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Abstract

We propose a novel unsupervised word align-
ment method that uses a constraint based on
Inversion Transduction Grammar (ITG) parse
trees to jointly unify two directional mod-
els. Previous agreement methods are not
helpful for locating alignments with long dis-
tances because they do not use any syntactic
structures. In contrast, the proposed method
symmetrizes alignments in consideration of
their structural coherence by using the ITG
constraint softly in the posterior regulariza-
tion framework (Ganchev et al., 2010). The
ITG constraint is also compatible with word
alignments that are not covered by ITG parse
trees. Hence, the proposed method is ro-
bust to ITG parse errors compared to other
alignment methods that directly use an ITG
model. Compared to the HMM (Vogel et al.,
1996), IBM Model 4 (Brown et al., 1993),
and the baseline agreement method (Ganchev
et al., 2010), the experimental results show
that the proposed method significantly im-
proves alignment performance regarding the
Japanese-English KFTT and BTEC corpus,
and in translation evaluation, the proposed
method shows comparable or statistical sig-
nificantly better performance on the Japanese-
English KFTT and IWSLT 2007 corpus.

1 Introduction

Word alignment is an important component of sta-
tistical machine translation (SMT) systems such as
phrase-based SMT (Koehn et al., 2003) and hier-
archical phrase-based SMT (Chiang, 2007). In ad-
dition, word alignment is utilized for multi-lingual
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tasks other than SMT, such as bilingual lexicon ex-
traction (Liu et al., 2013). The most conventional
approaches to word alignment are the IBM models
(Brown et al., 1993) and the HMM model (Vogel et
al., 1996), which align each source word to a sin-
gle target word (i.e., directional models). In these
models, bidirectional word alignments are tradition-
ally induced by combining the Viterbi alignments in
each direction using heuristics (Och and Ney, 2003).
Matusov et al. (2004) exploited a symmetrized pos-
terior probability for bidirectional word alignments.
In these methods, each directional model is indepen-
dently trained.

Previous researches have improved bidirectional
word alignments by jointly training two directional
models to agree with each other (Liang et al., 2006;
Graga et al., 2008; Ganchev et al.,, 2010). Such
a constraint on the agreement in a training phase
is one of the most effective approaches to word
alignment. However, none of the previous agree-
ment constraints have taken into account syntactic
structures. Therefore, they have difficulty recover-
ing the alignments with long distances, which fre-
quently occur, especially in grammatically different
language pairs.

Some unsupervised word alignment models such
as DeNero and Klein (2007) and Kondo et al. (2013),
have been based on syntactic structures. In particu-
lar, it has been proven that Inversion Transduction
Grammar (ITG) (Wu, 1997), which captures struc-
tural coherence between parallel sentences, helps in
word alignment (Zhang and Gildea, 2004; Zhang
and Gildea, 2005). However, ITG has not been in-
troduced into an agreement constraint so far.
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We propose an alignment method that uses an
ITG constraint to encourage agreement between two
directional models in consideration of their struc-
tural coherence. Our ITG constraint is based on the
Viterbi alignment decided by a bracketing ITG parse
tree, and used as a soft constraint in the posterior
regularization framework (Ganchev et al., 2010). In
addition, our ITG constraint works also on word
alignments that are not covered by ITG parse trees,
as a standard symmetric constraint. Hence, the pro-
posed method is robust to ITG parse errors com-
pared to an alignment method that uses an ITG di-
rectly in model training (e.g., Zhang and Gildea
(2004, 2005)).

Word alignment evaluations show that the pro-
posed method achieves significant gains in F-
measure and alignment error rate (AER) on the
KFTT (Neubig, 2011) and the BTEC Japanese-
English (Ja-En) corpus (Takezawa et al., 2002). Ma-
chine translation evaluations show that our con-
straint significantly outperforms or is comparable to
the baseline symmetric constraint (Ganchev et al.,
2010) in BLEU on the KFTT Ja-En and IWSLT
2007 Ja-En corpus (Fordyce, 2007).

2 ITG Constraint in the Posterior
Regularization Framework

2.1 Overview

The proposed method introduces an ITG con-
straint into the posterior regularization framework
(Ganchev et al., 2010) in model training. The pro-
posed model is trained as follows, where agreement
constraints are imposed in the E-step of the EM al-
gorithm':

E-step:

1. Calculate a source-to-target posterior probability
P6(z|x) and a target-to-source posterior probabil-
ity pg(z|x) for each bilingual sentence = = {f, e}
under the current model parameters 8, where z de-
notes an alignment in a sentence pair x. In particu-
lar, z; j=1, if f; is aligned to e; (otherwise z; ;=0).
2. Repeat the following steps for all sentence pairs
in the training data.

(a) Find the Viterbi alignment z* through ITG pars-
ing (see Section 2.2). Here, z;;=1, if f; is aligned

IStep 1 in the E and M steps can be performed in the same
way as in Gancheyv et al. (2010).
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to e; (otherwise z; j:O).

(b) Symmetrize pj (z|) and g (z|2) under the con-
straint of z* (see Section 2.3 and 2.4).

M-step:

1.  Estimate all parameters 6 based on the
symmetrized posterior probabilities ¢X(z|x) and
ix(z|) (see Section 2.3 and 2.4).

2.2 ITG Parsing

In this section, we present our ITG parsing method,
which uses bracketing ITG (Wu, 1997). The rules
of the bracketing ITG are as follows: A — (Y/Z),
A— [Y/Z], A— fi/ej, A— fi/e, and A — €/€j,
where A, Y, and Z are non-terminal symbols, f; and
e; are terminal strings, € is a null symbol, () denotes
the inversion of two phrase positions, and [| denotes
the reversion of two phrase positions.

In general, a bracketing ITG has O(| f|?|e|®) time
complexity for parsing a sentence pair { f, e}, where
|f| and |e| are the lengths of f and e. For ef-
ficient ITG parsing, we use the two-step parsing
approach (Xiao et al., 2012), which has been pro-
posed to induce Synchronous Context Free Gram-
mar (SCFG) using n-best pruning® with time com-
plexity O(|f|?). Because ITG is a kind of SCFG,
this method can be adopted for our ITG parsing. Our
two-step parsing first parses a bilingual sentence in
the bottom up manner, and then derives the Viterbi
alignment z* in the top down manner.

To parse a bilingual sentence @ = {f, e}, we de-
fine the probability for each ITG rule. The probabil-
ity of arule A — f;/e; is defined as:

Polziy =1z) + Doz = lz)

P(A— fife;) = 5

We provide a constant value Pruii” both to P(A —
e/ej) and P(A — f;i/e). To reduce computa-
tional cost, the probabilities of phrasal rules P(A —
(Y/Z)) and P(A — [Y/Z]) are not trained, which
are set to 0.5 following Saers et al. (2012). In
addition to the probability of each ITG rule, we
must provide a probability to an one-to-many align-
ment because the two step parsing approach must
pre-compute probabilities for all one-to-many align-
ments in the first step. An one-to-many alignment

2We set n to 30 in our experiments.
3We set Prull tO 1072,



can be decomposed to a rule A — f;/e; and some
A — €/e;j rules under the ITG form. We select a set
of rules with the highest probability for an one-to-
many alignment using Viterbi algorithm, which has
a complexity of O(le|).

2.3 Previous Agreement Constraint

This section provides an overview of the previ-
ous agreement constraint proposed by Ganchev et
al. (2010), which is our baseline. In the poste-
rior regularization framework, source-to-target and
target-to-source posterior probabilities ' g(z|z)
and ‘pg(z|x) are replaced with ¢ x(z|x) and
‘0 x(z|z), defined as follows:

Ta(zlz) = To(z | ) - eapXOT @) 70,
$0 emp(_)\vq&agree(w,z))/Z?’

where Z- is a normalization term for
> s Ialzlz) = 1 (Z4 is analogous) and A
is a vector of weight parameters that controls the
balance between two directional posterior prob-
abilities. Here, ¢ is a feature of agreement
constraint, which assigns each alignment direction
to a sign (i.e., +1 or -1). In particular, ¢*"° is
defined as follows:

q>\ (z|x) =

%
+1 (Z S Z) A (Zi’jzl),
-1 (z€ ) A (Zi,j:]-)7
0 otherwise,

¢agree

i, (.’n,z) =

where 7 and % are sets of possible alignments
generated by source-to-target and target-to-source
ahgnment models, respectively. So that 7 Aij
1|x) and A, (7ij=1|z) become equal probabil—
ities for each . .j (e, Taz|x) and Ta(z|x) are
symmetrical), the agreement constraint is defined as
follows:

27’7]:

Vi, V5, @, (=) — T, (zig=1]2) = 0. (1)

To satisfy the constraint (1), each ); ; is updated by
a stochastic gradient descent in the E-step of EM al-
gorithm.

2.4 Proposed ITG Constraint

This section presents the proposed ITG constraint
based on the Viterbi alignment z*, which has pre-
viously been identified by the bracketing ITG pars-
ing. The ITG constraint uses a feature @'’ instead
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of ¢)agree:
0 ¥ (0. )Nz =DNG: (. 2)<0).
+1 Y (i, )N =DAG: 5 (2, 2)>0),
1Y (6, N =N (, 2)<0),
S0 (@ 2)=0 0 Y (i, )N, =DAG: 5 (2, 2)>0),
+1 Y (i, )N A,
—1 Y (i, )N A),
0 otherwise,

(—
where Y (i,§) = (z € Z) A (zuzl) Y(i,j) =
(z € Z) N (zij=1), and §; j(x, 2) ?9 (2i;=
1) — po(zij=1|z). Similarly to qbagree ' is
imposed on ¢ x, (z;;=1|z) and ‘¢ q X, (zij=1]z)
under the constralnt (nH. If Zw # 1, our feature

¢;'° operates similarly to ¢7%* according to the

last three rules. If 2", =1, ¢ITG ad]usts probabili-
ties of alignments 7,\ (zij=1]x) and ‘7, (2=
1lx) by increasing the lower probability w1thout
decreasing the higher probability according to the
first four rules. For example, when zf =1 and
7)\” (2ij = 1|z) is larger than 7 q i (z” =1|x),
?A”(zw 1|ac) is increased until ‘g A ;(zij=1]z)
equals ¢ Ay (Zig=1]z) accordlng to the second and
fourth rules. When z ;=1 and ‘7, j(zig=1lz) is
larger than 7)\” (zi=1|z), 7)\” z”—lla:) is in-
creased until ?Am (zij=1|z) equals ¢y, (2 ;=
1]x) according to the first and third rules. As a re-
sult, probabilities of word alignments in z* tend to
be higher than those of the other alignments.

Task Corpus Train Dev Test
Word Hansard 1.13M 37 447
Alignment KFTT 330k 653 582
BTEC 10k 0 10k

Machine KFTT 330k | 1.17k | 1.16k
Translation | IWSLT2007 40k 2.5k 489

Table 1: The numbers of parallel sentences for each data set.

3 Evaluation

We compared our proposed ITG constraint (itg) with
the baseline agreement constraint (Ganchev et al.,
2010) (sym) on word alignment and machine trans-
lation tasks. In word alignment evaluations, we used
the French-English (Fr-En) Hansard Corpus (Mihal-
cea and Pedersen, 2003), Ja-En KFTT* (Neubig,

*We used the cleaned dataset distributed on the KFTT offi-
cial web site (http://www.phontron.com/kftt/index.html).



Hansard Fr-En KFTT Ja-En BTEC Ja-En

Method F-measure AER F-measure AER F-measure AER

HMM-+none 0.7900 0.0646 0.4623 0.5377 0.4425 0.5575

HMM-+sym 0.7923 0.0597 0.4678 0.5322 0.4534 0.5466

HMM+itg 0.7869 0.0629 0.4690 0.5310 0.4499 0.5501

IBM Model 4+none 0.7780 0.0775 0.5379 0.4621 0.4454 0.5546

IBM Model 4+sym 0.7800 0.0693 0.5545 0.4455 0.4761 0.5239

IBM Model 4+itg 0.7791 0.0710 0.5613 0.4387 0.4809 0.5191

Table 2: Word alignment performance.

Method KFTT Ja-En | IWSLT2007 Ja-En Table 2 shows the results of word alignment eval-
HMM-tnone 18.9 46.4 uations®, where none denotes that the model has
HMM-+sym 18.9 46.3 . .
HMM-+itg 192 47.0 no constraint. In KFTT and BTEC Corpus, itg
IBM Model 4+none 18.8 46.77 achieved significant improvement against sym and
IBM Model 4+sym 19.3 45.9 none on IBM Model 4 (p < 0.05)°. However, in the
IBM Model 4+irg 194 46.7 Hansard Corpus, itg shows no improvement against

Table 3: Machine translation performance.

2011), and Ja-En BTEC Corpus (Takezawa et al.,
2002). We used the first 10K sentence pairs in the
training data for the IWSLT 2007 translation task,
which were manually annotated with word align-
ment (Chooi-Ling et al., 2010), as the BTEC Cor-
pus. In translation evaluations, we used the KFTT
and Ja-En IWSLT 2007 translation tasks>.

Table 1 shows each corpus size. In each training
data set, all words were lowercased and sentences
with over 80 words on either side were removed.

3.1 Word Alignment Evaluation

We measured the performance of word alignment
with AER and F-measure (Och and Ney, 2003). We
used only sure alignments for calculating F-measure
(Fraser and Marcu, 2007)°. We introduced itg and
sym into the HMM and IBM Model 4. Training is
bootstrapped from IBM Model 1, followed by HMM
and IBM Model 4. All models were trained with five
consecutive iterations. In the many-to-many align-
ment extraction, we used the filtering method (Ma-
tusov et al., 2004), where a threshold is optimized on
the corresponding AER of the baseline model (i.e.,
HMM-+sym or IBM Model 4+sym)’.

SBTEC Corpus is a subset of IWSLT 2007. To uniform
tokenization, we retokenized all Japanese sentences both in
IWSLT 2007 and BTEC Corpus using ChaSen (Asahara and
Matsumoto, 2000).

®Since there exists no distinction for sure-possible align-
ments in the KFTT and BTEC data sets, we treat all alignments
of them as sure alignments.

"We tried values from 0.1 to 1.0 at an interval of 0.1.
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sym. This indicates that capturing structural coher-
ence by irg yields a significant benefit to word align-
ment in a linguistically different language pair such
as Ja-En. For example, some function words appear
more than once in both a source and target sentence,
and they are not symmetrically aligned with each
other, especially in regards to the Ja-En language
pair. Although the baseline methods tend to be un-
able to align such long-distance word pairs, the pro-
posed method can correctly catch them because itg
can determine the relation of long-distance words.
We discuss more details about the effectiveness of
the ITG constraint in Section 4.1.

3.2 Translation Evaluation

We measured translation performance with BLEU
(Papineni et al., 2002). All language models are
5-gram and trained using SRILM (Stolcke and oth-
ers, 2002) on target side sentences in the training
data. When extracting phrases, we apply the method
proposed by Matusov et al. (2004), where many-to-
many alignments are generated based on the aver-
ages of the posterior probabilities from two direc-
tional models!©.

We used the Moses phrase-based SMT systems
(Koehn et al., 2007) for decoding. We set the
distortion-limit parameter to infinite!!, and other pa-

8The values in bold indicate the best score.

The statistical significance test was performed by the paired
bootstrap resampling (Koehn, 2004).

10The posterior thresholds were decided in the same way as
the word alignment evaluation.

"'This setting is generally used for Ja-En translation tasks
(Murakami et al., 2007).
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Figure 1: Word alignment examples on the BTEC corpus.

rameters as default settings. Parameter tuning was
conducted by 100-best batch MIRA (Cherry and
Foster, 2012) with 25 iterations.

Table 3 shows the average BLEU of five differ-
ent tunings'?. In both KFTT and IWSLT 2007, itg
achieved significant improvement against both none
and sym on HMM model. On IBM Model4, itg sig-
nificantly outperforms none and is comparable to
sym in KFTT, while itg significantly outperforms
sym and is comparable to none in IWSLT 2007.

4 Discussion

4.1 Effects of ITG Constraints on Word
Alignment and Translation

We discuss the effect of our ITG constraint on word
alignment and machine translation. As described
in Section 2, the ITG constraint is imposed in the
E-step of the EM algorithm, not in decoding steps.
Therefore, for the sentences that are not contained in
the training corpus, the word alignments are calcu-
lated using the emission, transition and fertility ta-
bles trained with the constraint. It means that the ef-
fects of the constraint are implicitly reflected in the
alignment results. On the other hand, the effects of
the constraint are directly reflected in the machine
translation results because the phrase tables are ex-
tracted from the posterior probabilities calculated in
training steps. Therefore, our ITG constraint has a
potential to achieve a large improvement of machine
translation performance relative to an improvement
of alignment performance, such as IBM Model 4+itg

12The values in bold represent the best score, and 1 indicates
that the comparisons are not significant over the corresponding
model (i.e., HMM+itg or IBM Model 4+itg) according to the
bootstrap resampling test (p < 0.05). We used multeval (Clark
et al., 2011) for significance testing.
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vs. IBM Model 4+sym on the BTEC corpus. We
would like to improve our model by imposing our
ITG constraint on decoding steps in future.

4.2 Comparison between Symmetric and ITG
Constraint

In KFTT, itg is comparable to sym on IBM Model
4 in machine translation; however, itg achieved sig-
nificant improvement in terms of word alignment,
which follows the previous reports that better word
alignment does not always result in better transla-
tion (Ganchev et al., 2008; Yang et al., 2013). On
the other hand, in BTEC, itg outperforms sym both
on word alignment and machine translation. Fig-
ure 1 shows that IBM Model 4+sym often generates
wrong gappy alignments such as “ga (Ja)-I (En)”
and “ga (Ja)-my (En)”. These wrong alignments
disturb the phrase extraction, because excessively
long phrase pairs are extracted by bridging the gaps
in wrong alignments or simply no phrase pairs are
extracted from wrong gappy alignments. Conse-
quently, the phrase table generated by IBM Model
4+sym tend to be sparse and contain longer phrase
pairs than the one generated by IBM Model 4+itg.

5 Conclusions

We have proposed a novel alignment method that
uses an ITG constraint based on bracketing ITG
parse trees as a soft constraint of the posterior reg-
ularization framework. Due to the ITG constraint,
the proposed method can symmetrize two direc-
tional alignments based on their structural coher-
ence. Our evaluations have shown that the proposed
ITG constraint significantly improves the baseline
word alignment performance on the Ja-En KFTT
and BTEC corpus, and significantly improves, or at
least keeps, the baseline machine translation perfor-
mance of KFTT and the Ja-En IWSLT 2007 task.
This indicates that the proposed method yields a sig-
nificant benefit to linguistically different language
pairs.

In future work, we plan to incorporate a phrasal
ITG (Cherry and Lin, 2007) instead of a bracketing
ITG to efficiently handle many-to-many alignments.
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