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Abstract

The brain is the locus of our language abil-
ity, and so brain images can be used to ground
linguistic theories. Here we introduce Brain-
Bench, a lightweight system for testing dis-
tributional models of word semantics. We
compare the performance of several models,
and show that the performance on brain-image
tasks differs from the performance on behav-
ioral tasks. We release our benchmark test as
part of a web service.

1 Introduction

There is active debate over how we should test se-
mantic models. In fact, in 2016 there was an en-
tire workshop dedicated to the testing of semantic
representations (RepEval, 2016). Several before us
have argued for the usage of brain data to test se-
mantic models (Anderson et al., 2013; Murphy et al.,
2012; Anderson et al., 2015), as a brain image repre-
sents a snapshot of one person’s own semantic rep-
resentation. Still, testing semantic models against
brain imaging data is rarely done by those not in-
timately involved in psycholinguistics or neurolin-
guistics. This may be due to a lack of familiarity
with neuroimaging methods and publicly available
datasets.

We present the first iteration of BrainBench,
a new system that makes it easy to test seman-
tic models using brain imaging data (Available
at http://www.langlearnlab.cs.uvic.
ca/brainbench/). Our system has methodology
that is similar to popular tests based on behavioral
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data (see Section 2.2), and has the additional benefit
of being fast enough to offer as a web service.

2 The Tasks

Here we outline the set of tasks we used to evaluate
several popular Distributional Semantic (DS) mod-
els.

2.1 Brain Image Data

For BrainBench we use two brain image datasets
collected while participants viewed 60 concrete
nouns with line drawings (Mitchell et al., 2008; Su-
dre et al., 2012). One dataset was collected us-
ing fMRI (Functional Magnetic Resonance Imag-
ing) and one with MEG (Magnetoencephalography).
Each dataset has 9 participants, but the participants
sets are disjoint, thus there are 18 unique partici-
pants in all. Though the stimuli is shared across the
two experiments, as we will see, MEG and fMRI are
very different recording modalities and thus the data
are not redundant.

fMRI measures the change in blood oxygen levels
in the brain, which varies according to the amount
of work being done by a particular brain area. An
fMRI image is a 3D volume of the brain where each
point in the volume (called a voxel) represents brain
activity at a particular place in the brain. In the fMRI
dataset used here, each voxel represents a 3mm x
3mm x 5mm area of the brain. Each of the 60 words
was presented 6 times in random order, for a total of
360 brain images. The number of voxels depends on
the size and shape of a person’s brain, but there are
around 20,000 voxels per participant in this dataset.

MEG measures the magnetic field caused by
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many neurons firing in the same direction at the
same time. This signal is very weak, and so must
be measured in a magnetically shielded room. The
MEG machine is essentially a large helmet with 306
sensors that measure aspects of the magnetic fields
at different locations in the brain. A MEG brain im-
age is the time signals recorded from each of these
sensors. Here, the sampling rate is 200 Hz. For each
word, the MEG recording is 800ms long resulting in
306 × 160 data points. Each of the words was pre-
sented 20 times (in random order) for a total of 1200
brain images. For simplicity we will use the term
“brain image feature” to refer to both fMRI voxels
and MEG sensor/time points.

A non-trivial portion of our participants’ brain ac-
tivity may be driven by the low-level visual proper-
ties of the word/line-drawing stimulus, rather than
by semantics. As there is a possibility of confound-
ing visual properties with semantic properties, we
have attempted to remove the activity attributable to
visual properties from the brain images. In total we
have 11 visual features which include things like the
length of the word, the number of white pixels, and
features of the line drawing (Sudre et al., 2012). To
remove the visual stimulus’ contribution to the sig-
nal, we train a regression model that predicts the sig-
nal in each brain image feature as a function of the
11 visual features. We then subtract the predicted
value from the observed value of the brain image
feature. This process is known as “partialling out”
an effect. Thus, the signal that remains in the brain
image will not be correlated with the visual stimuli,
and should only be related to the semantics of the
word itself (or noise).

Brain images are quite noisy, so we used the
methodology from Mitchell et al. (2008) to select
the most stable brain image features for each of the
18 participants. The stability metric assigns a high
score to features that show strong self-correlation
over presentations of the same word. We noticed
that tuning the number of features to keep made lit-
tle or no difference in the absolute ordering of the
different DS models. Thus, we use the optimal num-
ber of features averaged over all 6 DS models de-
scribed in Section 3: the top 13% of MEG sen-
sor/time points, and 3% of fMRI voxels. Finally,
we average all brain images corresponding to repe-
titions of the same word.

2.2 Behavioral Tasks

We include, for comparison, four popular word vec-
tor evaluation benchmarks.

MEN This dataset contains 3,000 word pairs, such
that each word appears frequently in two separate
corpora. Human participants were presented with
two word pairs and asked to choose the word pair
that was more related, resulting in a ranking of re-
latedness amongst word pairs (Bruni and Baroni,
2013).

SimLex-999 A word pairing task meant to specifi-
cally target similarity rather than the more broad “re-
latedness” (Hill et al., 2015).

WS-353-[SIM|REL] A set of 353 word pairs with
relatedness ratings (Finkelstein et al., 2002). This
dataset was subsequently split into sets where the
pairs denote similarity and relatedness, named WS-
353-SIM and WS-353-REL, respectively (Agirre et
al., 2009).

3 Distributional Models

We test six semantic models against both the fMRI
and behavioral datasets. The six models are:

Skip-gram: A neural network trained to predict
the words before and after the current word, given
the current word. We selected a model with 300
dimensions trained on the Google news corpus
(Mikolov et al., 2013).

Glove: A regression-based model that combines
global context information (term-document cooc-
currence) with local information (small windows of
word-word cooccurrence) (Pennington et al., 2014).
This 300-dimensional model was trained on the
Wikipedia and Gigaword 5 corpora combined.

RNN: A recurrent neural network with 640-
dimensional hidden vectors. These models are
trained to predict the next word in a sequence
and have the ability to encode (theoretically) in-
finitely distant contextual information (Mikolov et
al., 2011). The model was trained on broadcast news
transcriptions.

Global: A neural network model that incorporates
global and local information, like that of the Glove
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model (Huang et al., 2012). This model is our
smallest, with dimension 50, and was trained on
Wikipedia.

Cross-lingual: A tool that projects distributional
representations from multiple language into a shared
representational space (Faruqui and Dyer, 2014).
Here we use the German-English model (512 dimen-
sions), trained on the WMT-2011 corpus.

Non-distributional: This model is based solely
on hand-crafted linguistic resources (Faruqui and
Dyer, 2015). Several resources like WordNet (Fell-
baum, 1998) and FrameNet (Baker et al., 1998) are
combined to make very sparse word vector repre-
sentations. Due to their sparsity, these vectors are of
very high dimension (171, 839). This is a particu-
larly interesting model because it is not built from a
corpus (unlike every other model in this list).

Note that we are not aiming to compare the good-
ness of any of these distributional models, as they
are trained on different corpora with different algo-
rithms. Instead, we wish to compare the patterns of
performance on behavioral benchmarks to that of a
brain-image based task.

4 Methodology

Each of the behavioral tasks included here assigns a
similarity score to word pairs. For each DS model
we calculate the correlation between the vectors for
every pair of words in the behavioral datasets. We
then calculate the correlation between the DS vector
correlations and the behavioral scores.

We follow a very similar methodology for the
brain image datasets. Let us represent each DS
model with a matrix X ∈ Rw×p where w is the num-
ber of words for which we have brain images (here
w = 60), and p is the number of dimensions in a
particular DS model. From X we calculate the cor-
relation between each pair of word vectors, resulting
in a matrix CDS ∈ Rw×w.

Let us represent each participant’s brain images
with a matrix Y ∈ Rw×v where v is the number of
selected brain image features. From this matrix we
calculate the correlation between each pair of brain
images, resulting in a matrix CBI ∈ Rw×w (BI for
brain image). This final representation is similar to
the behavioral tasks above, but now we have a simi-

larity measure for every pair of words in our dataset.
Here is where the evaluation for brain imaging

tasks differs from the behavioral tasks. Instead of
measuring the correlation between CBI and CDS ,
as is done in Representational Similarity Analysis
(RSA) (Kriegeskorte et al., 2008), we use the test-
ing methodology from Mitchell et al. (2008), which
we will refer to as the 2 vs. 2 test. The 2 vs. 2 test
was developed to help detect statistically significant
predictions on brain imaging data, and, compared to
RSA, can better differentiate the performance of a
model from chance. We perform a 2 vs. 2 test for all
pairs of CDS and CBI (that is, for every pair of DS
model and fMRI/MEG participant).

For each 2 vs. 2 test we select the same two words
(rows) w1, w2 from CDS and CBI . We omit the
columns which correspond to the correlation to w1

and w2, as they contain a perfect signal for the 2
vs. 2 test. We now have four vectors, CDS(w1),
CDS(w2), CBI(w1) and CBI(w2), all of length
w − 2. We compute the correlation (corr) between
vectors derived from CDS and CBI to see if:

corr(CDS(w1), CBI(w1)) + corr(CDS(w2), CBI(w2))

(the correlation of correctly matched rows: w1 to w1

and w2 to w2) is greater than:

corr(CDS(w1), CBI(w2)) + corr(CDS(w2), CBI(w1))

(the correlation of incorrectly matched rows). If the
correctly matched rows are more similar than incor-
rectly matched rows, then the 2 vs. 2 test is consid-
ered correct. We perform the 2 vs. 2 test for all pos-
sible pairs of words, for 1770 tests in total. The 2 vs.
2 accuracy is the percentage of 2 vs. 2 tests correct.
Chance is 50%.

Our process of computing 2 vs. 2 accuracy over
rows of a correlation matrix is different than the
original methodology for these datasets (Mitchell et
al., 2008; Sudre et al., 2012). Previous work trained
regression models that took brain images as input
and predicted the dimensions of a DS model as out-
put. Training these regression models for all 1770
pairs of words takes hours to complete, whereas the
test we suggest here is much faster, and the correla-
tion matrices CBI can be computed ahead of time.
This makes the tests fast enough to offer as a web
service. We hope our web offering will remove bar-
riers to the wider adoption of brain-based tests from
within the computational linguistics community.
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Figure 1: Performance of Distributional Semantic
models on the brain-image datasets.

Figure 2: Performance of Distributional Semantic
models on several benchmark behavioral tasks.

5 Results

Figure 1 shows the results for each of the DS mod-
els against the fMRI and MEG datasets. On aver-
age, the Skip-gram, Glove and Cross-lingual mod-
els perform quite well, whereas the multi-layer NNs
(RNN, Global) perform less well. The one DS
model to be built from hand-crafted resources (Non-
distributional) performs poorly on both brain image
tests.

As previously mentioned, we are not claiming to
show that any one of the DS models is better than
any other. Indeed, that would be comparing apples
to oranges, as each DS model is trained with a differ-
ent algorithm on a different corpus. Instead, notice
that the pattern of performance for the fMRI task is
remarkably similar to the pattern on the MEN behav-
ioral task. This is interesting given that our dataset
contains only 60 words and the MEN dataset con-
tains > 700. On the MEG data, the Cross-lingual
model performs best, and its performance pattern is
unlike any of the behavioral tasks in Figure 2. The
averaged BrainBench results are most similar to the
results for WS-353-REL. However, averaging the re-
sults together may be misleading, as the fMRI and
MEG result patterns are different.

6 Discussion

There are some caveats about the analyses herein.
Firstly, the brain-based tests include only 60 con-
crete nouns, so they will necessarily favor distri-
butional models with good noun representations,
regardless of the representations of other parts of
speech. We are currently working with various re-
search groups to expand the number of brain-image

datasets included in this benchmark to have a more
diverse test base. The behavioral benchmarks were
not reduced to include only the 60 words for which
we have brain data, because this would have ren-
dered the benchmarks essentially useless, as very
rarely are a pair of the 60 words from the brain im-
age data scored as a pair in the behavioral bench-
marks.

7 Conclusion

We have presented our new system, BrainBench,
which is a fast and lightweight alternative to pre-
vious methods for comparing DS models to brain
images. Our proposed methodology is more similar
to well-known behavioral tasks, as BrainBench also
uses the similarity of words as a proxy for mean-
ing. We hope that this contribution will bring brain
imaging tests “to the masses” and encourage discus-
sion around the testing of DS models against brain
imaging data.

References

[Agirre et al.2009] Eneko Agirre, Enrique Alfonseca,
Keith Hall, Jana Kravalova, Marius Pas, and Aitor
Soroa. 2009. A Study on Similarity and Relatedness
Using Distributional and WordNet-based Approaches.
In Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the ACL,
pages 19–27.

[Anderson et al.2013] Andrew J Anderson, Elia Bruni,
Ulisse Bordignon, Massimo Poesio, and Marco Ba-
roni. 2013. Of words , eyes and brains : Correlat-
ing image-based distributional semantic models with
neural representations of concepts. In Proceedings of

2020



the Conference on Empirical Methods on Natural Lan-
guage Processing.

[Anderson et al.2015] Andrew James Anderson, Elia
Bruni, Alessandro Lopopolo, Massimo Poesio, and
Marco Baroni. 2015. Reading visually embodied
meaning from the brain: Visually grounded compu-
tational models decode visual-object mental imagery
induced by written text. NeuroImage, 120:309–322.

[Baker et al.1998] Collin F. Cf Baker, Charles J. Fillmore,
and John B. Lowe. 1998. The Berkeley FrameNet
Project. In Proceedings of the 36th annual meeting
on Association for Computational Linguistics -, vol-
ume 1, page 86. Association for Computational Lin-
guistics.

[Bruni and Baroni2013] Elia Bruni and Marco Baroni.
2013. Multimodal Distributional Semantics. Journal
of Artificial Intelligence Research, 48.

[Faruqui and Dyer2014] Manaal Faruqui and Chris Dyer.
2014. Improving vector space word representations
using multilingual correlation. Proceedings of the
European Association for Computational Linguistics,
pages 462–471.

[Faruqui and Dyer2015] Manaal Faruqui and Chris Dyer.
2015. Non-distributional Word Vector Representa-
tions. Acl-2015, pages 464–469.

[Fellbaum1998] Christiane Fellbaum. 1998. WordNet:
An Electronic Lexical Database. MIT Press, Cam-
bridge, MA.

[Finkelstein et al.2002] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2002.
Placing search in context: the concept revisited. ACM
Transactions on Information Systems, 20(1):116–131.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. SimLex-999: Evaluating Semantic
Models with (Genuine) Similarity Estimation. Com-
putational Linguistics, 41(4):665–695.

[Huang et al.2012] Eric H Huang, Richard Socher,
Christopher D Manning, and Andrew Ng. 2012.
Improving word representations via global context
and multiple word prototypes. Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 873–882.

[Kriegeskorte et al.2008] Nikolaus Kriegeskorte, Marieke
Mur, and Peter Bandettini. 2008. Representational
similarity analysis - connecting the branches of sys-
tems neuroscience. Frontiers in systems neuroscience,
2(November):4, jan.
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