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Abstract

We compare the effectiveness of four differ-
ent syntactic CCG parsers for a semantic slot-
filling task to explore how much syntactic su-
pervision is required for downstream seman-
tic analysis. This extrinsic, task-based evalua-
tion also provides a unique window into the se-
mantics captured (or missed) by unsupervised
grammar induction systems.

1 Introduction

The past several years have seen significant progress
in unsupervised grammar induction (Carroll and
Charniak, 1992; Yuret, 1998; Klein and Manning,
2004; Spitkovsky et al., 2010; Garrette et al., 2015;
Bisk and Hockenmaier, 2015). But how useful are
unsupervised syntactic parsers for downstream NLP
tasks? What phenomena are they able to capture,
and where would additional annotation be required?
Instead of standard intrinsic evaluations – attachment
scores that depend strongly on the particular anno-
tation styles of the gold treebank – we examine the
utility of unsupervised and weakly supervised parsers
for semantics. We perform an extrinsic evaluation of
unsupervised and weakly supervised CCG parsers on
a grounded semantic parsing task that will shed light
on the extent to which these systems recover seman-
tic information. We focus on English to perform a
direct comparison with supervised parsers (although
unsupervised or weakly supervised approaches are
likely to be most beneficial for domains or languages
where supervised parsers are not available).

∗Equal contribution

Specifically, we evaluate different parsing scenar-
ios with varying amounts of supervision. These are
designed to shed light on the question of how well
syntactic knowledge correlates with performance on
a semantic evaluation. We evaluate the following sce-
narios (all of which assume POS-tagged input): 1) no
supervision; 2) a lexicon containing words mapped
to CCG categories; 3) a lexicon containing POS tags
mapped to CCG categories; 4) sentences annotated
with CCG derivations (i.e., fully supervised). Our
evaluation reveals which constructions are problem-
atic for unsupervised parsers (and annotation efforts
should focus on). Our results indicate that unsuper-
vised syntax is useful for semantics, while a simple
semi-supervised parser outperforms a fully unsuper-
vised approach, and could hence be a viable option
for low resource languages.

2 CCG Intrinsic Evaluations

CCG (Steedman, 2000) is a lexicalized formalism in
which words are assigned syntactic types, also known
as supertags, encoding subcategorization informa-
tion. Consider the sentence Google acquired Nest
in 2014, and its CCG derivations shown in Figure 1.
In (a) and (b), the supertag of acquired, (S\NP)/NP,
indicates that it has two arguments, and the preposi-
tional phrase in 2014 is an adjunct, whereas in (c) the
supertag ((S\NP)/PP)/NP indicates acquired has
three arguments including the prepositional phrase.
In (a) and (b), depending on the supertag of in, the
derivation differs. When trained on labeled treebanks,
(a) is preferred. However note that all these deriva-
tions could lead to the same semantics (e.g., to the
logical form in Equation 1). Without syntactic su-
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Google acquired Nest in 2014

NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

(a) in 2014 modifies acquired Nest

Google acquired Nest in 2014

NP (S\NP)/NP NP (S\S)/NP NP
> >

S\NP S\S
<

S
<

S

(b) in 2014 modifies Google acquired Nest

Google acquired Nest in 2014

NP ((S\NP)/PP)/NP NP PP/NP NP
> >

(S\NP)/PP PP
>

S\NP
<

S

(c) acquired Google takes the argument in 2014

Figure 1: Example of multiple valid derivations that can be grounded to the same Freebase logical form (Eq.
1) even though they differ dramatically in performance under parsing metrics (5, 4, or 3 “correct” supertags).

pervision, there may not be any reason for the parser
to prefer one analysis over the other. One proce-
dure to evaluate unsupervised induction methods has
been to compare the assigned supertags to treebanked
supertags, but this evaluation does not consider that
multiple derivations could lead to the same semantics.
This problem is also not solved by evaluating syntac-
tic dependencies. Moreover, while many dependency
standards agree on the head direction of simple con-
stituents (e.g., noun phrases) they disagree on the
most semantically useful ones (e.g., coordination and
relative clauses).1

3 Our Proposed Evaluation

The above syntax-based evaluation metrics conceal
the real performance differences and their effect on
downstream tasks. Here we propose an extrinsic
evaluation where we evaluate our ability to convert
sentences to Freebase logical forms starting via CCG
derivations. Our motivation is that most sentences
can only have a single realization in Freebase, and
any derivation that could lead to this realization is
potentially a correct derivation. For example, the
Freebase logical form for the example sentence in
Figure 1 is shown below, and none of its derivations
are penalized if they could result in this logical form.

λe. business.acquisition(e)

∧ acquiring company(e,GOOGLE)

∧ company acquired(e,NEST)

∧ date(e, 2014)

(1)

Since grammar induction systems are traditionally
trained on declarative sentences, we would ideally
require declarative sentences paired with Freebase
logical forms. But such datasets do not exist in the
Freebase semantic parsing literature (Cai and Yates,
2013; Berant et al., 2013). To alleviate this prob-

1Please see Bisk and Hockenmaier (2013) for more details.

lem, and yet perform Freebase semantic parsing, we
propose an entity slot-filling task.

Entity Slot-Filling Task. Given a declarative sen-
tence containing mentions of Freebase entities, we
randomly remove one of the mentions to create a
blank slot. The task is to fill this slot by translating
the declarative sentence into a Freebase query. Con-
sider the following sentence where the entity Nest
has been removed:
Google acquired which was founded in Palo Alto

To correctly fill in the blank, one has to query Free-
base for the entities acquired by Google (constraint 1)
and founded in Palo Alto (constraint 2). If either of
those constraints are not applied, there will be many
entities as answers. For each question, we execute a
single Freebase query containing all the constraints
and retrieve a list of answer entities. From this list,
we pick the first entity as our predicted answer, and
consider the prediction as correct if the gold answer
is the same as the predicted answer.

4 Sentences to Freebase Logical Forms

CCG provides a clean interface between syntax
and semantics, i.e. each argument of a words syn-
tactic category corresponds to an argument of the
lambda expression that defines its semantic interpre-
tation (e.g., the lambda expression corresponding
to the category (S\NP)/NP of the verb acquired
is λf.λg.λe.∃x.∃y.acquired(e) ∧ f(x) ∧ g(y) ∧
arg1(e, y)∧arg2(e, x)), and the logical form for the
complete sentence can be constructed by composing
word level lambda expressions following the syntac-
tic derivation (Bos et al., 2004). In Figure 2 we show
two syntactic derivations for the same sentence, and
the corresponding logical forms and equivalent graph
representations derived by GRAPHPARSER (Reddy
et al., 2014). The graph representations are possi-
ble because GRAPHPARSER assumes access to co-
indexations of input CCG categories. We provide
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Google acquired 〈blank〉 which was founded inPA

NP (S\NP)/NP NP (NP\NP)/(S\NP) S\NP
>

NP\NP
<

NP
>

S\NP
<

S

e2 Palo Alto

target x e1 Google
acquired.

arg2
acquired.
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in.arg2

target(x)

^ founded.in.arg1(e2, x) ^ founded.in.arg2(e2, Palo Alto)

^ acquired.arg1(e1, Google) ^ acquired.arg2(e1, x)

λe1.∃xe2. TARGET(x) ∧ acquired(e1) ∧ arg1(e1,Google) ∧ arg2(e1, x) ∧ founded(e2) ∧ arg2(e2, x) ∧ in(e2,PaloAlto)

Google acquired 〈blank〉 which was founded inPA
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> >

S\NP (S\NP)\S\NP
<

S\NP
<

S

Palo Alto e2

target x e1 Google
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in.arg2

λe1.∃xe2. TARGET(x) ∧ acquired(e1) ∧ arg1(e1,Google) ∧ arg2(e1, x) ∧ founded(e2) ∧ arg2(e2,Google) ∧ in(e2,PaloAlto)

Figure 2: The lexical categories for which determine the relative clause attachment and therefore the resulting
ungrounded logical form. The top derivation correctly executes a query to retrieve companies founded in
Palo Alto and acquired by Google. The bottom incorrectly asserts that Google was founded in Palo Alto.

co-indexation for all induced categories, including
multiple co-indexations when an induced category
is ambiguous. For example, (S\N)/(S\N) refers to
either (Sx\Ny)/(Sx\Ny) indicating an auxiliary verb
or (Sx\Ny)/(Sz\Ny) indicating a control verb. Ini-
tially, the predicates in the expression/graph will be
based entirely on the surface form of the words in
the sentence. This is the “ungrounded” semantic
representation.

Our next step is to convert these ungrounded
graphs to Freebase graphs.2 Like Reddy et al. (2014),
we treat this problem as a graph matching problem.
Using GRAPHPARSER we retrieve all the Freebase
graphs that are isomorphic to the ungrounded graph,
and select only the graphs that could correctly pre-
dict the blank slot, as candidate graphs. Using these
candidate graphs, we train a structured perceptron
that learns to rank grounded graphs for a given un-
grounded graph.3 We use ungrounded predicate and
Freebase predicate alignments as our features.

5 Experiments

5.1 Training and Evaluation Datasets

Our dataset SPADES (Semantic PArsing of
DEclarative Sentences) is constructed from the
declarative sentences collected by Reddy et al. (2014)
from CLUEWEB09 (Gabrilovich et al., 2013) based
on the following constraints: 1) There exists at least

2Note that there is one-to-one correspondence between Free-
base graphs and Freebase logical forms.

3Please see Section 4.3 of Reddy et al. (2016) for details.

Sentences Tokens Types Entities

Train 79,247 685,922 69,095 37,606
Dev 4,763 41,102 9,306 4,358
Test 9,309 80,437 15,180 7,431

Table 1: SPADES Corpus Statistics

one isomorphic Freebase graph to the ungrounded
representation of the input sentence; 2) There are no
variable nodes in the ungrounded graph (e.g., Google
acquired a company is discarded whereas Google
acquired the company Nest is selected). We split this
data into training (85%), development (5%) and test-
ing (10%) sentences (Table 1). We introduce empty
slots into these sentences by randomly removing an
entity. SPADES can be downloaded at http://
github.com/sivareddyg/graph-parser.

There has been other recent interest in similar
datasets for sentence completion (Zweig et al., 2012)
and machine reading (Hermann et al., 2015), but un-
like other corpora our data is tied directly to Freebase
and requires the execution of a semantic parse to cor-
rectly predict the missing entity. This is made more
explicit by the fact that one third of the entities in
our test set are never seen during training, so without
a general approach to query creation and execution
there is a limit on a system’s performance.

5.2 Our Models

We use different CCG parsers varying in the amounts
of supervision. For the UNSUPERVISED scenario,
we use Bisk and Hockenmaier (2015)’s parser which
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CCGbank (Syntax) Slot Filling (Semantics)
LF1 UF1 2 3 4 Overall

Sentences ∼6K ∼3K ∼600 ∼10K

Bag-of-Words – – 50.8 36.8 20.9 45.2

Sy
nt

ax
UNSUPERVISED 37.1 64.2 41.6 30.4 24.5 37.3
SEMI-SUPERVISED-POS 53.0 68.5 45.9 33.7 29.1 41.4
SEMI-SUPERVISED-WORD 53.5 68.9 46.8 38.2 28.3 43.2
SUPERVISED 84.2 91.0 49.3 42.0 30.9 46.1

Table 2: Syntactic and semantic evaluation of the parsing models. Left: Simplified labeled F1 and undirected
unlabeled F1 on CCGbank, Section 23. Right: Slot filling performance (by number of entities per sentence).

exploits a small set of universal rules to automatically
induce and weight a large set of lexical categories.
For the semi-supervised, we explore two options –
SEMI-SUPERVISED-WORD and SEMI-SUPERVISED-
POS. We use Bisk et al. in both settings but we con-
strain its lexicon manually rather than inducing it
from scratch. In the former, we restrict the top 200
words in English to occur only with the CCG cat-
egories that comprise 95% of the occurrences of a
word’s use in Section 22 of WSJ/CCGbank. In the
latter, we restrict the POS tags instead of words. For
the SUPERVISED scenario, we use EasyCCG (Lewis
and Steedman, 2014) trained on CCGbank.

Finally, in order to further demonstrate the amount
of useful information being learned by our parsers,
we present a competitive Bag-of-Words baseline,
which is a perceptron classifier that performs “se-
mantic parsing” by predicting either a Freebase or a
null relation between the empty slot and every other
entity in the sentence, using the words in the sentence
as features. This naive approach is competitive on
simple sentences with only two entities, rivaling even
the fully supervised parser, but falters as complexity
increases.

5.3 Results and Discussion
Our primary focus is a comparison of intrinsic syn-
tactic evaluation with our extrinsic semantic evalu-
ation. To highlight the differences we present Sec-
tion 23 parsing performance for our four models (Ta-
ble 2). Dependency performance is evaluated on both
the simplified labeled F1 of Bisk and Hockenmaier
(2015) and Undirected Unlabeled F1.

Despite the supervised parser performing almost
twice as well as the semi-supervised parsers on CCG-
bank LF1 (53 vs 84), in our semantic evaluation we

see a comparatively small gain in performance (43
vs 46). It is interesting that such weakly supervised
models are able to achieve over 90% of the perfor-
mance of a fully supervised parser. To explore this
further, we break down the semantics performance
of all our models by the number of entities in a sen-
tence. Each sentence has two, three, or four entities,
one of which will be dropped for prediction. The
more entities there are in a sentence, the more likely
the models are to misanalyze a relation leading to
their making the wrong prediction. These results are
presented on the right side of Table 2. There are
still notable discrepancies in performance, which we
analyze more closely in the next section.

Another interesting result is the drop in perfor-
mance by the Bag-of-Words Model. As the number
of entities in the sentence increase, the model weak-
ens, performing worse than the unsupervised parser
on sentences with four entities. It becomes non-trivial
for it to isolate which entities and relations should
be used for prediction. This seems to indicate that
the unsupervised grammar is capturing more useful
syntactic/semantic information than what is available
from the words alone. Ensemble systems that incor-
porate syntax and a Bag-of-Words baseline may yield
even better performance.

5.4 The Benefits of Annotation
The performance of SEMI-SUPERVISED-POS and
SEMI-SUPERVISED-WORD suggests that when re-
sources are scarce, it is beneficial to create a even a
small lexicon of CCG categories. We analyze this
further in Figure 3. Here we show how performance
changes as a function of the number of labeled lexical
types. Our values range from 0 to 1000 lexical types.
We see syntactic improvements of 16pts and seman-
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Table 1

Annotated Words Syntax Semantics

0 37.1 37.3

100 48.49 40.9

200 53.5 43.2

500 53.36 42.4

1000 49.87 42.4

F1

15

30

45

60

# of Annotated Lexical Types
0 100 200 500 1000

Syntax
Semantics

�1

Figure 3: When our word based lexicon grows past 200
lexical types the semantic performance plateaus and the
syntax begins to degrade. This is presumably due to the
use of rare categories coupled with domain differences.

tic gains of 6pts with 200 words, before performance
degrades. It is possible that increasing annotation
may only benefit fully supervised models. Finally,
when computing the most frequent lexical types we
excluded commas. We found a 3pt performance drop
when restricting commas to the category , (they are
commonly conj in our data). Additional in-domain
knowledge might further improve performance.

5.5 Common Errors

Bisk and Hockenmaier (2015) performed an in-depth
analysis of the types of categories learned and cor-
rectly used by their models (the same models as this
paper). Their analysis was based on syntactic eval-
uation against CCGbank. In particular, they found
the most egregious “semantic” errors to be the mis-
use of verb chains, possessives and PP attachment
(bottom of Table 3). Since we now have access to
a purely semantic evaluation, we can therefore ask
whether these errors exist here, and how common
they are. We do this analysis in two steps. First,
we manually analyzed parses for which the unsuper-
vised model failed to predict the correct semantics,
but where the supervised parser succeeded. The top
of Table 3 presents several of the most common rea-
sons for failure. These mistakes were more mundane
(e.g. incorrect use of a conjunction) than failures to
use complex CCG categories or analyze attachments.

Second, we can compare grammatical decisions
made by the semi-supervised and unsupervised
parsers against EasyCCG on sentences they suc-
cessfully grounded. Bisk and Hockenmaier (2015)
found that their unsupervised parser made mistakes
on many very simple categories. We found the same

Error Example

Pr
ev

al
en

t Incorrect conjunction Stockholm, Sweden
Appositive , a chemist ,
Introductory clauses In Frankfurt, ...
Reduced relatives ... , established in 1909, ...

B
&

H
15 Verb chains is also headquartered

Possessive Anderson ’s Foundation
PP Attachment of the foundation in Vancouver

Table 3: Causes of semantic grounding errors with exam-
ples not previously isolated via intrinsic evaluation.

result. When evaluating our parsers against the tree-
bank we found the unsupervised model only correctly
predicted transitive verbs 20% of the time and ad-
verbs 39% of the time. In contrast, on our data, we
produced the correct transitive category (according
to EasyCCG) 65% of the time, and the correct adverb
68% of the time. These correct parsing decisions also
lead to improved performance across many other cat-
egories (e.g. prepositions). This is likely due to our
corpus containing simpler constructions. In contrast,
auxiliary verbs, relative clauses, and commas still
proved difficult or harder than in the treebank. This
implies that future work should tailor the annotation
effort to their specific domain rather than relying on
guidance solely from the treebank.

6 Conclusion

Our goal in this paper was to present the first seman-
tic evaluation of induced grammars in order to better
understand their utility and strengths. We showed
that induced grammars are learning more semanti-
cally useful structure than a Bag-of-Words model.
Furthermore, we showed how minimal syntactic su-
pervision can provide substantial gains in semantic
evaluation. Our ongoing work explores creating a
syntax-semantics loop where each benefits the other
with no human (annotation) in the loop.
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Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational Lin-
guistics, 4:127–140.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2010. From Baby Steps to Leapfrog: How “Less
is More” in Unsupervised Dependency Parsing. In Hu-
man Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, pages 751–759, Los
Angeles, California, June.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, September.

Deniz Yuret. 1998. Discovery of Linguistic Relations
Using Lexical Attraction. Ph.D. thesis, Massachusetts
Institute of Technology.

Geoffrey Zweig, John C. Platt, Christopher Meek, Christo-
pher J.C. Burges, Ainur Yessenalina, and Qiang Liu.
2012. Computational approaches to sentence comple-
tion. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 601–610, Jeju Island, Korea, July.

2027


