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Abstract

The production of color language is essential
for grounded language generation. Color de-
scriptions have many challenging properties:
they can be vague, compositionally complex,
and denotationally rich. We present an effec-
tive approach to generating color descriptions
using recurrent neural networks and a Fourier-
transformed color representation. Our model
outperforms previous work on a conditional
language modeling task over a large corpus
of naturalistic color descriptions. In addition,
probing the model’s output reveals that it can
accurately produce not only basic color terms
but also descriptors with non-convex denota-
tions (“greenish”), bare modifiers (“bright”,
“dull”), and compositional phrases (“faded
teal”) not seen in training.

1 Introduction

Color descriptions represent a microcosm of
grounded language semantics. Basic color terms
like “red” and “blue” provide a rich set of seman-
tic building blocks in a continuous meaning space;
in addition, people employ compositional color de-
scriptions to express meanings not covered by ba-
sic terms, such as “greenish blue” or “the color of
the rust on my aunt’s old Chevrolet” (Berlin and
Kay, 1991). The production of color language is
essential for referring expression generation (Krah-
mer and Van Deemter, 2012) and image captioning
(Kulkarni et al., 2011; Mitchell et al., 2012), among
other grounded language generation problems.

We consider color description generation as a
grounded language modeling problem. We present

Color Top-1 Sample

(83, 80, 28) “green” “very green”
(232, 43, 37) “blue” “royal indigo”
(63, 44, 60) “olive” “pale army green”
(39, 83, 52) “orange” “macaroni”

Table 1: A selection of color descriptions sampled from our
model that were not seen in training. Color triples are in HSL.
Top-1 shows the model’s highest-probability prediction.

an effective new model for this task that uses a long
short-term memory (LSTM) recurrent neural net-
work (Hochreiter and Schmidhuber, 1997; Graves,
2013) and a Fourier-basis color representation in-
spired by feature representations in computer vision.

We compare our model with LUX (McMahan and
Stone, 2015), a Bayesian generative model of color
semantics. Our model improves on their approach
in several respects, which we demonstrate by exam-
ining the meanings it assigns to various unusual de-
scriptions: (1) it can generate compositional color
descriptions not observed in training (Fig. 3); (2) it
learns correct denotations for underspecified modi-
fiers, which name a variety of colors (“dark”, “dull”;
Fig. 2); and (3) it can model non-convex denota-
tions, such as that of “greenish”, which includes
both greenish yellows and blues (Fig. 4). As a result,
our model also produces significant improvements
on several grounded language modeling metrics.

2 Model formulation

Formally, a model of color description generation is
a probability distribution S(d | c) over sequences of
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Figure 1: Left: sequence model architecture; right: atomic-
description baseline. FC denotes fully connected layers.

tokens d conditioned on a color c, where c is repre-
sented as a 3-dimensional real vector in HSV space.1

Architecture Our main model is a recurrent neu-
ral network sequence decoder (Fig. 1, left panel).
An input color c = (h, s, v) is mapped to a rep-
resentation f (see Color features, below). At each
time step, the model takes in a concatenation of f
and an embedding for the previous output token di,
starting with the start token d0 = <s>. This con-
catenated vector is passed through an LSTM layer,
using the formulation of Graves (2013). The out-
put of the LSTM at each step is passed through a
fully-connected layer, and a softmax nonlinearity is
applied to produce a probability distribution for the
following token.2 The probability of a sequence is
the product of probabilities of the output tokens up
to and including the end token </s>.

We also implemented a simple feed-forward neu-
ral network, to demonstrate the value gained by
modeling descriptions as sequences. This architec-
ture (atomic; Fig. 1, right panel) consists of two
fully-connected hidden layers, with a ReLU nonlin-
earity after the first and a softmax output over all
full color descriptions seen in training. This model
therefore treats the descriptions as atomic symbols
rather than sequences.

Color features We compare three representations:

• Raw: The original 3-dimensional color vectors,
in HSV space.

1HSV: hue-saturation-value. The visualizations and tables
in this paper instead use HSL (hue-saturation-lightness), which
yields somewhat more intuitive diagrams and differs from HSV
by a trivial reparameterization.

2Our implementation uses Lasagne (Dieleman et al., 2015),
a neural network library based on Theano (Al-Rfou et al., 2016).

• Buckets: A discretized representation, dividing
HSV space into rectangular regions at three res-
olutions (90×10×10, 45×5×5, 1×1×1) and
assigning a separate embedding to each region.

• Fourier: Transformation of HSV vectors into
a Fourier basis representation. Specifically, the
representation f of a color (h, s, v) is given by

f̂jk` = exp [−2πi (jh∗ + ks∗ + `v∗)]

f =
[
Re{f̂} Im{f̂}

]
j, k, ` = 0..2

where (h∗, s∗, v∗) = (h/360, s/200, v/200).

The Fourier representation is inspired by the use of
Fourier feature descriptors in computer vision appli-
cations (Zhang and Lu, 2002). It is a nonlinear trans-
formation that maps the 3-dimensional HSV space
to a 54-dimensional vector space. This representa-
tion has the property that most regions of color space
denoted by some description are extreme along a
single direction in Fourier space, thus largely avoid-
ing the need for the model to learn non-monotonic
functions of the color representation.

Training We train using Adagrad (Duchi et al.,
2011) with initial learning rate η = 0.1, hidden layer
size and cell size 20, and dropout (Hinton et al.,
2012) with a rate of 0.2 on the output of the LSTM
and each fully-connected layer. We identified these
hyperparameters with random search, evaluating on
a held-out subset of the training data.

We use random normally-distributed initialization
for embeddings (σ = 0.01) and LSTM weights (σ =
0.1), except for forget gates, which are initialized to
a constant value of 5. Dense weights use normalized
uniform initialization (Glorot and Bengio, 2010).

3 Experiments

We demonstrate the effectiveness of our model us-
ing the same data and statistical modeling metrics as
McMahan and Stone (2015).

Data The dataset used to train and evaluate our
model consists of pairs of colors and descriptions
collected in an open online survey (Munroe, 2010).
Participants were shown a square of color and asked
to write a free-form description of the color in
a text box. McMahan and Stone filtered the re-
sponses to normalize spelling differences and ex-
clude spam responses and descriptions that occurred
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Model Feats. Perp. AIC Acc.

atomic raw 28.31 1.08×106 28.75%
atomic buckets 16.01 1.31×106 38.59%
atomic Fourier 15.05 8.86×105 38.97%
RNN raw 13.27 8.40×105 40.11%
RNN buckets 13.03 1.26×106 39.94%
RNN Fourier 12.35 8.33×105 40.40%

HM buckets 14.41 4.82×106 39.40%
LUX raw 13.61 4.13×106 39.55%
RNN Fourier 12.58 4.03×106 40.22%

Table 2: Experimental results. Top: development set; bottom:
test set. AIC is not comparable between the two splits. HM and
LUX are from McMahan and Stone (2015). We reimplemented
HM and re-ran LUX from publicly available code, confirming
all results to the reported precision except perplexity of LUX,
for which we obtained a figure of 13.72.

very rarely. The resulting dataset contains 2,176,417
pairs divided into training (1,523,108), development
(108,545), and test (544,764) sets.

Metrics We quantify model effectiveness with the
following evaluation metrics:

• Perplexity: The geometric mean of the recip-
rocal probability assigned by the model to the
descriptions in the dataset, conditioned on the
respective colors. This expresses the same ob-
jective as log conditional likelihood. We follow
McMahan and Stone (2015) in reporting per-
plexity per-description, not per-token as in the
language modeling literature.

• AIC: The Akaike information criterion
(Akaike, 1974) is given by AIC = 2` + 2k,
where ` is log likelihood and k is the total
number of real-valued parameters of the model
(e.g., weights and biases, or bucket proba-
bilities). This quantifies a tradeoff between
accurate modeling and model complexity.

• Accuracy: The percentage of most-likely de-
scriptions predicted by the model that exactly
match the description in the dataset (recall@1).

Results The top section of Table 2 shows devel-
opment set results comparing modeling effective-
ness for atomic and sequence model architectures

and different features. The Fourier feature transfor-
mation generally improves on raw HSV vectors and
discretized embeddings. The value of modeling de-
scriptions as sequences can also be observed in these
results; the LSTM models consistently outperform
their atomic counterparts.

Additional development set experiments (not
shown in Table 2) confirmed smaller design choices
for the recurrent architecture. We evaluated a model
with two LSTM layers, but we found that the model
with only one layer yielded better perplexity. We
also compared the LSTM with GRU and vanilla re-
current cells; we saw no significant difference be-
tween LSTM and GRU, while using a vanilla recur-
rent unit resulted in unstable training. Also note that
the color representation f is input to the model at ev-
ery time step in decoding. In our experiments, this
yielded a small but significant improvement in per-
plexity versus using the color representation as the
initial state.

Test set results appear in the bottom section. Our
best model outperforms both the histogram baseline
(HM) and the improved LUX model of McMahan
and Stone (2015), obtaining state-of-the-art results
on this task. Improvements are highly significant
on all metrics (p < 0.001, approximate permutation
test, R = 10,000 samples; Padó, 2006).

4 Analysis

Given the general success of LSTM-based mod-
els at generation tasks, it is perhaps not surprising
that they yield good raw performance when applied
to color description. The color domain, however,
has the advantage of admitting faithful visualiza-
tion of descriptions’ semantics: colors exist in a 3-
dimensional space, so a two-dimensional visualiza-
tion can show an acceptably complete picture of an
entire distribution over the space. We exploit this
to highlight three specific improvements our model
realizes over previous ones.

We construct visualizations by querying the
model for the probability S(d | c) of the same de-
scription for each color in a uniform grid, summing
the probabilities over the hue dimension (left cross-
section) and the saturation dimension (right cross-
section), normalizing them to sum to 1, and plotting
the log of the resulting values as a grayscale image.
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Figure 2: Conditional likelihood of bare modifiers according to
our generation model as a function of color. White represents
regions of high likelihood. We omit the hue dimension, as these
modifiers do not express hue constraints.

Formally, each visualization is a pair of functions
(L,R), where

L(s, `) = log

[∫
dh S(d | c = (h, s, `))∫

dc′ S(d | c′)

]

R(h, `) = log

[∫
ds S(d | c = (h, s, `))∫

dc′ S(d | c′)

]

The maximum value of each function is plotted as
white, the minimum value is black, and intermediate
values linearly interpolated.

Learning modifiers Our model learns accurate
meanings of adjectival modifiers apart from the full
descriptions that contain them. We examine this in
Fig. 2, by plotting the probabilities assigned to the
bare modifiers “light”, “bright”, “dark”, and “dull”.
“Light” and “dark” unsurprisingly denote high and
low lightness, respectively. Less obviously, they
also exclude high-saturation colors. “Bright”, on the
other hand, features both high-lightness colors and
saturated colors—“bright yellow” can refer to the
prototypical yellow, whereas “light yellow” cannot.
Finally, “dull” denotes unsaturated colors in a vari-
ety of lightnesses.

Compositionality Our model generalizes to com-
positional descriptions not found in the training set.
Fig. 3 visualizes the probability assigned to the
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Figure 3: Conditional likelihood of “faded”, “teal”, and “faded
teal”. The two meaning components can be seen in the two
cross-sections: “faded” denotes a low saturation value, and
“teal” denotes hues near the center of the spectrum.
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Figure 4: Conditional likelihood of “greenish” as a function of
color. The distribution is bimodal, including greenish yellows
and blues but not true greens. Top: LUX; bottom: our model.

novel utterance “faded teal”, along with “faded” and
“teal” individually. The meaning of “faded teal” is
intersective: “faded” colors are lower in saturation,
excluding the colors of the rainbow (the V on the
right side of the left panel); and “teal” denotes col-
ors with a hue near 180° (center of the right panel).

Non-convex denotations The Fourier feature
transformation and the nonlinearities in the model
allow it to capture a rich set of denotations. In partic-
ular, our model addresses the shortcoming identified
by McMahan and Stone (2015) that their model can-
not capture non-convex denotations. The description
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Color Top-1 Sample

(36, 86, 63) “orange” “ugly”
(177, 85, 26) “teal” “robin’s”
(29, 45, 71) “tan” “reddish green”
(196, 27, 71) “grey” “baby royal”

Table 3: Error analysis: some color descriptions sampled from
our model that are incorrect or incomplete.

“greenish” (Fig. 4) has such a denotation: “green-
ish” specifies a region of color space surrounding,
but not including, true greens.

Error analysis Table 3 shows some examples of
errors found in samples taken from the model. The
main type of error the system makes is ungrammati-
cal descriptions, particularly fragments lacking a ba-
sic color term (e.g., “robin’s”). Rarer are grammati-
cal but meaningless compositions (“reddish green”)
and false descriptions. When queried for its single
most likely prediction, argmaxd S(d | c), the result
is nearly always an acceptable, “safe” description—
manual inspection of 200 such top-1 predictions did
not identify any errors.

5 Conclusion and future work

We presented a model for generating composi-
tional color descriptions that is capable of produc-
ing novel descriptions not seen in training and sig-
nificantly outperforms prior work at conditional lan-
guage modeling.3 One natural extension is the
use of character-level sequence modeling to capture
complex morphology (e.g., “-ish” in “greenish”).
Kawakami et al. (2016) build character-level mod-
els for predicting colors given descriptions in addi-
tion to describing colors. Their model uses a Lab-
space color representation and uses the color to ini-
tialize the LSTM instead of feeding it in at each time
step; they also focus on visualizing point predictions
of their description-to-color model, whereas we ex-
amine the full distributions implied by our color-to-
description model.

Another extension we plan to investigate is mod-
eling of context, to capture how people describe col-
ors differently to contrast them with other colors via

3We release our code at https://github.com/
stanfordnlp/color-describer.

pragmatic reasoning (DeVault and Stone, 2007; Gol-
land et al., 2010; Monroe and Potts, 2015).
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