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Abstract

Recently, a number of deep-learning based
models have been proposed for the task of
Visual Question Answering (VQA). The per-
formance of most models is clustered around
60-70%. 1In this paper we propose system-
atic methods to analyze the behavior of these
models as a first step towards recognizing their
strengths and weaknesses, and identifying the
most fruitful directions for progress. We an-
alyze two models, one each from two ma-
jor classes of VQA models — with-attention
and without-attention and show the similari-
ties and differences in the behavior of these
models. We also analyze the winning entry of
the VQA Challenge 2016.

Our behavior analysis reveals that despite re-
cent progress, today’s VQA models are “my-
opic” (tend to fail on sufficiently novel in-
stances), often “jump to conclusions” (con-
verge on a predicted answer after ‘listening’
to just half the question), and are “stubborn”
(do not change their answers across images).

1 Introduction

Visual Question Answering (VQA) is a recently-
introduced (Antol et al., 2015; Geman et al., 2014,
Malinowski and Fritz, 2014) problem where given
an image and a natural language question (e.g.,
“What kind of store is this?”’, “How many people
are waiting in the queue?”), the task is to automati-
cally produce an accurate natural language answer
(“bakery”, “5”). A flurry of recent deep-learning
based models have been proposed for VQA (Antol
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et al., 2015; Chen et al., 2015; Yang et al., 2016;
Xu and Saenko, 2016; Jiang et al., 2015; Andreas
et al., 2016a; Wang et al., 2015; Kafle and Kanan,
2016; Lu et al., 2016; Andreas et al., 2016b; Shih
et al., 2016; Kim et al., 2016; Fukui et al., 2016;
Noh and Han, 2016; Ilievski et al., 2016; Wu et
al., 2016; Xiong et al., 2016; Zhou et al., 2015;
Saito et al., 2016). Curiously, the performance of
most methods is clustered around 60-70% (com-
pared to human performance of 83% on open-ended
task and 91% on multiple-choice task) with a mere
5% gap between the top-9 entries on the VQA Chal-
lenge 2016." Tt seems clear that as a first step to
understand these models, to meaningfully compare
strengths and weaknesses of different models, to de-
velop insights into their failure modes, and to iden-
tify the most fruitful directions for progress, it is cru-
cial to develop techniques to understand the behav-
ior of VQA models.

In this paper, we develop novel techniques to
characterize the behavior of VQA models. As con-
crete instantiations, we analyze two VQA models
(Lu et al., 2015; Lu et al., 2016), one each from two
major classes of VQA models — with-attention and
without-attention. We also analyze the winning en-
try (Fukui et al., 2016) of the VQA Challenge 2016.

2 Related Work

Our work is inspired by previous works that diag-
nose the failure modes of models for different tasks.
(Karpathy et al., 2016) constructed a series of ora-
cles to measure the performance of a character level
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language model. (Hoiem et al., 2012) provided anal-
ysis tools to facilitate detailed and meaningful inves-
tigation of object detector performance. This paper
aims to perform behavior analyses as a first step to-
wards diagnosing errors for VQA.

(Yang et al., 2016) categorize the errors made by
their VQA model into four categories — model fo-
cuses attention on incorrect regions, model focuses
attention on appropriate regions but predicts incor-
rect answers, predicted answers are different from
labels but might be acceptable, labels are wrong.
While these are coarse but useful failure modes, we
are interested in understanding the behavior of VQA
models along specific dimensions — whether they
generalize to novel instances, whether they listen to
the entire question, whether they look at the image.

3 Behavior Analyses

We analyze the behavior of VQA models along the
following three dimensions —

Generalization to novel instances: We investi-
gate whether the test instances that are incorrectly
answered are the ones that are “novel” i.e., not sim-
ilar to training instances. The novelty of the test in-
stances may be in two ways — 1) the test question-
image (QI) pair is “novel”, i.e., too different from
training QI pairs; and 2) the test QI pair is “famil-
iar”, but the answer required at test time is “novel”,
i.e., answers seen during training are different from
what needs to be produced for the test QI pairs.

Complete question understanding: To investi-
gate whether a VQA model is understanding the in-
put question or not, we analyze if the model ‘listens’
to only first few words of the question or the entire
question, if it ‘listens’ to only question (wh) words
and nouns or all the words in the question.

Complete image understanding: The absence
of a large gap between performance of language-
alone and language + vision VQA models (Antol et
al., 2015) provides evidence that current VQA mod-
els seem to be heavily reliant on the language model,
perhaps not really understanding the image. In order
to analyze this behavior, we investigate whether the
predictions of the model change across images for a
given question.

We present our behavioral analyses on the VQA
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dataset (Antol et al., 2015). VQA is a large-
scale free-form natural-language dataset containing
~0.25M images, ~0.76M questions, and ~10M an-
swers, with open-ended and multiple-choice modal-
ities for answering the visual questions. All the ex-
perimental results are reported on the VQA valida-
tion set using the following models trained on the
VQA training set for the open-ended task —

CNN + LSTM based model without-attention
(CNN+LSTM): We use the best performing model
of (Antol et al., 2015) (code provided by (Lu et al.,
2015)), which achieves an accuracy of 54.13% on
the VQA validation set. It is a two channel model
— one channel processes the image (using Convolu-
tional Neural Network (CNN) to extract image fea-
tures) and the other channel processes the question
(using Long Short-Term Memory (LSTM) recurrent
neural network to obtain question embedding). The
image and question features obtained from the two
channels are combined and passed through a fully
connected (FC) layer to obtain a softmax distribu-
tion over the space of answers.

CNN + LSTM based model with-attention
(ATT): We use the top-entry on the VQA challenge
leaderboard (as of June 03, 2016) (Lu et al., 2016),
which achieves an accuracy of 57.02% on the VQA
validation set.” This model jointly reasons about im-
age and question attention, in a hierarchical fashion.
The attended image and question features obtained
from different levels of the hierarchy are combined
and passed through a FC layer to obtain a softmax
distribution over the space of answers.

VQA Challenge 2016 winning entry (MCB):
This is the multimodal compact bilinear (mcb) pool-
ing model from (Fukui et al., 2016) which won the
real image track of the VQA Challenge 2016. This
model achieves an accuracy of 60.36% on the VQA
validation set.> In this model, multimodal compact
bilinear pooling is used to predict attention over im-
age features and also to combine the attended image
features with the question features. These combined
features are passed through a FC layer to obtain a
softmax distribution over the space of answers.

2Code available at
jiasenlu/HieCoAttenVQA

3Code available at
akirafukui/vga-mcb

https://github.com/

https://github.com/



3.1 Generalization to novel instances

Do VQA models make mistakes because test in-
stances are too different from training ones? To an-
alyze the first type of novelty (the test QI pair is
novel), we measure the correlation between test ac-
curacy and distance of test QI pairs from its k near-
est neighbor (k-NN) training QI pairs. For each
test QI pair we find its k-NNs in the training set
and compute the average distance between the test
QI pair and its k-NNs. The k-NNs are computed
in the space of combined image + question embed-
ding (just before passing through FC layer) for all
the three models (using euclidean distance metric for
the CNN+LSTM model and cosine distance metric
for the ATT and MCB models).

The correlation between accuracy and average
distance is significant (-0.41 at k=50* for the
CNN+LSTM model and -0.42 at k=15 for the
ATT model). A high negative correlation value tells
that the model is less likely to predict correct an-
swers for test QI pairs which are not very similar
to training QI pairs, suggesting that the model is
not very good at generalizing to novel test QI pairs.
The correlation between accuracy and average dis-
tance is not significant for the MCB model (-0.14 at
k=1°) suggesting that MCB is better at generalizing
to novel test QI pairs.

We also found that 67.5% of mistakes made by the
CNN+LSTM model can be successfully predicted
by checking distance of test QI pair from its k-NN
training QI pairs (66.7% for the ATT model, 55.08%
for the MCB model). Thus, this analysis not only
exposes a reason for mistakes made by VQA mod-
els, but also allows us to build human-like models
that can predict their own oncoming failures, and
potentially refuse to answer questions that are ‘too
different’ from ones seen in past.

To analyze the second type of novelty (the answer
required at test time is not familiar), we compute the
correlation between test accuracy and the average
distance of the test ground truth (GT) answer with
GT answers of its k-NN training QI pairs. The dis-
tance between answers is computed in the space of

#k=50 leads to highest correlation
k=15 leads to highest correlation
8k=1 leads to highest correlation
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Test Sample Nearest Neighbor Training Samples

Q: What type of reception
is being attended?
GT A: wedding
Predicted A: cake

Q: What type of exercise
equipment is shown?
GT A: bike

Q: What dessert is
on the table?
GT A: cake

Q: What type of dessert
is this man having?
GT A: cake

Q: What color is
the cone?
GT A: orange

Q: What color are
the cones?
GT A: orange

Q: What color are
the cones?
GT A: orange

Q: What color are the
safety cones?
GT A: green
predicted A: orange

Figure 1: Examples from test set where the
CNN+LSTM model makes mistakes and their cor-
responding nearest neighbor training instances. See
supplementary for more examples.

average Word2Vec (Mikolov et al., 2013) vectors of
answers. This correlation turns out to be quite high
(-0.62) for both CNN+LSTM and ATT models and
significant (-0.47) for the MCB model. A high neg-
ative correlation value tells that the model tends to
regurgitate answers seen during training.

These distance features are also good at pre-
dicting failures — 74.19% of failures can be pre-
dicted by checking distance of test GT answer
with GT answers of its k-NN training QI pairs for
CNN+LSTM model (75.41% for the ATT model,
70.17% for the MCB model). Note that unlike the
previous analysis, this analysis only explains fail-
ures but cannot be used to predict failures (since it
uses GT labels). See Fig. 1 for qualitative examples.

From Fig. 1 (rowl) we can see that the test QI
pair is semantically quite different from its k-NN
training QI pairs ({1st, 2nd, 3rd}-NN distances are
{15.05, 15.13, 15.17}, which are higher than the
corresponding distances averaged across all success
cases: {8.74, 9.23, 9.50.}), explaining the mistake.
Row?2 shows an example where the model has seen
the same question in the training set (test QI pair is
semantically similar to training QI pairs) but, since it
has not seen “green cone” for training instances (an-
swers seen during training are different from what
needs to be produced for the test QI pair), it is unable
to answer the test QI pair correctly. This shows that
current models lack compositionality: the ability to
combine the concepts of “cone” and “green” (both
of which have been seen in training set) to answer
“green cone” for the test QI pair. This composition-
ality is desirable and central to intelligence.



#  EVQA accuracy (CNN+LSTM
Model)

CVQA accuracy (ATT Model)

+% of questions for which
responses remain same
(CNN+LSTM Model)
% of questions for which
responses remain same (ATT
Model)
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Figure 2: X-axis shows length of partial question (in %)
fed as input. Y-axis shows percentage of questions for
which responses of these partial questions are the same
as full questions and VQA accuracy of partial questions.

3.2 Complete question understanding

We feed partial questions of increasing lengths
(from 0-100% of question from left to right). We
then compute what percentage of responses do not
change when more and more words are fed.

Fig. 2 shows the test accuracy and percentage of
questions for which responses remain same (com-
pared to entire question) as a function of partial
question length. We can see that for 40% of the
questions, the CNN+LSTM model seems to have
converged on a predicted answer after ‘listening’ to
just half the question. This shows that the model
is listening to first few words of the question more
than the words towards the end. Also, the model has
68% of the final accuracy (54%) when making pre-
dictions based on half the original question. When
making predictions just based on the image, the ac-
curacy of the model is 24%. The ATT model seems
to have converged on a predicted answer after listen-
ing to just half the question more often (49% of the
time), achieving 74% of the final accuracy (57%).
The MCB model converges on a predicted answer
after listening to just half the question 45% of the
time, achieving 67% of the final accuracy (60%).
See Fig. 3 for qualitative examples.

We also analyze the change in responses of the
model’s predictions (see Fig. 4), when words of a
particular part-of-the-speech (POS) tag are dropped
from the question. The experimental results indi-
cate that wh-words effect the model’s decisions the
most (most of the responses get changed on drop-
ping these words from the question), and that pro-
nouns effect the model’s decisions the least.
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Figure 3: Examples where the CNN+LSTM model does
not change its answer after first few question words. On
doing so, it is correct for some cases (the extreme left ex-
ample) and incorrect for other cases (the remaining three
examples). See supplementary for more examples.
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Figure 4: Percentage of questions for which responses
remain same (compared to entire question) as a function
of POS tags dropped from the question.

3.3 Complete image understanding

Does a VQA model really ‘look’ at the image? To
analyze this, we compute the percentage of the time
(say X) the response does not change across im-
ages (e.g.,, answer for all images is “2”) for a given
question (e.g., “How many zebras?”’) and plot his-
togram of X across questions (see Fig. 5). We do
this analysis for questions occurring for atleast 25
images in the VQA validation set, resulting in to-
tal 263 questions. The cumulative plot indicates that
for 56% questions, the CNN+LSTM model outputs
the same answer for at least half the images. This is
fairly high, suggesting that the model is picking the
same answer no matter what the image is. Promis-
ingly, the ATT and MCB models (that do not work
with a holistic entire-image representation and pur-
portedly pay attention to specific spatial regions in
an image) produce the same response for at least half
the images for fewer questions (42% for the ATT
model, 40% for the MCB model).

Interestingly, the average accuracy (see the VQA
accuracy plots in Fig. 5) for questions for which
the models produce same response for >50% and
<55% of the images is 56% for the CNN+LSTM
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Figure 5: Histogram of percentage of images for which
model produces same answer for a given question and
its comparison with test accuracy. The cumulative plot
shows the % of questions for which model produces same
answer for atleast x % of images.

model (60% for the ATT model, 73% for the MCB
model) which is more than the respective average
accuracy on the entire VQA validation set (54.13%
for the CNN+LSTM model, 57.02% for the ATT
model, 60.36% for the MCB model). Thus, pro-
ducing the same response across images seems to be
statistically favorable. Fig. 6 shows examples where
the CNN+LSTM model predicts the same response
across images for a given question. The first row
shows examples where the model makes errors on
several images by predicting the same answer for all
images. The second row shows examples where the
model is always correct even if it predicts the same
answer across images. This is so because questions
such as “What covers the ground?” are asked for
an image in the VQA dataset only when ground is
covered with snow (because subjects were looking
at the image while asking questions about it). Thus,
this analysis exposes label biases in the dataset. La-
bel biases (in particular, for “yes/no” questions) have
also been reported in (Zhang et al., 2016).

4 Conclusion

We develop novel techniques to characterize the be-
havior of VQA models, as a first step towards under-
standing these models, meaningfully comparing the
strengths and weaknesses of different models, devel-
oping insights into their failure modes, and identify-
ing the most fruitful directions for progress. Our be-
havior analysis reveals that despite recent progress,
today’s VQA models are “myopic” (tend to fail on
sufficiently novel instances), often “jump to conclu-
sions” (converge on a predicted answer after ‘listen-
ing’ to just half the question), and are “stubborn”
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Correct Response Incorrect Responses
Q: How many zebras

Predicted A: 2

Predicted A: 2

Predicted A: 2 Predicted A: 2
[ u|
——]

E

All Correct Responses
Q: What covers the ground

Predicted A:snow  Predicted A:snow  Predicted A:snow  Predicted A: snow Predicted A: snow

= B = T

Figure 6: Examples where the predicted answers do not
change across images for a given question. See supple-
mentary for more examples.

(do not change their answers across images), with
attention based models being less “stubborn” than
non-attention based models.

As a final thought, we note that the somewhat
pathological behaviors exposed in the paper are in
some sense “correct” given the model architectures
and the dataset being trained on. Ignoring optimiza-
tion error, the maximum-likelihood training objec-
tive is clearly intended to capture statistics of the
dataset. Our motive is simply to better understand
current generation models via their behaviors, and
use these observations to guide future choices — do
we need novel model classes? or dataset with dif-
ferent biases? etc. Finally, it should be clear that
our use of anthropomorphic adjectives such as “stub-
born”, “myopic” etc. is purely for pedagogical rea-
sons — to easily communicate our observations to our
readers. No claims are being made about today’s
VQA models being human-like.
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