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Abstract

We propose an algorithm that combines su-
pervised and unsupervised methods to ensem-
ble multiple systems for two popular Knowl-
edge Base Population (KBP) tasks, Cold Start
Slot Filling (CSSF) and Tri-lingual Entity Dis-
covery and Linking (TEDL). We demonstrate
that it outperforms the best system for both
tasks in the 2015 competition, several ensem-
bling baselines, as well as a state-of-the-art
stacking approach. The success of our tech-
nique on two different and challenging prob-
lems demonstrates the power and generality of
our combined approach to ensembling.

1 Introduction

Ensembling multiple systems is a well known stan-
dard approach to improving accuracy in several ma-
chine learning applications (Dietterich, 2000). En-
sembles have been applied to parsing (Henderson
and Brill, 1999), word sense disambiguation (Ped-
ersen, 2000), sentiment analysis (Whitehead and
Yaeger, 2010) and information extraction (IE) (Flo-
rian et al., 2003; McClosky et al., 2012). Recently,
using stacking (Wolpert, 1992) to ensemble sys-
tems was shown to give state-of-the-art results on
slot-filling and entity linking for Knowledge Base
Population (KBP) (Viswanathan et al., 2015; Ra-
jani and Mooney, 2016). Stacking uses supervised
learning to train a meta-classifier to combine multi-
ple system outputs; therefore, it requires historical
data on the performance of each system. Rajani and
Mooney (2016) use data from the 2014 iteration of
the KBP competition for training and then test on the

data from the 2015 competition, therefore they can
only ensemble the shared systems that participated
in both years.

However, we would sometimes like to ensem-
ble systems for which we have no historical perfor-
mance data. For example, due to privacy, some com-
panies may be unwilling to share their performance
on arbitrary training sets. Simple methods such as
voting permit “unsupervised” ensembling, and sev-
eral more sophisticated methods have also been de-
veloped for this scenario (Wang et al., 2013). How-
ever, such methods fail to exploit supervision for
those systems for which we do have training data.
Therefore, we present an approach that utilizes su-
pervised and unsupervised ensembling to exploit the
advantages of both. We first use unsupervised en-
sembling to combine systems without training data,
and then use stacking to combine this ensembled
system with other systems with available training
data.

Using this new approach, we demonstrate new
state-of-the-art results on two NIST KBP challenge
tasks: Cold Start Slot-Filling (CSSF)1 and the Tri-
lingual Entity Discovery and Linking (TEDL) (Ji
et al., 2015). Our approach outperforms the best
system as well as other state-of-the-art ensembling
methods on both tasks in the most recent 2015 com-
petition. There is one previous work on ensembling
supervised and unsupervised models using graph-
based consensus maximization (Gao et al., 2009),
however we show that it does not do as well as our
stacking method.

1http://www.nist.gov/tac/2015/KBP/
ColdStart/guidelines.html
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2 Overview of KBP Tasks

2.1 Cold Start Slot Filling (CSSF)
The goal of CSSF is to collect information (fills)
about specific attributes (slots) for a set of entities
(queries) from a given corpus. The query entities
can be a person, organization, or geo-political entity
(PER/ORG/GPE). The input is a set of queries along
with a text corpus in which to look for information.
The output is a set of slot fills for each query. Sys-
tems must also provide provenance in the form of
docid:startoffset-endoffset, where docid specifies a
source document and the offsets demarcate the text
in this document supporting the filler. Systems may
also provide a confidence score to indicate their cer-
tainty in the extracted information.

2.2 Tri-lingual Entity Discovery and Linking
(TEDL)

The first step in the TEDL task is to discover all en-
tity mentions in a corpus with English, Spanish and
Chinese documents. The entities can be a person, or-
ganization or geo-political entity (PER/ORG/GPE)
and in 2015 two more entity types were introduced
– facility and location (FAC/LOC). The extracted
mentions are then linked to an existing English KB
(a version of FreeBase) entity via its ID. If there is
no KB entry for an entity, systems are expected to
cluster all the mentions for that entity using a NIL
ID. The output for the task is a set of extracted men-
tions, each with a string, its provenance in the cor-
pus, and a corresponding KB ID if the system could
successfully link the mention, or else a mention clus-
ter with a NIL ID. Systems can also provide a confi-
dence score for each mention.

3 Ensembling Algorithm

Figure 1 illustrates our system which trains a final
meta-classifier for combining multiple systems us-
ing confidence scores and other auxiliary features
depending on the task.

3.1 Supervised Ensembling Approach
For the KBP systems that are common between
years, we use the stacking method of Viswanathan
et al. (2015) for these shared systems.

The meta-classifier makes a binary decision for
each distinct output represented as a key-value pair.
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Figure 1: Illustration of our approach to combine supervised

and unsupervised ensembles.

The function of the key is to provide a handle for ag-
gregating outputs that are common across systems.
For the CSSF task, the key for ensembling multiple
systems is a query along with a slot type, for exam-
ple, per:age of “Barack Obama” and the value is a
computed slot fill. For TEDL, the key is the KB (or
NIL) ID and the value is a mention, that is a spe-
cific reference to an entity in the text. The top half
of Figure 1 illustrates ensembling multiple systems
with historical training data using a supervised ap-
proach.

3.2 Unsupervised Ensembling Approach

Only 38 of the 70 systems that participated in CSSF
2015 also participated in 2014, and only 24 of the 34
systems that participated in TEDL 2015 also partic-
ipated in 2014 EDL. Therefore, many KBP systems
in 2015 were new and did not have past training data.
In fact, some of the new systems performed better
than the shared systems, for example the hltcoe sys-
tem did not participate in 2014 but was ranked 4th in
the 2015 TEDL task (Ji et al., 2015). Thus, for im-
proving recall and performance in general, it is cru-
cial to use systems without historical training data,
which we call unsupervised systems. To achieve
this end, we first ensemble such systems using an
unsupervised technique. Frequently, the confidence
scores provided by systems are not well-calibrated
probabilities. So in order to calibrate the confidence
scores across unsupervised systems, we use the con-
strained optimization approach proposed by Wang
et al. (2013). The idea is to aggregate the raw confi-
dence values produced by individual KBP systems,
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to arrive at a single aggregated confidence value for
each key-value pair. The constraints ensure that the
aggregated confidence score is close to the raw score
as well as proportional to the agreement among sys-
tems on a value for a given key. Thus for a given
key, if a system’s value is also produced by multi-
ple other systems, it would have a higher score than
if it were not produced by any other system. The
authors use the inverse ranking of the average pre-
cision previously achieved by individual systems as
the weights in their algorithm. However since we
use this approach for systems with no historical per-
formance data, we use uniform weights across all
unsupervised systems for both the tasks.

We use the slot type for the CSSF task and en-
tity type for the TEDL task to define the constraints
on the values. The output from the constrained op-
timization approach for both tasks is a set of key-
values with aggregated confidence scores across all
unsupervised systems which go directly into the
stacker as shown in the lower half of Figure 1. Us-
ing the aggregation approach as opposed to directly
using the raw confidence scores allows the classifier
to meaningfully compare confidence scores across
multiple systems although they are produced by very
diverse systems.

Another unsupervised ensembling method we
tried in place of the constrained optimization ap-
proach is the Bipartite Graph based Consensus Max-
imization (BGCM) approach of Gao et al. (2009).
BGCM is presented as a way of combining super-
vised and unsupervised models, so we compare it to
our stacking approach to combining supervised and
unsupervised systems, as well as an alternative ap-
proach to ensembling just the unsupervised systems
before passing their output to the stacker. BGCM
performs an optimization over a bipartite graph of
systems and outputs, where the objective function
favors the smoothness of the label assignments over
the graph, as well as penalizing deviations from the
initial labeling provided by supervised models.

3.3 Combining Supervised and Unsupervised

We propose a novel approach to combine the afore-
mentioned supervised and unsupervised methods us-
ing a stacked meta-classifier as the final arbiter for
accepting a given key-value. The outputs from the
supervised and unsupervised systems are fed into

the stacker in a consistent format such that there is a
unique input key-value pair. Most KBP teams sub-
mit multiple variations of their system. Before en-
sembling, we first combine multiple runs of the same
team into one. Of the 38 CSSF systems from 10
teams for which we have 2014 data for training and
the 32 systems from 13 teams that do not have train-
ing data, we combine the runs of each team into one
to ensure diversity of the final ensemble. For the slot
fills that were common between the runs of a given
team, we compute an average confidence value, and
then add any additional fills that are not common
between runs. Thus, we obtained 10 systems (one
for each team) for which we have supervised data
for training stacking. Similarly, we combine the 24
TEDL systems from 6 teams that have 2014 training
data and 10 systems from 4 teams that did not have
training data into one per team. Thus using the no-
tation in Figure 1, for TEDL, N = 6 and M = 4
while for CSSF, N = 10 and M = 13.

The unsupervised method produces aggregated,
calibrated confidence scores which go directly into
our final meta-classifier. We treat this combination
as a single system called the unsupervised ensemble.
We add the unsupervised ensemble as an additional
system to the stacker, thus giving us a total of N+1,
that is 11 CSSF and 7 TEDL systems. Once we have
extracted the auxiliary features for each of the N su-
pervised systems and the unsupervised ensemble for
both years, we train the stacker on 2014 systems,
and test on the 2015 systems. The unsupervised en-
semble for each year is composed of different sys-
tems, but hopefully the stacker learns to combine a
generic unsupervised ensemble with the supervised
systems that are shared across years. This allows
the stacker to arbitrate the final correctness of a key-
value pair, combining systems for which we have no
historical data with systems for which training data
is available. To learn the meta-classifier, we use an
L1-regularized SVM with a linear kernel (Fan et al.,
2008) (other classifiers gave similar results).

3.4 Post-processing

Once we obtain the decisions on each key-value
pair from the stacker, we perform some final post-
processing. For CSSF, each list-valued slot fill that
is classified as correct is included in the final output.
For single-valued slot fills, if they are multiple fills
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Methodology Precision Recall F1
Combined stacking and constrained optimization with auxiliary features 0.4679 0.4314 0.4489

Top ranked SFV system in 2015 (Rodriguez et al., 2015) 0.4930 0.3910 0.4361
Stacking using BGCM instead of constrained optimization 0.5901 0.3021 0.3996

BGCM for combining supervised and unsupervised systems 0.4902 0.3363 0.3989
Stacking with auxiliary features described in (Rajani and Mooney, 2016) 0.4656 0.3312 0.3871

Ensembling approach described in (Viswanathan et al., 2015) 0.5084 0.2855 0.3657
Top ranked CSSF system in 2015 (Angeli et al., 2015) 0.3989 0.3058 0.3462
Oracle Voting baseline (3 or more systems must agree) 0.4384 0.2720 0.3357

Constrained optimization approach described in (Wang et al., 2013) 0.1712 0.3998 0.2397
Table 1: Results on 2015 Cold Start Slot Filling (CSSF) task using the official NIST scorer

Methodology Precision Recall F1
Combined stacking and constrained optimization 0.686 0.624 0.653

Stacking using BGCM instead of constrained optimization 0.803 0.525 0.635
BGCM for combining supervised and unsupervised outputs 0.810 0.517 0.631

Stacking with auxiliary features described in (Rajani and Mooney, 2016) 0.813 0.515 0.630
Ensembling approach described in (Viswanathan et al., 2015) 0.814 0.508 0.625

Top ranked TEDL system in 2015 (Sil et al., 2015) 0.693 0.547 0.611
Oracle Voting baseline (4 or more systems must agree) 0.514 0.601 0.554

Constrained optimization approach 0.445 0.176 0.252
Table 2: Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL) using official NIST scorer and CEAF metric

that were classified as correct for the same query and
slot type, we include the fill with the highest meta-
classifier confidence.

For TEDL, for each entity mention link that is
classified as correct, if the link is a KB cluster ID
then we include it in the final output, but if the link
is a NIL cluster ID then we keep it aside until all
mention links are processed. Thereafter, we resolve
the NIL IDs across systems since NIL ID’s for each
system are unique. We merge NIL clusters across
systems into one if there is at least one common en-
tity mention among them.

4 Experimental Results

All results were obtained using the official NIST
scorers after the competitions ended.2 We compare
to the purely supervised approach of Viswanathan et
al. (2015) using shared systems between 2014 and
2015, and the constrained optimization approach of
Wang et al. (2013) using all 2015 systems. We also
compare to BGCM (Gao et al., 2009) in two ways.

2http://www.nist.gov/tac/2015/KBP/
ColdStart/tools.html,https://github.com/
wikilinks/neleval

First, we use BGCM in place of the constrained op-
timization approach to ensemble unsupervised sys-
tems while keeping the rest of our pipeline the same.
Secondly, we also compare to combining both su-
pervised and unsupervised systems using BGCM in-
stead of stacking. We also include an “oracle” vot-
ing ensembling baseline, which varies the threshold
on the number of systems that must agree to identify
an “oracle” threshold that results in the highest F1
score for 2015. We find that for CSSF a threshold of
3, and for TEDL a threshold of 4, gives us the best
F1 score.

Tables 1 and 2 show CSSF and TEDL results.
Our full system, which combines supervised and un-
supervised ensembling performed the best on both
tasks. TAC-KBP also includes the Slot Filler Val-
idation (SFV) task3 where the goal is to ensem-
ble/filter outputs from multiple slot filling systems.
The top ranked system in 2015 (Rodriguez et al.,
2015) does substantially better than many of the
other ensembling approaches, but it does not do as
well as our best performing system. The purely

3http://www.nist.gov/tac/2015/KBP/
SFValidation/index.html
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Figure 2: Total number of unique and common input pairs contributed by the supervised and unsupervised systems to the combi-

nation for the TEDL and CSSF tasks respectively.

supervised approach of Viswanathan et al. (2015)
and the auxiliary features approach of Rajani and
Mooney (2016) performs substantially worse, al-
though still outperforming the top-ranked individual
system in the 2015 competition. These approaches
only use the common systems from 2014, thus ig-
noring approximately half of the systems. The ap-
proach of Wang et al. (2013) performs very poorly
by itself; but when combined with stacking gives a
boost to recall and thus the overall F1. Note that all
our combined methods have a substantially higher
recall. The oracle voting baseline also performs very
poorly indicating that naive ensembling is not ad-
vantageous.

TEDL provides three different approaches to
measuring accuracy: entity discovery, entity linking,
and mention CEAF (Ji et al., 2015). CEAF finds the
optimal alignment between system and gold stan-
dard clusters, then evaluates precision and recall
micro-averaged. We obtained similar results on all
three metrics and only include CEAF. The purely
supervised stacking approach over shared systems
does not do as well as any of our combined ap-
proaches even though it beats the best performing
system (i.e. IBM) in the 2015 competition (Sil et
al., 2015). The relative ranking of the approaches is
similar to those obtained for CSSF, proving that our
approach is very general and improves performance
on two quite different and challenging problems.

Even though it is obvious that the boost in our
recall was because of adding the unsupervised sys-
tems, it isn’t clear how many new key-value pairs
were generated by these systems. We thus evalu-
ated the contribution of the systems ensembled using
the supervised approach and those ensembled using

the unsupervised approach, to the final combination
for both the tasks. Figure 2 shows the number of
unique as well as common key-value pairs that were
contributed by each of the approaches. The unique
pairs are those that were produced by one approach
but not the other and the common pairs are those
that were produced by both approaches. The num-
ber of unique pairs in the combination is the union
of unique pairs in the supervised and unsupervised
approaches. We found that approximately one third
of the input pairs in the combination came from the
unique pairs produced just by the unsupervised sys-
tems for both the TEDL and CSSF tasks. Only about
15% and 22% of the total input pairs were common
between the two approaches for the TEDL and CSSF
tasks respectively. Our findings highlight the impor-
tance of utilizing systems that do not have historical
training data.

5 Conclusion
We presented results on two diverse KBP tasks,
showing that a novel stacking-based approach to en-
sembling both supervised and unsupervised systems
is very promising. The approach outperforms the
top ranked systems from both 2015 competitions as
well as several other ensembling methods, achiev-
ing a new state-of-the-art for both of these impor-
tant, challenging tasks. We found that adding the
unsupervised ensemble along with the shared sys-
tems specifically increased recall substantially.
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