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Abstract

Coreference resolution systems are typically
trained with heuristic loss functions that re-
quire careful tuning. In this paper we in-
stead apply reinforcement learning to directly
optimize a neural mention-ranking model for
coreference evaluation metrics. We experi-
ment with two approaches: the REINFORCE
policy gradient algorithm and a reward-
rescaled max-margin objective. We find the
latter to be more effective, resulting in a sig-
nificant improvement over the current state-
of-the-art on the English and Chinese portions
of the CoNLL 2012 Shared Task.

1 Introduction

Coreference resolution systems typically operate by
making sequences of local decisions (e.g., adding
a coreference link between two mentions). How-
ever, most measures of coreference resolution per-
formance do not decompose over local decisions,
which means the utility of a particular decision is
not known until all other decisions have been made.

Due to this difficulty, coreference systems are
usually trained with loss functions that heuristically
define the goodness of a particular coreference deci-
sion. These losses contain hyperparameters that are
carefully selected to ensure the model performs well
according to coreference evaluation metrics. This
complicates training, especially across different lan-
guages and datasets where systems may work best
with different settings of the hyperparameters.

To address this, we explore using two variants of
reinforcement learning to directly optimize a coref-
erence system for coreference evaluation metrics. In

particular, we modify the max-margin coreference
objective proposed by Wiseman et al. (2015) by in-
corporating the reward associated with each coref-
erence decision into the loss’s slack rescaling. We
also test the REINFORCE policy gradient algorithm
(Williams, 1992).

Our model is a neural mention-ranking model.
Mention-ranking models score pairs of mentions for
their likelihood of coreference rather than compar-
ing partial coreference clusters. Hence they operate
in a simple setting where coreference decisions are
made independently. Although they are less expres-
sive than entity-centric approaches to coreference
(e.g., Haghighi and Klein, 2010), mention-ranking
models are fast, scalable, and simple to train, caus-
ing them to be the dominant approach to coreference
in recent years (Durrett and Klein, 2013; Wiseman
et al., 2015). Having independent actions is partic-
ularly useful when applying reinforcement learning
because it means a particular action’s effect on the
final reward can be computed efficiently.

We evaluate the models on the English and Chi-
nese portions of the CoNLL 2012 Shared Task. The
REINFORCE algorithm is competitive with a heuris-
tic loss function while the reward-rescaled objective
significantly outperforms both1. We attribute this to
reward rescaling being well suited for a ranking task
due to its max-margin loss as well as benefiting from
directly optimizing for coreference metrics. Error
analysis shows that using the reward-rescaling loss
results in a similar number of mistakes as the heuris-
tic loss, but the mistakes tend to be less severe.

1Code and trained models are available at
https://github.com/clarkkev/deep-coref.
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2 Neural Mention-Ranking Model

We use the neural mention-ranking model described
in Clark and Manning (2016), which we briefly
go over in this section. Given a mention m and
candidate antecedent c, the mention-ranking model
produces a score for the pair s(c,m) indicating their
compatibility for coreference with a feedforward
neural network. The candidate antecedent may be
any mention that occurs before m in the document
or NA, indicating that m has no antecedent.

Input Layer. For each mention, the model extracts
various words (e.g., the mention’s head word) and
groups of words (e.g., all words in the mention’s
sentence) that are fed into the neural network. Each
word is represented by a vector wi ∈ Rdw . Each
group of words is represented by the average of the
vectors of each word in the group. In addition to
the embeddings, a small number of additional fea-
tures are used, including distance, string matching,
and speaker identification features. See Clark and
Manning (2016) for the full set of features and an
ablation study.

These features are concatenated to produce an I-
dimensional vector h0, the input to the neural net-
work. If c = NA, features defined over pairs of
mentions are not included. For this case, we train
a separate network with an identical architecture to
the pair network except for the input layer to pro-
duce anaphoricity scores.

Hidden Layers. The input gets passed through three
hidden layers of rectified linear (ReLU) units (Nair
and Hinton, 2010). Each unit in a hidden layer is
fully connected to the previous layer:

hi(c,m) = max(0,Wihi−1(c,m) + bi)

where W1 is aM1×I weight matrix, W2 is aM2×
M1 matrix, and W3 is a M3 ×M2 matrix.

Scoring Layer. The final layer is a fully connected
layer of size 1:

s(c,m) = W4h3(c,m) + b4

where W4 is a 1 ×M3 weight matrix. At test time,
the mention-ranking model links each mention with
its highest scoring candidate antecedent.

3 Learning Algorithms

Mention-ranking models are typically trained with
heuristic loss functions that are tuned via hyperpa-
rameters. These hyperparameters are usually given
as costs for different error types, which are used to
bias the coreference system towards making more
or fewer coreference links. In this section we first
describe a heuristic loss function incorporating this
idea from Wiseman et al. (2015). We then propose
new training procedures based on reinforcement
learning that instead directly optimize for corefer-
ence evaluation metrics.

3.1 Heuristic Max-Margin Objective

The heuristic loss from Wiseman et al. is governed
by the following error types, which were first pro-
posed by Durrett et al. (2013).

Suppose the training set consists of N mentions
m1,m2, ...,mN . Let C(mi) denote the set of can-
didate antecedents of a mention mi (i.e., mentions
preceding mi and NA) and T (mi) denote the set of
true antecedents of mi (i.e., mentions preceding mi

that are coreferent with it or {NA} if mi has no an-
tecedent). Then we define the following costs for
linking mi to a candidate antecedent c ∈ C(mi):

∆h(c,mi) =





αFN if c = NA ∧ T (mi) 6= {NA}
αFA if c 6= NA ∧ T (mi) = {NA}
αWL if c 6= NA ∧ a /∈ T (mi)

0 if a ∈ T (mi)

for “false new,” “false anaphor,” “wrong link”, and
correct coreference decisions.

The heuristic loss is a slack-rescaled max-margin
objective parameterized by these error costs. Let t̂i
be the highest scoring true antecedent of mi:

t̂i = argmax
c∈C(mi)∧∆h(c,mi)=0

s(c,mi)

Then the heuristic loss is given as

L(θ) =
N∑
i=1

max
c∈C(mi)

∆h(c,mi)(1 + s(c,mi)− s(t̂i,mi))

Finding Effective Error Penalties. We fix
αWL = 1.0 and search for αFA and αFN out of
{0.1, 0.2, ..., 1.5}with a variant of grid search. Each
new trial uses the unexplored set of hyperparame-
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ters that has the closest Manhattan distance to the
best setting found so far on the dev set. The search
is halted when all immediate neighbors (within 0.1
distance) of the best setting have been explored. We
found (αFN, αFA, αWL) = (0.8, 0.4, 1.0) to be best
for English and (αFN, αFA, αWL) = (0.8, 0.5, 1.0) to
be best for Chinese on the CoNLL 2012 data.

3.2 Reinforcement Learning

Finding the best hyperparameter settings for the
heuristic loss requires training many variants of the
model, and at best results in an objective that is
correlated with coreference evaluation metrics. To
address this, we pose mention ranking in the rein-
forcement learning framework (Sutton and Barto,
1998) and propose methods that directly optimize
the model for coreference metrics.

We can view the mention-ranking model as
an agent taking a series of actions a1:T =
a1, a2, ..., aT , where T is the number of mentions
in the current document. Each action ai links the
ith mention in the document mi to a candidate an-
tecedent. Formally, we denote the set of actions
available for the ith mention as Ai = {(c,mi) :
c ∈ C(mi)}, where an action (c,m) adds a corefer-
ence link between mentions m and c. The mention-
ranking model assigns each action the score s(c,m)
and takes the highest-scoring action at each step.

Once the agent has executed a sequence of ac-
tions, it observes a reward R(a1:T ), which can be
any function. We use the B3 coreference metric for
this reward (Bagga and Baldwin, 1998). Although
our system evaluation also includes the MUC (Vi-
lain et al., 1995) and CEAFφ4 (Luo, 2005) metrics,
we do not incorporate them into the loss because
MUC has the flaw of treating all errors equally and
CEAFφ4 is slow to compute.

Reward Rescaling. Crucially, the actions taken
by a mention-ranking model are independent. This
means it is possible to change any action ai to a dif-
ferent one a′i ∈ Ai and see what reward the model
would have gotten by taking that action instead:
R(a1, ..., ai−1, a

′
i, ai+1, ..., aT ). We use this idea to

improve the slack-rescaling parameter ∆ in the max-
margin loss L(θ). Instead of setting its value based
on the error type, we compute exactly how much

each action hurts the final reward:

∆r(c,mi) = −R(a1, ..., (c,mi), ..., aT )

+ max
a′i∈Ai

R(a1, ..., a
′
i, ..., aT )

where a1:T is the highest scoring sequence of actions
according to the model’s current parameters. Other-
wise the model is trained in the same way as with
the heuristic loss.

The REINFORCE Algorithm. We also explore
using the REINFORCE policy gradient algorithm
(Williams, 1992). We can define a probability dis-
tribution over actions using the mention-ranking
model’s scoring function as follows:

pθ(a) ∝ es(c,m)

for any action a = (c,m). The REINFORCE algo-
rithm seeks to maximize the expected reward

J(θ) = E[a1:T∼pθ]R(a1:T )

It does this through gradient ascent. Computing the
full gradient is prohibitive because of the expecta-
tion over all possible action sequences, which is ex-
ponential in the length of the sequence. Instead, it
gets an unbiased estimate of the gradient by sam-
pling a sequence of actions a1:T according to pθ and
computing the gradient only over the sample.

We take advantage of the independence of actions
by using the following gradient estimate, which has
lower variance than the standard REINFORCE gradi-
ent estimate.

∇θ J(θ) ≈
T∑
i=1

∑
a′i∈Ai

[∇θ pθ(a′i)](R(a1, ..., a
′
i, ..., aT )− bi)

where bi is a baseline used to reduce the variance,
which we set to Ea′i∈Ai∼pθ R(a1, ..., a

′
i, ..., aT ).

4 Experiments and Results

We run experiments on the English and Chinese por-
tions of the CoNLL 2012 Shared Task data (Prad-
han et al., 2012) and evaluate with the MUC, B3,
and CEAFφ4 metrics. Our experiments were run us-
ing predicted mentions from Stanford’s rule-based
coreference system (Raghunathan et al., 2010).

We follow the training methodology from Clark
and Manning (2016): hidden layers of sizes M1

= 1000, M2 = M3 = 500, the RMSprop optimizer
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MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

CoNLL 2012 English Test Data

Wiseman et al. (2016) 77.49 69.75 73.42 66.83 56.95 61.50 62.14 53.85 57.70 64.21
Clark & Manning (2016) 79.91 69.30 74.23 71.01 56.53 62.95 63.84 54.33 58.70 65.29

Heuristic Loss 79.63 70.25 74.65 69.21 57.87 63.03 63.62 53.97 58.40 65.36
REINFORCE 80.08 69.61 74.48 70.70 56.96 63.09 63.59 54.46 58.67 65.41
Reward Rescaling 79.19 70.44 74.56 69.93 57.99 63.40 63.46 55.52 59.23 65.73

CoNLL 2012 Chinese Test Data

Björkelund & Kuhn (2014) 69.39 62.57 65.80 61.64 53.87 57.49 59.33 54.65 56.89 60.06
Clark & Manning (2016) 74.45 64.73 69.25 68.71 55.54 61.43 63.14 57.48 60.18 63.62

Heuristic Loss 72.20 66.51 69.24 64.71 58.16 61.26 61.98 58.41 60.14 63.54
REINFORCE 74.05 65.38 69.44 67.52 56.43 61.48 62.38 57.77 59.98 63.64
Reward Rescaling 73.64 65.62 69.40 67.48 56.94 61.76 62.46 58.60 60.47 63.88

Table 1: Comparison of the methods together with other state-of-the-art approaches on the test sets.

(Hinton and Tieleman, 2012), dropout (Hinton et al.,
2012) with a rate of 0.5, and pretraining with the all
pairs classification and top pairs classification tasks.
However, we improve on the previous system by us-
ing using better mention detection, more effective
hyperparameters, and more epochs of training.

4.1 Results

We compare the heuristic loss, REINFORCE, and re-
ward rescaling approaches on both datasets. We find
that REINFORCE does slightly better than the heuris-
tic loss, but reward rescaling performs significantly
better than both across both languages.

We attribute the modest improvement of REIN-
FORCE to it being poorly suited for a ranking
task. During training it optimizes the model’s per-
formance in expectation, but at test-time it takes the
most probable sequence of actions. This mismatch
occurs even at the level of an individual decision:
the model only links the current mention to a single
antecedent, but is trained to assign high probability
to all correct antecedents. We believe the benefit of
REINFORCE being guided by coreference evalu-
ation metrics is offset by this disadvantage, which
does not occur in the max-margin approaches. The
reward-rescaled max-margin loss combines the best
of both worlds, resulting in superior performance.

4.2 The Benefits of Reinforcement Learning

In this section we examine the reward-based cost
function ∆r and perform error analysis to determine
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Figure 1: Density plot of the costs ∆r associated with differ-
ent error types on the English CoNLL 2012 test set.

how reward rescaling improves the mention-ranking
model’s accuracy.

Comparison with Heuristic Costs. We compare
the reward-based cost function ∆r with the error
types used in the heuristic loss. For English, the
average value of ∆r is 0.79 for FN errors and 0.38
for FA errors when the costs are scaled so the aver-
age value of a WL error is 1.0. These are very close
to the hyperparameter values (αFN, αFA, αWL) =
(0.8, 0.4, 1.0) found by grid search. However, there
is a high variance in costs for each error type, sug-
gesting that using a fixed penalty for each type as in
the heuristic loss is insufficient (see Figure 1).

Avoiding Costly Mistakes. Embedding the costs
of actions into the loss function causes the reward-
rescaling model to prioritize getting the more im-
portant coreference decisions (i.e., the ones with the
biggest impact on the final score) correct. As a

2259



Class of Mentions Average Cost ∆r # Heuristic Loss Errors # Reward Rescaling Errors

FN FA WL FN FA WL FN FA WL

Proper nouns 0.90 0.38 1.02 403 597 221 334 660 233
Pronouns in phone conversations 0.86 0.39 1.21 82 85 81 90 78 67

Table 3: Examples of classes of mention on which the reward-rescaling loss significantly improves upon the heuristic loss due to
its reward-based cost function. Reported numbers are from the English CoNLL 2012 test set.

Model FN FA WL

Heuristic Loss 1719 1956 1258
Reward Rescaling 1725 1994 1247

Table 2: Number of “false new,” “false anaphoric,” and
“wrong link” errors produced by the models on the English
CoNLL 2012 test set.

result, it makes fewer costly mistakes at test time.
Costly mistakes often involve large clusters of men-
tions: incorrectly combining two coreference clus-
ters of size ten is much worse than incorrectly com-
bining two clusters of size one. However, the cost
of an action also depends on other factors like the
number of errors already present in the clusters and
the utilities of the other available actions.

Table 2 shows the breakdown of errors made by
the heuristic and reward-rescaling models on the
test set. The reward-rescaling model makes slightly
more errors, meaning its improvement in perfor-
mance must come from its errors being less severe.

Example Improvements. Table 3 shows two
classes of mentions where the reward-rescaling loss
particularly improves over the heuristic loss.

Proper nouns have a higher average cost for “false
new” errors (0.90) than other mentions types (0.77).
This is perhaps because proper nouns are important
for connecting clusters of mentions far apart in a
document, so incorrectly linking a proper noun to
NA could result in a large decrease in recall. Be-
cause it more heavily weights these high-cost errors
during training, the reward-rescaling model makes
fewer “false new” errors for proper nouns than the
heuristic loss. Although there is an increase in other
kinds of errors as a result, most of these are low-cost
“false anaphoric” errors.

The pronouns in the “telephone conversation”
genre often group into extremely large coreference
clusters, which means a “wrong link” error can have
a very large negative effect on the score. This is re-
flected in its high average cost of 1.21. After prior-

itizing these examples during training, the reward-
rescaling model creates significantly fewer wrong
links than the heuristic loss, which is trained using a
fixed cost of 1.0 for all wrong links.

5 Related Work

Mention-ranking models have been widely used for
coreference resolution (Denis and Baldridge, 2007;
Rahman and Ng, 2009; Durrett and Klein, 2013).
These models are typically trained with heuristic
loss functions that assign costs to different error
types, as in the heuristic loss we describe in Sec-
tion 3.1 (Fernandes et al., 2012; Durrett et al., 2013;
Björkelund and Kuhn, 2014; Wiseman et al., 2015;
Martschat and Strube, 2015; Wiseman et al., 2016).

To the best of our knowledge reinforcement learn-
ing has not been applied to coreference resolution
before. However, imitation learning algorithms such
as SEARN (Daumé III et al., 2009) have been used
to train coreference resolvers (Daumé III, 2006; Ma
et al., 2014; Clark and Manning, 2015). These algo-
rithms also directly optimize for coreference eval-
uation metrics, but they require an expert policy to
learn from instead of relying on rewards alone.

6 Conclusion

We propose using reinforcement learning to directly
optimize mention-ranking models for coreference
evaluation metrics, obviating the need for hyperpa-
rameters that must be carefully selected for each
particular language, dataset, and evaluation metric.
Our reward-rescaling approach also increases the
model’s accuracy, resulting in significant gains over
the current state-of-the-art.
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and Ruy Luiz Milidiú. 2012. Latent structure percep-
tron with feature induction for unrestricted coreference
resolution. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Conference on Computational Natural Language
Learning - Shared Task, pages 41–48.

Aria Haghighi and Dan Klein. 2010. Coreference res-
olution in a modular, entity-centered model. In Hu-
man Language Technology and North American Asso-
ciation for Computational Linguistics (HLT-NAACL),
pages 385–393.

Geoffrey Hinton and Tijmen Tieleman. 2012. Lecture
6.5-RmsProp: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning, 4.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.

Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Empirical Methods in Natural
Language Processing (EMNLP), pages 25–32.

Chao Ma, Janardhan Rao Doppa, J Walker Orr, Prashanth
Mannem, Xiaoli Fern, Tom Dietterich, and Prasad
Tadepalli. 2014. Prune-and-score: Learning for
greedy coreference resolution. In Empirical Methods
in Natural Language Processing (EMNLP).

Sebastian Martschat and Michael Strube. 2015. Latent
structures for coreference resolution. Transactions of
the Association for Computational Linguistics (TACL),
3:405–418.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In International Conference on Machine Learning
(ICML), pages 807–814.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-2012
shared task: Modeling multilingual unrestricted coref-
erence in ontonotes. In Proceedings of the Joint Con-
ference on Empirical Methods in Natural Language
Processing and Conference on Computational Natural
Language Learning - Shared Task, pages 1–40.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 492–501.

Altaf Rahman and Vincent Ng. 2009. Supervised models
for coreference resolution. In Empirical Methods in
Natural Language Processing (EMNLP), pages 968–
977.

Richard S Sutton and Andrew G Barto. 1998. Reinforce-
ment learning: An introduction. MIT Press.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th conference on Message understanding,
pages 45–52.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Sam Wiseman, Alexander M Rush, Stuart M Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Association of Computational Linguistics (ACL),
pages 92–100.

Sam Wiseman, Alexander M Rush, Stuart M Shieber,
and Jason Weston. 2016. Learning global features

2261



for coreference resolution. In Human Language Tech-
nology and North American Association for Computa-
tional Linguistics (HLT-NAACL).

2262


