
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1882–1891,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Neural Approach to Automated Essay Scoring

Kaveh Taghipour and Hwee Tou Ng
Department of Computer Science
National University of Singapore

13 Computing Drive
Singapore 117417

{kaveh, nght}@comp.nus.edu.sg

Abstract

Traditional automated essay scoring systems
rely on carefully designed features to evaluate
and score essays. The performance of such
systems is tightly bound to the quality of the
underlying features. However, it is laborious
to manually design the most informative fea-
tures for such a system. In this paper, we de-
velop an approach based on recurrent neural
networks to learn the relation between an es-
say and its assigned score, without any fea-
ture engineering. We explore several neural
network models for the task of automated es-
say scoring and perform some analysis to get
some insights of the models. The results show
that our best system, which is based on long
short-term memory networks, outperforms a
strong baseline by 5.6% in terms of quadratic
weighted Kappa, without requiring any fea-
ture engineering.

1 Introduction

There is a recent surge of interest in neural networks,
which are based on continuous-space representation
of the input and non-linear functions. Hence, neural
networks are capable of modeling complex patterns
in data. Moreover, since these methods do not de-
pend on manual engineering of features, they can be
applied to solve problems in an end-to-end fashion.
SENNA (Collobert et al., 2011) and neural machine
translation (Bahdanau et al., 2015) are two notable
examples in natural language processing that oper-
ate without any external task-specific knowledge. In
this paper, we report a system based on neural net-
works to take advantage of their modeling capacity

and generalization power for the automated essay
scoring (AES) task.

Essay writing is usually a part of the student as-
sessment process. Several organizations, such as
Educational Testing Service (ETS)1, evaluate the
writing skills of students in their examinations. Be-
cause of the large number of students participat-
ing in these exams, grading all essays is very time-
consuming. Thus, some organizations have been us-
ing AES systems to reduce the time and cost of scor-
ing essays.

Automated essay scoring refers to the process of
grading student essays without human interference.
An AES system takes as input an essay written for
a given prompt, and then assigns a numeric score to
the essay reflecting its quality, based on its content,
grammar, and organization. Such AES systems are
usually based on regression methods applied to a set
of carefully designed features. The process of fea-
ture engineering is the most difficult part of building
AES systems. Moreover, it is challenging for hu-
mans to consider all the factors that are involved in
assigning a score to an essay.

Our AES system, on the other hand, learns the
features and relation between an essay and its score
automatically. Since the system is based on recur-
rent neural networks, it can effectively encode the
information required for essay evaluation and learn
the complex patterns in the data through non-linear
neural layers. Our system is among the first AES
systems based on neural networks designed with-
out any hand-crafted features. Our results show
that our system outperforms a strong baseline and

1https://www.ets.org

1882



achieves state-of-the-art performance in automated
essay scoring. In order to make it easier for other re-
searchers to replicate our results, we have made the
source code of our system publicly available2.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of related work in the liter-
ature. Section 3 describes the automated essay scor-
ing task and the evaluation metric used in this paper.
We provide the details of our approach in Section
4, and present and discuss the results of our experi-
mental evaluation in Section 5. Finally, we conclude
the paper in Section 6.

2 Related Work

There exist many automated essay scoring systems
(Shermis and Burstein, 2013) and some of them are
being used in high-stakes assessments. e-rater (At-
tali and Burstein, 2004) and Intelligent Essay As-
sessor (Foltz et al., 1999) are two notable examples
of AES systems. In 2012, a competition on auto-
mated essay scoring called ‘Automated Student As-
sessment Prize’ (ASAP)3 was organized by Kaggle
and sponsored by the Hewlett Foundation. A com-
prehensive comparison of AES systems was made
in the ASAP competition. Although many AES sys-
tems have been developed to date, they have been
built with hand-crafted features and supervised ma-
chine learning algorithms.

Researchers have devoted a substantial amount of
effort to design effective features for automated es-
say scoring. These features can be as simple as es-
say length (Chen and He, 2013) or more compli-
cated such as lexical complexity, grammaticality of a
text (Attali and Burstein, 2004), or syntactic features
(Chen and He, 2013). Readability features (Zesch
et al., 2015) have also been proposed in the liter-
ature as another source of information. Moreover,
text coherence has also been exploited to assess the
flow of information and argumentation of an essay
(Chen and He, 2013). A detailed overview of the
features used in AES systems can be found in (Zesch
et al., 2015). Moreover, some attempts have been
made to address different aspects of essay writing
independently. For example, argument strength and
organization of essays have been tackled by some

2https://github.com/nusnlp/nea
3https://www.kaggle.com/c/asap-aes

researchers through designing task-specific features
for each aspect (Persing et al., 2010; Persing and Ng,
2015).

Our system, however, accepts an essay text as
input directly and learns the features automatically
from the data. To do so, we have developed a
method based on recurrent neural networks to score
the essays in an end-to-end manner. We have ex-
plored a variety of neural network models in this pa-
per to identify the most suitable model. Our best
model is a long short-term memory neural network
(Hochreiter and Schmidhuber, 1997) and is trained
as a regression method. Similar recurrent neural net-
work approaches have recently been used success-
fully in a number of other NLP tasks. For exam-
ple, Bahdanau et al. (2015) have proposed an atten-
tive neural approach to machine translation based on
gated recurrent units (Cho et al., 2014). Neural ap-
proaches have also been used for syntactic parsing.
In (Vinyals et al., 2015), long short-term memory
networks have been used to obtain parse trees by
using a sequence-to-sequence model and formulat-
ing the parsing task as a sequence generation prob-
lem. Apart from these examples, recurrent neural
networks have also been used for opinion mining (Ir-
soy and Cardie, 2014), sequence labeling (Ma and
Hovy, 2016), language modeling (Kim et al., 2016;
Sundermeyer et al., 2015), etc.

3 Automated Essay Scoring

In this section, we define the automated essay scor-
ing task and the evaluation metric used for assessing
the quality of AES systems.

3.1 Task Description

Automated essay scoring systems are used in evalu-
ating and scoring student essays written based on a
given prompt. The performance of these systems is
assessed by comparing their scores assigned to a set
of essays to human-assigned gold-standard scores.
Since the output of AES systems is usually a real-
valued number, the task is often addressed as a su-
pervised machine learning task (mostly by regres-
sion or preference ranking). Machine learning algo-
rithms are used to learn the relationship between the
essays and reference scores.

1883



3.2 Evaluation Metric
The output of an AES system can be compared
to the ratings assigned by human annotators using
various measures of correlation or agreement (Yan-
nakoudakis and Cummins, 2015). These measures
include Pearson’s correlation, Spearman’s correla-
tion, Kendall’s Tau, and quadratic weighted Kappa
(QWK). The ASAP competition adopted QWK as
the official evaluation metric. Since we use the
ASAP data set for evaluation in this paper, we also
use QWK as the evaluation metric in our experi-
ments.

Quadratic weighted Kappa is calculated as fol-
lows. First, a weight matrix W is constructed ac-
cording to Equation 1:

Wi,j =
(i− j)2
(N − 1)2

(1)

where i and j are the reference rating (assigned by
a human annotator) and the hypothesis rating (as-
signed by an AES system), respectively, and N is
the number of possible ratings. A matrix O is cal-
culated such that Oi,j denotes the number of essays
that receive a rating i by the human annotator and
a rating j by the AES system. An expected count
matrix E is calculated as the outer product of his-
togram vectors of the two (reference and hypothe-
sis) ratings. The matrix E is then normalized such
that the sum of elements in E and the sum of ele-
ments in O are the same. Finally, given the matrices
O and E, the QWK score is calculated according to
Equation 2:

κ = 1−
∑

i,j Wi,jOi,j∑
i,j Wi,jEi,j

(2)

In our experiments, we compare the QWK score
of our system to well-established baselines. We
also perform a one-tailed paired t-test to determine
whether the obtained improvement is statistically
significant.

4 A Recurrent Neural Network Approach

Recurrent neural networks are one of the most suc-
cessful machine learning models and have attracted
the attention of researchers from various fields.
Compared to feed-forward neural networks, recur-
rent neural networks are theoretically more powerful

and are capable of learning more complex patterns
from data. Therefore, we have mainly focused on
recurrent networks in this paper. This section gives
a description of the recurrent neural network archi-
tecture that we have used for the essay scoring task
and the training process.

4.1 Model Architecture

The neural network architecture that we have used in
this paper is illustrated in Figure 1. We now describe
each layer in our neural network in detail.

Lookup Table Layer: The first layer of our
neural network projects each word into a dLT di-
mensional space. Given a sequence of words
W represented by their one-hot representations
(w1,w2, · · · ,wM ), the output of the lookup table
layer is calculated by Equation 3:

LT (W) = (E.w1,E.w2, · · · ,E.wM ) (3)

where E is the word embeddings matrix and will be
learnt during training.

Convolution Layer: Once the dense represen-
tation of the input sequence W is calculated, it is
fed into the recurrent layer of the network. How-
ever, it might be beneficial for the network to ex-
tract local features from the sequence before apply-
ing the recurrent operation. This optional charac-
teristic can be achieved by applying a convolution
layer on the output of the lookup table layer. In
order to extract local features from the sequence,
the convolution layer applies a linear transformation
to all M windows in the given sequence of vec-
tors4. Given a window of dense word representa-
tions x1,x2, · · · ,xl, the convolution layer first con-
catenates these vectors to form a vector x̄ of length
l.dLT and then uses Equation 4 to calculate the out-
put vector of length dc:

Conv(x̄) = W.x̄ + b (4)

In Equation 4, W and b are the parameters of the
network and are shared across all windows in the
sequence.

4The number of input vectors and the number of output vec-
tors of the convolution layer are the same because we pad the
sequence to avoid losing border windows.

1884



w1 w2 wM-1 wM...

...

w3

...

... Lookup table layer

Convolution layer

Recurrent layer

Mean over time

Score Linear layer with Sigmoid activation

Figure 1: The convolutional recurrent neural network architecture.

The convolution layer can be seen as a function
that extracts feature vectors from n-grams. Since
this layer provides n-gram level information to the
subsequent layers of the neural network, it can po-
tentially capture local contextual dependencies in
the essay and consequently improve the perfor-
mance of the system.

Recurrent Layer: After generating embeddings
(whether from the convolution layer or directly from
the lookup table layer), the recurrent layer starts pro-
cessing the input to generate a representation for the
given essay. This representation should ideally en-
code all the information required for grading the es-
say. However, since the essays are usually long,
consisting of hundreds of words, the learnt vector
representation might not be sufficient for accurate
scoring. For this reason, we preserve all the inter-
mediate states of the recurrent layer to keep track
of the important bits of information from process-
ing the essay. We experimented with basic recur-
rent units (RNN) (Elman, 1990), gated recurrent
units (GRU) (Cho et al., 2014), and long short-term
memory units (LSTM) (Hochreiter and Schmidhu-
ber, 1997) to identify the best choice for our task.
Since LSTM outperforms the other two units, we
only describe LSTM in this section.

Long short-term memory units are modified re-
current units that can cope with the problem of van-
ishing gradients more effectively (Pascanu et al.,
2013). LSTMs can learn to preserve or forget the

information required for the final representation. In
order to control the flow of information during pro-
cessing of the input sequence, LSTM units make use
of three gates to discard (forget) or pass the informa-
tion through time. The following equations formally
describe the LSTM function:

it = σ(Wi.xt + Ui.ht−1 + bi)

ft = σ(Wf .xt + Uf .ht−1 + bf )

c̃t = tanh(Wc.xt + Uc.ht−1 + bc)

ct = it ◦ c̃t + ft ◦ ct−1

ot = σ(Wo.xt + Uo.ht−1 + bo)

ht = ot ◦ tanh(ct)

(5)

xt and ht are the input and output vectors at time t,
respectively. Wi, Wf , Wc, Wo, Ui, Uf , Uc, and
Uo are weight matrices and bi, bf , bc, and bo are
bias vectors. The symbol ◦ denotes element-wise
multiplication and σ represents the sigmoid func-
tion.

Mean over Time: The outputs of the recurrent
layer, H = (h1,h2, · · · ,hM ), are fed into the
mean-over-time layer. This layer receives M vec-
tors of length dr as input and calculates an average
vector of the same length. This layer’s function is
defined in Equation 6:

MoT (H) = 1

M

M∑

t=1

ht (6)

1885



The mean-over-time layer is responsible for aggre-
gating the variable number of inputs into a fixed
length vector. Once this vector is calculated, it is
fed into the linear layer to be mapped into a score.

Instead of taking the mean of the intermediate re-
current layer states ht, we could use the last state
vector hM to compute the score and remove the
mean-over-time layer. However, as we will show
in Section 5.2, it is much more effective to use the
mean-over-time layer and take all recurrent states
into account.

Linear Layer with Sigmoid Activation: The
linear layer maps its input vector generated by the
mean-over-time layer to a scalar value. This map-
ping is simply a linear transformation of the in-
put vector and therefore, the computed value is not
bounded. Since we need a bounded value in the
range of valid scores for each prompt, we apply a
sigmoid function to limit the possible scores to the
range of (0, 1). The mapping of the linear layer after
applying the sigmoid activation function is given by
Equation 7:

s(x) = sigmoid(w.x + b) (7)

where x is the input vector (MoT (H)), w is the
weight vector, and b is the bias value.

We normalize all gold-standard scores to [0, 1]
and use them to train the network. However, dur-
ing testing, we rescale the output of the network to
the original score range and use the rescaled scores
to evaluate the system.

4.2 Training
We use the RMSProp optimization algorithm
(Dauphin et al., 2015) to minimize the mean squared
error (MSE) loss function over the training data.
Given N training essays and their corresponding
normalized gold-standard scores s∗i , the model com-
putes the predicted scores si for all training essays
and then updates the network parameters such that
the mean squared error is minimized. The loss func-
tion is shown in Equation 8:

MSE(s, s∗) =
1

N

N∑

i=1

(si − s∗i )2 (8)

Additionally, we make use of dropout regularization
to avoid overfitting. We also clip the gradient if the

norm of the gradient is larger than a threshold.
We do not use any early stopping methods. In-

stead, we train the neural network model for a fixed
number of epochs and monitor the performance of
the model on the development set after each epoch.
Once training is finished, we select the model with
the best QWK score on the development set.

5 Experiments

In this section, we describe our experimental setup
and present the results. Moreover, an analysis of the
results and some discussion are provided in this sec-
tion.

5.1 Setup
The dataset that we have used in our experiments is
the same dataset used in the ASAP competition run
by Kaggle (see Table 1 for some statistics). We use
quadratic weighted Kappa as the evaluation metric,
following the ASAP competition. Since the test set
used in the competition is not publicly available, we
use 5-fold cross validation to evaluate our systems.
In each fold, 60% of the data is used as our train-
ing set, 20% as the development set, and 20% as the
test set. We train the model for a fixed number of
epochs and then choose the best model based on the
development set. We tokenize the essays using the
NLTK5 tokenizer, lowercase the text, and normalize
the gold-standard scores to the range of [0, 1]. Dur-
ing testing, we rescale the system-generated normal-
ized scores to the original range of scores and mea-
sure the performance.

Prompt #Essays Avg length Scores
1 1,783 350 2–12
2 1,800 350 1–6
3 1,726 150 0–3
4 1,772 150 0–3
5 1,805 150 0–4
6 1,800 150 0–4
7 1,569 250 0–30
8 723 650 0–60
Table 1: Statistics of the ASAP dataset.

In order to evaluate the performance of our sys-
tem, we compare it to a publicly available open-
source6 AES system called ‘Enhanced AI Scor-

5http://www.nltk.org
6https://github.com/edx/ease

1886



ing Engine’ (EASE). This system is the best open-
source system that participated in the ASAP com-
petition, and was ranked third among all 154 par-
ticipating teams. EASE is based on hand-crafted
features and regression methods. The features that
are extracted by EASE can be categorized into four
classes:

• Length-based features

• Parts-of-Speech (POS)

• Word overlap with the prompt

• Bag of n-grams

After extracting the features, a regression algorithm
is used to build a model based on the training data.
The details of the features and the results of using
support vector regression (SVR) and Bayesian linear
ridge regression (BLRR) are reported in (Phandi et
al., 2015). We use these two regression methods as
our baseline systems.

Our system has several hyper-parameters that
need to be set. We use the RMSProp optimizer with
decay rate (ρ) set to 0.9 to train the network and we
set the base learning rate to 0.001. The mini-batch
size is 32 in our experiments7 and we train the net-
work for 50 epochs. The vocabulary is the 4,000
most frequent words in the training data and all other
words are mapped to a special token that represents
unknown words. We regularize the network by us-
ing dropout (Srivastava et al., 2014) and we set the
dropout probability to 0.5. During training, the norm
of the gradient is clipped to a maximum value of
10. We set the word embedding dimension (dLT ) to
50 and the output dimension of the recurrent layer
(dr) to 300. If a convolution layer is used, the win-
dow size (l) is set to 3 and the output dimension of
this layer (dc) is set to 50. Finally, we initialize the
lookup table layer using pre-trained word embed-
dings8 released by Zou et al. (2013). Moreover, the
bias value of the linear layer is initialized such that
the network’s output before training is almost equal
to the average score in the training data.

7To create mini-batches for training, we pad all essays in a
mini-batch using a dummy token to make them have the same
length. To eliminate the effect of padding tokens during train-
ing, we mask them to prevent the network from miscalculating
the gradients.

8http://ai.stanford.edu/∼wzou/mt

We have performed several experiments to iden-
tify the best model architecture for our task. These
architectural choices are summarized below:

• Convolutional vs. recurrent neural network

• RNN unit type (basic RNN, GRU, or LSTM)

• Using mean-over-time over all recurrent states
vs. using only the last recurrent state

• Using mean-over-time vs. an attention mecha-
nism

• Using a recurrent layer vs. a convolutional re-
current layer

• Unidirectional vs. bidirectional LSTM

We have used 8 Tesla K80 GPUs to perform our ex-
periments in parallel.

5.2 Results and Discussion
In this section, we present the results of our eval-
uation by comparing our system to the above-
mentioned baselines (SVR and BLRR). Table 2
(rows 1 to 4) shows the QWK scores of our sys-
tems on the eight prompts from the ASAP dataset9.
This table also contains the results of our statistical
significance tests. The baseline score that we have
used for hypothesis testing is underlined and the sta-
tistically significant improvements (p < 0.05) over
the baseline are marked with ‘*’. It should be noted
that all neural network models in Table 2 are unidi-
rectional and include the mean-over-time layer. Ex-
cept for the CNN model, convolution layer is not
included in the networks.

According to Table 2, all model variations are able
to learn the task properly and perform competitively
compared to the baselines. However, LSTM per-
forms significantly better than all other systems and
outperforms the baseline by a large margin (4.1%).
However, basic RNN falls behind other models and
does not perform as accurately as GRU or LSTM.

9To aggregate the QWK scores of all prompts, Fisher trans-
formation was used in the ASAP competition before averaging
QWK scores. However, we found that applying Fisher trans-
formation only slightly changes the scores. (If we apply this
method to aggregate QWK scores, our best ensemble system
(row 7, Table 2) would obtain a QWK score of 0.768.) There-
fore we simply take the average of QWK scores across prompts.

1887



ID Systems Prompts
1 2 3 4 5 6 7 8 Avg QWK

1 CNN 0.797 0.634 0.646 0.767 0.746 0.757 0.746 0.687 0.722
2 RNN 0.687 0.633 0.552 0.744 0.732 0.757 0.743 0.553 0.675
3 GRU 0.616 0.591 0.668 0.787 0.795 0.800 0.752 0.573 0.698
4 LSTM 0.775 0.687 0.683 0.795 0.818 0.813 0.805 0.594 0.746*

5 CNN (10 runs) 0.804 0.656 0.637 0.762 0.752 0.765 0.750 0.680 0.726*

6 LSTM (10 runs) 0.808 0.697 0.689 0.805 0.818 0.827 0.811 0.598 0.756*

7 (5) + (6) 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761*

8 EASE (SVR) 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699
9 EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

Table 2: The QWK scores of the various neural network models and the baselines. The baseline for the statistical significance tests

is underlined and statistically significant improvements (p < 0.05) are marked with ‘*’.

This behaviour is probably because of the relatively
long sequences of words in essays. GRU and LSTM
have been shown to ‘remember’ sequences and long-
term dependencies much more effectively and there-
fore, we believe this is the reason behind RNN’s rel-
atively poor performance.

Additionally, we perform some experiments to
evaluate ensembles of our systems. We create vari-
ants of our network by training with different ran-
dom initializations of the parameters. To combine
these models, we simply take the average of the
scores predicted by these networks. This approach
is shown to improve performance by reducing the
variance of the model and therefore make the predic-
tions more accurate. Table 2 (rows 5 and 6) shows
the results of CNN and LSTM ensembles over 10
runs. Moreover, we combine CNN ensembles and
LSTM ensembles together to make the predictions
(row 7).

As shown in Table 2, ensembles of models always
lead to improvements. We obtain 0.4% and 1.0%
improvement from CNN and LSTM ensembles, re-
spectively. However, our best model (row 7 in Table
2) is the ensemble of 10 instances of CNN models
and 10 instances of LSTM models and outperforms
the baseline BLRR system by 5.6%.

It is possible to use the last state of the recurrent
layer to predict the score instead of taking the mean
over all intermediate states. In order to observe the
effects of this architectural choice, we test the net-
work with and without the mean-over-time layer.
The results of this experiment are presented in Ta-
ble 3, clearly showing that the neural network fails
to learn the task properly in the absence of the mean-

over-time layer. When the mean-over-time layer is
not used in the model, the network needs to effi-
ciently encode the whole essay into a single state
vector and then use it to predict the score. How-
ever, when the mean-over-time layer is included, the
model has direct access to all intermediate states
and can recall the required intermediate information
much more effectively and therefore is able to pre-
dict the score more accurately.

Systems Avg QWK
LSTM 0.746*

LSTM w/o MoT 0.540
LSTM+attention 0.731*

CNN+LSTM 0.708
BLSTM 0.699
EASE (SVR) 0.699
EASE (BLRR) 0.705

Table 3: The QWK scores of LSTM neural network vari-

ants. The baseline for the statistical significance tests is un-

derlined and statistically significant improvements (p < 0.05)

are marked with ‘*’.

Additionally, we experiment with three other neu-
ral network architectures. Instead of using mean-
over-time to average intermediate states, we use
an attention mechanism (Bahdanau et al., 2015) to
compute a weighted sum of the states. In this case,
we calculate the dot product of the intermediate
states and a vector trained by the neural network,
and then apply a softmax operation to obtain the
normalized weights. Another alternative is to add a
convolution layer before feeding the embeddings to
the recurrent LSTM layer (CNN+LSTM) and eval-
uate the model. We also use a bidirectional LSTM
model (BLSTM), in which the sequence of words

1888



is processed in both directions and the intermediate
states generated by both LSTM layers are merged
and then fed into the mean-over-time layer. The re-
sults of testing these architectures are summarized
in Table 3.

The attention mechanism significantly improves
the results compared to LSTM without mean-over-
time, but it does not perform as well as LSTM with
mean-over-time. The other two architectural choices
do not lead to further improvements over the LSTM
neural network. This observation is in line with the
findings of some other researchers (Kadlec et al.,
2015) and is probably because of the relatively small
number of training examples compared to the capac-
ity of the models.

We have also compared the accuracy of our best
system (shown as ‘AES’) with human performance,
presented in Table 4. To do so, we calculate the
agreement (QWK scores) between our system and
each of the two human annotators separately (‘AES
- H1’ and ‘AES - H2’), as well as the agreement be-
tween the two human annotators (‘H1 - H2’). Ac-
cording to Table 4, the performance of our system on
average is very close to human annotators. In fact,
for some of the prompts, the agreement between our
system and the human annotators is even higher than
the agreement between human annotators. In gen-
eral, we can conclude that our method is just below
the upper limit and approaching human-level perfor-
mance.

We also compare our system to a recently pub-
lished automated essay scoring method based on
neural networks (Alikaniotis et al., 2016). Instead of
performing cross validation, Alikaniotis et al. (2016)
partition the ASAP dataset into two parts by using
80% of the data for training and the remaining 20%
for testing. For comparison, we also carry out an
experiment on the same training and test data used
in (Alikaniotis et al., 2016). Following how QWK
scores are computed in Alikaniotis et al. (2016), in-
stead of calculating QWK for each prompt sepa-
rately and averaging them, we calculate the QWK
score for the whole test set, by setting the minimum
score to 0 and the maximum score to 60. Using
this evaluation setup, our LSTM system achieves a
QWK score of 0.987, higher than the QWK score
of 0.96 of the best system in (Alikaniotis et al.,
2016). In this way of calculating QWK scores, since

Figure 2: Score variations per timestamp. All scores are nor-

malized to the range of [0, 1].

the majority of the test essays have a much smaller
score range (see Table 1) compared to [0, 60], the
differences between the system-predicted scores and
the gold-standard scores will be small most of the
time. For example, more than 55% of the essays
in the test set have a score range of [0, 3] or [0, 4]
and therefore, for these prompts, the differences be-
tween human-assigned gold-standard scores and the
scores predicted by an AES system will be small in
the range of [0, 60]. For this reason, in contrast to
prompt-specific QWK calculation, the QWK scores
are much higher in this evaluation setting and far
exceed the QWK score for human agreement when
computed in a prompt-specific way (see Table 4).

Interpreting neural network models and the inter-
actions between nodes is not an easy task. However,
it is possible to gain an insight of a network by an-
alyzing the behavior of particular nodes. In order
to understand how our neural network assigns the
scores, we monitor the score variations while test-
ing the model. Figure 2 displays the score variations
for three essays after processing each word (at each
timestamp) by the neural network. We have selected
a poorly written essay, a well written essay, and an
average essay with normalized gold-standard scores
of 0.2, 0.8, and 0.6, respectively.

According to Figure 2, the network learns to take
essay length into account and assigns a very low
score to all short essays with fewer than 50 words,
regardless of the content. This pattern recurs for
all essays and is not specific to the three selected
essays in Figure 2. However, if an essay is long
enough, the content becomes more important and
the AES system starts discriminating well written

1889



Description Prompts
1 2 3 4 5 6 7 8 Avg QWK

AES - H1 0.750 0.684 0.662 0.759 0.751 0.791 0.731 0.607 0.717
AES - H2 0.767 0.690 0.632 0.762 0.769 0.775 0.752 0.530 0.710
H1 - H2 0.721 0.812 0.769 0.851 0.753 0.776 0.720 0.627 0.754

Table 4: Comparison with human performance. H1 and H2 denote human rater 1 and human rater 2, respectively, and AES refers

to our best system (ensemble of CNN and LSTM models).

essays from poorly written ones. As shown in Fig-
ure 2, the model properly assigns a higher score to
the well written essay 2, while giving lower scores
to the other essays. This observation confirms that
the model successfully learns the required features
for automated essay scoring. While it is difficult to
associate different parts of the neural network model
with specific features, it is clear that appropriate in-
dicators of essay quality are being learnt, including
essay length and essay content.

6 Conclusion

In this paper, we have proposed an approach based
on recurrent neural networks to tackle the task of au-
tomated essay scoring. Our method does not rely on
any feature engineering and automatically learns the
representations required for the task. We have ex-
plored a variety of neural network model architec-
tures for automated essay scoring and have achieved
significant improvements over a strong open-source
baseline. Our best system outperforms the baseline
by 5.6% in terms of quadratic weighted Kappa. Fur-
thermore, an analysis of the network has been per-
formed to get an insight of the recurrent neural net-
work model and we show that the method effectively
utilizes essay content to extract the required infor-
mation for scoring essays.

Acknowledgments

This research is supported by Singapore Ministry
of Education Academic Research Fund Tier 2 grant
MOE2013-T2-1-150. We are also grateful to the
anonymous reviewers for their helpful comments.

References
Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek

Rei. 2016. Automatic text scoring using neural net-
works. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics.

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater R© v. 2.0. Technical report, Educa-
tional Testing Service.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
3rd International Conference on Learning Represen-
tations.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder–decoder for statistical ma-
chine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Yann N. Dauphin, Harm de Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in Neural Informa-
tion Processing Systems 28.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Peter W Foltz, Darrell Laham, and Thomas K Landauer.
1999. The Intelligent Essay Assessor: Applications to
educational technology. Interactive Multimedia Elec-
tronic Journal of Computer-Enhanced Learning.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing.

Rudolf Kadlec, Martin Schmid, and Jan Kleindienst.
2015. Improved deep learning baselines for Ubuntu
corpus dialogs. In Proceesings of the NIPS 2015

1890



Workshop on Machine Learning for Spoken Language
Understanding and Interaction.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural net-
works. In Proceedings of the 30th International Con-
ference on Machine Learning.

Isaac Persing and Vincent Ng. 2015. Modeling argument
strength in student essays. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing.

Isaac Persing, Alan Davis, and Vincent Ng. 2010. Mod-
eling organization in student essays. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated essay
scoring using correlated linear regression. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing.

Mark D. Shermis and Jill Burstein, editors. 2013. Hand-
book of Automated Essay Evaluation: Current Appli-
cations and New Directions. Routledge.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter.
2015. From feedforward to recurrent LSTM neural
networks for language modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
23(3):517–529.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems 28.

Helen Yannakoudakis and Ronan Cummins. 2015. Eval-
uating the performance of automated text scoring sys-
tems. In Proceedings of the Tenth Workshop on Inno-
vative Use of NLP for Building Educational Applica-
tions.

Torsten Zesch, Michael Wojatzki, and Dirk Scholten-
Akoun. 2015. Task-independent features for auto-
mated essay grading. In Proceedings of the Tenth

Workshop on Innovative Use of NLP for Building Ed-
ucational Applications.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing.

1891


