fol-
lows:

c=2¢0g;
h = tanh(c) ® g,

where ©® denotes element-wise multiplication, c is
the second inner-cell and h is the output of CGNN
unit.

Although the two gates are generated indepen-
dently, they will work collaboratively because they
control the information flow of the inner-cells se-
quentially which resembles logical AND operation
in a probabilistic version. In fact, the transforma-
tions after ¢ will concern only element-wise oper-
ations which might give finer controls for each di-
mension, and the information can only flow on the
dimensions where both gates are “open”. This pro-
cedure will help select the most crucial features.

The gates in this model are mainly used for rout-
ing information from sentence-pairs vectors. When
there is only one gate in our network, the model
works similar to the highway network (Srivastava et
al., 2015).

2.3 Output and Training

After the transformation of the CGNN unit, the
transformed vector h will be sent to a conventional
softmax for classification.



The training object J will be the cross-entropy er-
ror E with L2 regularization:

l
E(j,y) = — Z y; x log(Pr(j;))

J(0)

R A
> BN,y ")+ 2 o)

where y; is the gold label and y; is the predicted one.
We adopt the diagonal variant of AdaGrad (Duchi et
al., 2011) for the optimization process.

3 Experiments

3.1 Setting

As for the benchmark dataset, Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008) corpus1 is used
for evaluation. In the PDTB, each discourse relation
is annotated between two argument spans.

To be consistent with the setups of prior works,
we formulate the implicit relation classification task
as four one-versus-other binary classification prob-
lems only using the four top level classes: COM-
PARISON (COMP.), CONTINGENCY (CONT.), EX-
PANSION (ExP.) and TEMPORAL (TEMP.). While
different works include different relations of varying
specificities, all of them include these four core rela-
tions (Pitler et al., 2009). Following dataset splitting
convention of the previous works, we use sections
2-20 for training, sections 21-22 for testing and sec-
tions 0-1 for development set. The proposed model
is possible to be extended for multi-class classifica-
tion of discourse parsing, but for the comparisons
with most of previous works, we will follow them
and focus on the binary classification problems.

For other hyper-parameters of the model and
training process, we fix the lengths of both the in-
put arguments to be 80, and apply truncating or
zero-padding when necessary. The dimensions for
word embeddings and POS embeddings are respec-
tively 300 and 50, and the embedding layer adopts
a dropout of 0.2. The word embeddings are initial-
ized with pre-trained word vectors using word2vec >
(Mikolov et al., 2013) and other parameters are ran-
domly initialized including POS embeddings. We

"http://www.seas.upenn.edu/~pdtb/
http://www.code.google.com/p/word2vec
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set the starting learning rate to 0.001. For CNN
model, we utilize three groups of filters with win-
dow widths of (2, 2, 2) and their filter numbers are
all set to 1024. The hyper-parameters are the same
for all models and we do not tune them individually.

3.2 Model Analysis

For transformation of sentence vectors, a Sim-
ple Multilayer Perceptron (MLP) layer could be a
straightforward choice, while more complex neu-
ral modules, such as LSTM and highway network,
could also be considered. Our model utilizes a
CGNN unit with refined gated mechanism for the
transformation. Will the proposed CGNN really
bring about further performance improvement? We
now answer this question empirically.

As shown in Table 1, CNN model usually per-
forms well on its own. Utilizing an MLP layer or
a Highway layer could improve the accuracies on
CONTINGENCY, EXPANSION, TEMPORARY except
for COMPARISON. Though the primary motivation
of Highway is to ease gradient-based training of
highly deep networks through utilizing gated units,
it works merely as an ordinary MLP in the proposed
model, which explains the reason that it performs
like MLP. Despite one of four classes, COMPAR-
ISON, not receiving performance improvement, in-
troducing a non-linear transformation layer lets the
classification benefit as a whole. “CNN+LSTM” de-
notes the method of using LSTM to read the convo-
lution sequence (without pooling operation), and it
even does not perform better than MLP.

The CGNN achieves the best performance on all
classes including COMPARISON. It gains 3.97%
imrovement on average F1 score using CNN only
model. We assume that CGNN is well-suited to
work with CNN, adaptively transforming and com-
bining local features detected by the individual fil-
ters.

3.3 Results

We show the main results in Tables 2 and 3. The
metrics include precision (P), recall (R), accuracy
(Acc) and F1 score. Since not all of these metrics
are reported in previous work, the comparisons are
correspondingly in Table 2 and 3. Some previous
work merges Entrel with Expansion, which is also
explored in our study and noted as EXP.+.



COMP. CONT. EXP.+ TEMP. AVG.
F Acc Fy Acc Fy Acc Fy Acc F1 Acc
Pitler et al. (2009) | 21.96 56.59 47.13 67.30 7642 63.62 16.76 63.49 40.57 62.75
Zhou et al. (2010) | 31.79 58.22 47.16 48.96 70.11 54.54 2030 5548 4032 54.30
P&C (2012) 3132 7466 49.82 72.09 7922 69.14 2657 79.32 46.73 73.80
M&B (2013) 2540 6336 4694 68.09 75.87 62.84 20.23 68.35 42.11 65.66
J& (2015) 3593 7027 52778 7695 80.02 69.80 27.63 87.11 49.09 76.03
B&D(2015) 36.36 - 55.76 - 61.76 - 29.30 - 45.80 -
Chen et al. (2016) | 40.17 - 54.76 - 80.62 - 31.32 - 51.72 -
Current 41.55 7122 5732 7380 80.96 6844 3543 8432 53.82 7445
Table 2: Comparisons of F} scores (%) (symbol + means EXP. with Entrel).
P R Fy three different pooling operations (max, min, aver-
R&Xue (2014) 27.34 7241 39.70 age); Ji and Eisenstein (2015) compute distributed
COMP. | Zhang etal.(2015)  22.00 6776 33.22 (o pticg representation by composition up the syn-
Current 29.48 70.39 41.55 . . .
R&Xue (2014) 4150 6006 44  ‘actic parse tree. through recursive neural netwc?rk,
CONT. | Zhang etal.(2015) 39.80 7529 52.04 Braud and Denis (2015) consider shallow lexical
Current 50.69 65.95 57.32 features and word embeddings. Chen et al. (2016)
R&Xue (2014) 59.59 8550 7023  replace the original words by word embeddings to
EXP. Zhang et al.(2015) 56.29 91.11 69.59  overcome the data sparsity problem and they also
Current 60.81 86.76 71.50  ytilize gated relevance network to capture the se-
R&Xue (2014) 1852 63.64 2869  mantic interaction between word pairs. The gated
TEMP. | Zhang etal.(2015)  20.22 6235 30.54  hory0rk is different from ours but also works well.
Current 26.63 5294 3543
R&Xue (2014) 3749 72.88 4826 Our model achieves F-measure improvements
AVG. Zhang et al.(2015) 34.58 74.13 46.35 of 1.85% on COMPARISON, 1.56% on CONTIN-
Current 4190 69.01 5145 GENCY, 1.27% on EXPANSION, 0.94% on EXPAN-

Table 3: Comparisons of I scores (%) (EXP. without Entrel).

We compare with best-performed or competitive
models including both traditional linear methods
and recent neural methods. For traditional meth-
ods: Pitler et al. (2009) use several linguistically in-
formed features, including polarity tags, Levin verb
classes, length of verb phrases, modality, context,
and lexical features; Zhou et al. (2010) improve the
performance through predicting connective words as
features; Park and Cardie (2012) propose a locally-
optimal feature set and further identify factors for
feature extraction that can have a major impact per-
formance, including stemming and lexicon look-up;
Biran and McKeown (2013) collect word pairs from
arguments of explicit examples to help the learning;
Rutherford and Xue (2014) employ Brown cluster
pair and coreference patterns for performance en-
hancement. Several neural methods have also been
included for comparison: Zhang et al. (2015) pro-
pose a simplified neural network which has only
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SION+, 4.89% on TEMPORAL, against the state-of-
the-art of each class. We improve by 4.73% on av-
erage F1 score when not including ENTREL in EX-
PANSION as reported in Table 2 and 3.19% on aver-
age F1 score otherwise as reported in Table 3. The
results show that our model achieves the best per-
formance and especially makes the most remarkable
progress on TEMPORAL.

4 Conclusion

In this paper, we propose a stacking gated neural ar-
chitecture for implicit discourse relation classifica-
tion. Our model includes convolution and collabo-
rative gated neural network. The analysis and ex-
periments show that CNN performs well on its own
and combining CGNN provides further gains. Our
evaluation on PTDB shows that the proposed model
outperforms previous state-of-the-art systems.
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