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Abstract

The problem of accurately predicting rela-
tive reading difficulty across a set of sen-
tences arises in a number of important natu-
ral language applications, such as finding and
curating effective usage examples for intelli-
gent language tutoring systems. Yet while
significant research has explored document-
and passage-level reading difficulty, the spe-
cial challenges involved in assessing aspects
of readability for single sentences have re-
ceived much less attention, particularly when
considering the role of surrounding passages.
We introduce and evaluate a novel approach
for estimating the relative reading difficulty of
a set of sentences, with and without surround-
ing context. Using different sets of lexical and
grammatical features, we explore models for
predicting pairwise relative difficulty using lo-
gistic regression, and examine rankings gener-
ated by aggregating pairwise difficulty labels
using a Bayesian rating system to form a final
ranking. We also compare rankings derived
for sentences assessed with and without con-
text, and find that contextual features can help
predict differences in relative difficulty judg-
ments across these two conditions.

1 Introduction

The reading difficulty, or readability, of a text is
an estimate of linguistic complexity and is typically
based on lexical and syntactic features, such as text
length, word frequency, and grammatical complex-
ity (Collins-Thompson and Callan, 2004; Schwarm
and Ostendorf, 2005; Kidwell et al., 2011; Kanungo
and Orr, 2009). Such estimates are often expressed

as age- or grade-level measures and are useful for
a range of educational and research applications.
For example, instructors often wish to select stories
or books that are appropriately matched to student
grade level.

Many measures have been designed to calculate
readability at the document level (e.g., for web
pages, articles, or books) (Collins-Thompson and
Callan, 2004; Schwarm and Ostendorf, 2005), as
well as the paragraph or passage level (Kidwell et
al., 2011; Kanungo and Orr, 2009). However, much
less work has attempted to characterize the readabil-
ity of single sentences (Pilán et al., 2014). This
problem is challenging because single sentences
provide less data than is typically required for re-
liable estimates, particularly for measures that rely
on aggregate statistics.

The absence of reliable single-sentence estimates
points to a gap in natural language processing (NLP)
research. Single sentences are used in a variety of
experimental and NLP applications: for example,
in studies of reading comprehension. Because read-
ability estimates have been shown to predict a sub-
stantial portion of variance in comprehension of dif-
ferent texts, it would be useful to have measures of
single-sentence readability. Thus, one aim of the
current study was to estimate the relative readabil-
ity of single sentences with a high degree of accu-
racy. To our knowledge, general-purpose methods
for computing such estimates for native language
(L1) readers have not been developed, and thus our
goal was to develop a method that would character-
ize sentence-level difficulty for that group.

The second aim is to compare the readability of
single sentences in isolation with the readability of
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these same sentences embedded in a larger context
(e.g., paragraph, passage, or document). When a
single sentence is extracted from a text, it is likely to
contain linguistic elements, such as anaphora (e.g.,
“he” or “the man”), that are semantically or syn-
tactically dependent on surrounding context. Not
surprisingly, sentences that contain these contextual
dependencies take more effort to comprehend: an
anaphoric noun phrase, or NP (e.g., “he”), automati-
cally triggers the need to resolve reference, typically
by understanding the link between the anaphor and
a full NP from a previous sentence (e.g., “John” or
“The man that I introduced you to at the party last
night” (Perfetti and Frishkoff, 2008). In general,
studies have shown a link between reading com-
prehension and the presence of such cross-sentence
relationships in the text (McNamara, 2001; Lieder-
holm et al., 2000; Voss and Silfies, 1996). This im-
plies that the very notion of readability at the sen-
tence level may depend on context as well as word-
and sentence-level features. Therefore, it is impor-
tant to compare readability estimates for single sen-
tences that occur in isolation with those that occur
within a larger passage, particularly if the target sen-
tence contains coreferences, implied meanings, or
other dependencies with its context.

To address these aims, the present study first con-
ducted two crowdsourcing experiments. In the first,
‘sentence-only’ experiment, workers were asked to
judge which of two “target” sentences they thought
was more difficult. In the second, ‘sentence-in-
passage’ experiment, another group of workers was
presented with the same target sentences that were
used in the first experiment. However, in the second
experiment, target sentences were embedded in their
original contexts.

Next, we analyzed these judgments of relative
readability for each condition (sentence-only ver-
sus sentence-in-passage) by developing models for
predicting pairwise relative difficulty of sentences.
These models used a rich representation of target
sentences based on a combination of lexical, syntac-
tic, and discourse features. Significant differences
were found in readability judgments for sentences
with and without their surrounding context. This
demonstrates that discourse-level features (i.e., fea-
tures related to coherence and cohesion) can affect
the readability of single sentences.

2 Related Work

Recent approaches to estimating readability have
used a variety of linguistic features and predic-
tion models (Collins-Thompson, 2014). The Lex-
ile Framework (Stenner, 1996) uses word frequency
estimates in a large corpus as a proxy for lexi-
cal difficulty, and sentence length as a grammati-
cal feature. Methods based on statistical machine
learning, such as the reading difficulty measures de-
veloped by Collins-Thompson and Callan (Collins-
Thompson and Callan, 2004) and (Schwarm and Os-
tendorf, 2005) used a feature set based on language
models. Later work (Heilman et al., 2008) incorpo-
rated grammatical features by parsing the sentences
in a text, and creating subtrees of one- to three-level
depth as separate features. Such features allow more
detailed, direct analysis of the sentence structure it-
self instead of traditional proxies for syntactic com-
plexity likes sentence length. The linguistic features
proposed in these works capture specific aspects of
language difficulty applied at the document level,
whereas our work investigates the effectiveness of
these feature types for characterizing aspects of dif-
ficulty at the sentence level.

Methods have been proposed to measure the read-
ability of shorter portions of text (e.g. typically less
than 100 words), including sentences. The approach
most similar to ours is the prediction of relative sen-
tence difficulty (with associated readability ranking)
for the deaf introduced by Inui et al. (2001). That
work focused on effective morphosyntactic features
for that target population with an SVM binary clas-
sifier, whereas our approach (1) is intended for a
broader population of L1 learners and thus explores
the effectiveness of adding a rich, lexically-derived
feature set, (2) uses a logistic regression model to es-
timate class probabilities and interprets the results of
that model, compared to applying an SVM without
interpretation to obtain a binary label, (3) examines
differences in predicting sentence difficulty both in
and out of passage context, and (4) creates and uses a
new dataset based on a crowdsourced approach, us-
ing hundreds of non-experts to gather thousands of
pairwise preferences, compared to a questionnaire
deployed to a small number of experts. In other do-
mains, a model was proposed to predict the read-
ability of short web summaries in Kanungo and Orr
2009. In Kidwell et al. (2011), , a set of Age of

1872



Acquisition estimates for individual words, repre-
senting the lexical component of difficulty, was used
to predict the grade levels of passages. Some ap-
proaches have explored the classification of specific
aspects of sentences, as opposed to reading difficulty
classification. For example, (Pilán et al., 2014) clas-
sified individual sentences that would be understood
by second-language learners. Another work (Kil-
garriff et al., 2008) identified sentences that would
be good dictionary examples by looking for specific
desirable features. Davenport et al. 2014 used a
traditional method of readability (Flesch-Kincaid),
within the larger context of exploring relationships
between the difficulty of tweets in a geographic area
and demographics. Research in text simplification
has applied sentence-level models of difficulty as
part of simplification-based optimization objectives.
For example, Woodsend and Lapata (2011) use word
and syllable count as proxy features for sentence dif-
ficulty when implicitly comparing different simpli-
fied variants of a sentence.

Other approaches have considered the relation-
ship of reading difficulty to structures within in the
whole text. These relationships can include the num-
ber of coreferences present in a text. Coh-Metrix
(Graesser et al., 2011) measures text cohesiveness,
accounting for both the reading difficulty of the text
and other lexical and syntactic measures as well as
a measure of prior knowledge needed for compre-
hension, and the genre of the text. Coh-Metrix uses
co-reference detection as a factor in the cohesive-
ness of a text, typically at the document or passage
level. Such cohesiveness factors account for the dif-
ficulty of constructing the mental representation of
texts with more complex internal structure. TextE-
valuator (Sheehan et al., 2013; Sheehan et al., 2014)
is designed to help educators select materials for in-
struction. The tool includes several components in
its evaluation of text, including narrativity, style, and
cohesion, beyond traditional difficulty and is again
at the whole document level. This approach illus-
trates that the difficulty of a text relies on the rela-
tionships within it. This motivates the need to con-
sider context when measuring difficulty.

Generating reading difficulty rankings of longer
texts from pairwise preferences has been performed
in other contexts. Tanaka-Ishii et al. (2010) explored
an approach for sorting texts by readability based on

pairwise preferences. Later, Chen et al. (2013) also
proposed a model to obtain passage readability rank-
ing by aggregating pairwise comparisons made by
crowdworkers. In De Clercq et al.(2014), pairwise
judgments of whole passages were obtained from
crowdworkers and were found to give comparable
results in aggregate to those obtained from experts.
A pairwise ranking of text readability was created in
Pitler and Nenkova (2008) in which readability was
defined by subjective questions asked to the reader
after finishing the article, such as “How well-written
is this article?”. All of the above previous work was
focused on ordering longer text passages, not single
sentences as we do here.

Finally, research in the Machine Translation field
has explored pairwise prediction of the best transla-
tion between two sentence options. For example, in
Song and Cohn (2011), a pairwise prediction model
was built using n-gram precision and recall, as well
as function, content, and word counts. However, un-
like pairwise prediction of difficulty, the prediction
is done with respect to a reference sentence, or set
of reference sentences.

3 Data Collection and Processing

We now describe methods used to create our dataset
of sentences, to collect pairwise assessments of dif-
ficulty, and to aggregate these pairwise preferences
into a complete ranking.

3.1 Data Set

The study sentences were drawn from a corpus com-
bining the American National Corpus (Reppen et
al., 2005), the New York Times Corpus (Sandhaus,
2008), and the North American News Text Corpus
(McClosky et al., 2008). The domain of these cor-
pora is largely news text, but also includes other top-
ics, such as travel guides and other non-fiction. In to-
tal, this database contains 60,663,803 sentences that
served as initial candidates. Sentences were filtered
out that didn’t include one of the 70 target words
that the third author selected for a study on teach-
ing vocabulary to 8-14 year-old students. Other sen-
tences were removed based on length, keeping only
sentences of between 6 and 20 words. Some sen-
tences were removed due to the presence of one or
more rare words. Finally, sentences were annotated
with the surrounding document reading level, us-

1873



ing a lexical readability model (Collins-Thompson
and Callan, 2004).The data set gathered by (Collins-
Thompson and Callan, 2004) was used in order to
add to the amount of lower-level reading material in
the collected corpora.

With these sentences, two crowdsourced tasks
were prepared to gather pairwise assessments of sen-
tence reading difficulty. In one task, the sentences
were presented alone, outside of their original pas-
sage context. In the other task, the same sentences
were presented within their original passage context.
The objective was to generate two sets of pairwise
comparisons of the readability of a sentence. In to-
tal, 120 sentence pairs were used for the first task
and 120 passage pairs were used for the second.
Each sentence was compared to five others, which
created 300 comparisons in each task. The five sen-
tences matched to each sentence were selected to en-
sure that pairs with a range of document level differ-
ences would be created. Within each type of pair, a
random pair was selected.

There were several constraints when generating
pairs for comparison. To allow for sentences to be
taken from documents with a range of reading lev-
els, sentences were selected evenly from documents
at each reading level. From the twelve standard U.S.
grade levels used in readability, each document was
considered to be part of a bin consisting of two ad-
jacent grade levels, such as grades 1 and 2, for ex-
ample. Sentences were selected evenly from those
bins.

Each sentence needed sufficient context to ensure
there would be equivalent context for each item that
would be compared, so only passages of sufficient
size were included. To ensure passages were of
similar length, only passages that had between 136
and 160 words were included. Contexts having at
least two sentences before and after the sentence
in question were strongly preferred. Each selected
sentence was paired with one sentence from each
of the other grade level bins. For example, a sen-
tence from grade 1 would be paired with one sen-
tence each from grade 3-4, 5-6, 7-8, 9-10, and 11-
12. Finally, each pair of sentences was presented in
AB and BA order. For each pair, there were seven
worker decisions. There were 296 unique workers
for the sentence-only task, and 355 for the sentence-
in-passage task.

3.2 Crowdsourcing

Both of these tasks were carried out on the Crowd-
flower platform. The workers were first given in-
structions for each task, which included a descrip-
tion of the general purpose of the task. In the
sentence-only task, workers were asked to select
which of the two sentences was more difficult. In
the sentence-within-passage task, workers were sim-
ilarly asked to decide which underlined sentence
was more difficult. The instructions for the latter re-
quested that the workers make their judgment only
on the sentence, not on the whole context. In both
tasks, there was an option for “I don’t know or can’t
decide”. The workers were asked to make their deci-
sion based on the vocabulary and grammatical struc-
ture of the sentences. Finally, examples for each task
were provided with explanations for each answer.

For each task, at least 40 gold standard ques-
tions were created from pairs of sentences that were
judged to be sufficiently distinct from one another
so that they could easily be answered correctly. For
the sentence-in-passage task, several gold standard
questions were written to verify that the instruc-
tions were being followed, since it was possible that
a worker might judge the sentences based on the
quality of the passage alone. These gold examples
consisted of an easier sentence in a difficult pas-
sage compared with a difficult sentence within an
easy passage. For each task, the worker saw three
questions, including one gold standard question. A
worker needed to maintain an 85% accuracy rating
on gold standard questions to continue, and needed
to spend at least 25 seconds per page, which con-
tained 3 questions each.

A weighted disagreement rate was calculated for
each worker. If a worker’s response to a ques-
tion differed from the most frequent answer to that
question, the percentage of agreement was counted
against the worker. If a worker, for the sentence-
only task, had a disagreement rate (the weighted
disagreement penalty divided by the total questions
they answered) of 15% or higher, their contribution
was removed from the data set (or 17% or higher for
the sentence in passage task). The agreement for the
sentence-in-passage task is lower than the sentence-
only task (88.93% and 90.33% respectively), so the
permitted disagreement level is higher for that task.
This resulted in the removal of 5.7% and 4.5% of
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pairwise judgments, respectively. For each ques-
tion, there was an optional text form to allow work-
ers to submit feedback. The sentence-only task paid
11 cents per page, and the sentence-in-passage task
paid 22 cents per page.

3.3 Ranking Generation

Each task resulted in 4,200 pairwise preference
judgments, excluding gold-standard answers. To
aggregate these pairwise preferences into an over-
all ranking of sentences, we use a simple, publicly
available approach evaluated by Chen et al. as be-
ing competitive with their own Crowd-BT aggre-
gation method: the Microsoft Trueskill algorithm
(Herbrich et al., 2007). Trueskill is a Bayesian skill
rating system that generalized the well-known Elo
rating system, in that it generates a ranking from
pairwise decisions. As Trueskill’s ranking algorithm
depends on the order in which the samples are pro-
cessed, we report the ranking as an average of 50
runs.

The judgments were not aggregated for each com-
parison. Instead, each of the judgments was treated
individually. This allows Trueskill to consider the
degree of agreement between workers, since a sen-
tence judgment that has high agreement reflects a
larger difference in ranking than one that has lower
agreement. Each sentence was considered a player,
and the winner between two, A or B, was the sen-
tence considered most difficult. If a worker chose
“I don’t know or can’t tell”, it was considered a
draw. The prediction resulting in “I don’t know or
can’t tell” is rare; 2.2% of decisions in the sentence
only task resulted in a draw, and 2.0% for sentences
within passages. After processing each of the judg-
ments, a rating can be built of sentences, ranked
from least difficult to most difficult. We can com-
pare the resulting rankings for the sentence-only task
and the sentence-in-passage task to see the effect of
context on relative sentence difficulty.

4 Modeling Pairwise Relative Difficulty

Our first step in exploring relative difficulty order-
ing for a set of sentences was to develop a model
that could accurately predict relative difficulty for a
single pair of sentences, corresponding to the pair-
wise judgements of relative difficulty we gathered
from the crowd. We did this for both the sentence-

only and the sentence-in-passage tasks. In predict-
ing a pairwise judgment for the sentence-only task,
the model uses only the sentence texts. In the model
for the sentence-in-passage task, the Stanford De-
terministic Coreference Resolution System (Raghu-
nathan et al., 2010) is used to find coreference chains
within the passage. From these coreference chains,
sentences with references to and from the target sen-
tence can be identified. If any additional sentences
are found, these are used in a separate feature set
that is included in the model; for all possible fea-
tures, they are calculated for the target sentence, and
separately for the additional sentence set.

Prior to training the final model, feature selec-
tion was done on random splits of the training data.
Training data was used to fit a Random Forest Clas-
sifier, and based on the resulting classifier, the most
important variables were selected using sklearn’s
feature importance method. The top 2% of the fea-
tures (or 1% for the sentence-in-passage with coref-
erence, since the feature set size is doubled) were se-
lected automatically. This resulted in a feature size
of 40-50 features. We implemented our models us-
ing scikit-learn (Pedregosa et al., 2011) in Python.

The resulting features were used to train a Logis-
tic Regression model. While other prediction mod-
els such as Support Vector Machines have been ap-
plied to relative readability prediction (Inui and Ya-
mamoto, 2001), we chose Logistic Regression due
to its ability to provide estimates of class prob-
abilities (which may be important for reliability
when deploying a system that recommends high-
quality items for learners), its connection to the
Rasch psychometric model used with reading as-
sessments (Ehara et al., 2012), and the interpretable
nature of the resulting parameter weights. Since a
given feature has a value for sentence A and B, if a
feature was selected for only Sentence A or B, the
feature for the other sentence was also added. We
used the NLTK library (Bird et al., 2009) to tokenize
the sentence for feature processing.

At the sentence level, the familiarity of the words
is a significant factor to consider in any judgment of
difficulty. The grammatical structure of a sentence
is also important to consider: if the sentence uses
a more familiar structure, it is likely to be consid-
ered less difficult than a sentence with more unusual
structure. We thus identified two groups of potential
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features: lexical and grammatical, described below.

4.1 Lexical Features

For lexical features, based partly on the work of
(Song and Cohn 2011) we included the percentage
of non-stop words (using NLTK list), the total num-
ber of words and the total number of characters as
features. We included the percentage of words in
the text found in the Revised Dale-Chall word list
(Dale and Chall, 2000) to capture the presence of
more difficult words in the sentence.

Because sentences that contain rarer sequences of
words are likely to be more difficult, and the likeli-
hood of the sentence based on a large corpus should
reflect this, we included the n-gram likelihood of
each sentence, over each of 1-5 n-grams, as a fea-
ture. The Microsoft WebLM service (Wang et al.,
2010) was used to calculate the n-gram likelihood.

In the field of psycholinguistics, Age of Acquisi-
tion (AoA) refers to the age at which a word is first
learned by a child. A database of 51,715 words col-
lected by (Kuperman et al., 2012) provides a rich re-
source for use in reading difficulty measures. With
this dataset, we computed several additional fea-
tures: the average, maximum, and standard devia-
tion of the aggregated AoA for all words in a sen-
tence that were present in the database. Since the
data set also includes the number of syllables in each
word, and as (Kincaid et al., 1975) proposes that
words with more syllables are more difficult, we also
included the average and maximum syllable count as
potential features.

4.2 Syntactic Features

We parsed each sentence in the data set using the
BLLIP Parser (Charniak and Johnson, 2005), which
includes a pre-trained model built on the Wall Street
Journal Corpus. This provided both a syntactic tree
and part of speech tags for the sentence. As Part of
Speech tagging is often used as a high-level linguis-
tic feature, we computed percentages for each PoS
tag present, since the percentages might vary be-
tween difficult sentences and easier sentences. The
percentage for each Part of Speech tag is defined as
the number of times a certain tag occurred, divided
by the total tags. The diversity of part of speech tags
was used since this might vary between difficult and
easier sentences.

Using the syntactic tree provided by the parser,
we obtained the likelihood of the parse, and the like-
lihood produced by the re-ranker, as syntactic fea-
tures. If a sentence parse has a comparatively high
likelihood, it is likely to be a more common struc-
ture and thus more likely to be easier to read. The
length and height of the parse were also included as
features, since each of these could reflect the diffi-
culty of the parse. Including the entire parse of the
sentence would create too much sparsity since syn-
tactic parses vary highly from sentence to sentence.
Therefore, as was done in (Heilman et al., 2008),
subtrees of depth one to three were created from the
syntactic parse, and were added as features. This
creates a smaller feature set, and one that can poten-
tially model specific grammatical structures that are
associated with a specific level of difficulty.

5 Pairwise Difficulty Prediction Results

The performance of the logistic regression models
trained with different feature sets, for each task, is
shown in Table 1. We reported the mean and stan-
dard deviation of the accuracy of each model over
200 randomly selected training and testing splits.
Each test set consisted of 20% of the data, and con-
tained 60 aggregate pairs, all of which are sentences
(24 in total) that were not present in the training
data. The test sets for the sentence-in-passage and
sentence-only task contain the same sentence pairs,
but the individual judgements are different.

For comparison, an oracle is included that repre-
sents the accuracy a model would achieve if it made
the optimal prediction for each aggregate pair. Due
to disagreement within the crowd, the oracle cannot
reach 100% accuracy. For example, for some pair
A and B, if 10 workers selected A as the more diffi-
cult sentence, and 4 workers selected B, the oracle’s
prediction for that pair would be that that A is more
difficult. The judgments of the four workers that se-
lected B would be counted as inaccurate, since the
feature set is the same for the judgments with A and
the judgments with B. Therefore, the oracle repre-
sents the highest accuracy a model can achieve, con-
sistent with the provided labels, using the features
provided.

Examining the results in Table 1, we find the best
performing configuration, Model B, used all features
as candidates. The exact number of features selected

1876



Sentence Only In Passage, With Coref In Passage, No Coref
Model Acc. S.D. p-value Acc. S.D. p-value Acc. S.D. p-value

Oracle (A) 90.13% 2.71% — 87.81% 1.84% — 87.81% 1.84% —
All Features (B) 84.69% 3.46% 0.01 ↓ 81.66% 3.17% 0.005 ↓ 81.91% 3.27% ← 0.04

AoA + Parse L. (C) 84.33% 3.13% 0.001 ↓ 81.27% 3.93% 0.001 ↓ 80.84% 3.61% ← 0.001
AoA (D) 79.62% 2.71% 0.001 ↓ 79.72% 2.86% 0.001 ↓ 78.99% 2.58% ← 0.001

Strat. Random 50.28% 1.68% — 50.31% 2.01% — 50.31% 2.01% —
Table 1: Mean and standard deviation of accuracy on 200 randomized samples of 20% held out data. ‘With coref’ indicates
coreference features were used. The arrow indicates which immediately adjacent accuracy result is used for p-value comparison,
e.g. Model B sentence-only is compared to model C sentence-only, and model B passage, no coref is compared to model B passage,
with coref.

varied depending on the task. However, the simplest
model, the Age of Acquisition model (D) consisting
of the average, standard deviation, and maximum
AoA features (sentence-only: 6 features, sentence-
in-passage: 12 features) performed well, achieving
over 78% accuracy on all tasks, showing that most
of the relative difficulty signal at the sentence level
can be captured with a few lexical difficulty features.
The Age of Acquisition + Parse Likelihood model
(C) consists of all Age of Acquisition features, plus
the likelihood of the parse (sentence-only: 10 fea-
tures, sentence-in-passage: 20 features)1.

To assess the contribution of different features to
the model prediction, feature group importances are
reported in Table 2. As features for a given group
are often highly correlated with each other, such as
in Age of Acquisition, the importance is calculated
for feature groups. Based on the method described
for Model B, each feature group is removed from
consideration in the model, and the resulting error
rate from Model B is used to calculate an importance
measure. The most important feature is normalized
to have a value of 1.0, with the rest being relative to
the difference in error rate from the original model,
averaged across splits.

These prediction results show that relative reading
difficulty can be predicted for sentence pairs with
high accuracy, even with fairly simple feature sets.
In particular, the results for AoA model D, which
uses a small number of targeted features, are com-
petitive with the best model B that relies on a much
larger feature set. The addition of coreference fea-
tures did result in small but significant changes in the

1The p-value for each accuracy measurement compares its
significance, using a paired t-test, to the neighboring model
in the direction of the arrow. For example, the sentence-only
Model B is compared to sentence-only Model A.

Sentence Only Sentence in Passage (with Coref)
Feature Imp. Feature Imp.

Age of Acq. 1.00 Age of Acq. 1.00
Part of Speech 0.28 Syllables 0.27

Syn. Score 0.22 Part of Speech 0.23
Syn. Other 0.21 Syn. Tree 0.18
Syllables 0.19 Dale Chall 0.17
Ngram L. 0.19 Content Word % 0.17
Word Len. 0.17 Word Len. 0.16
Dale Chall 0.16 Syn. Other 0.16

Content Word % 0.15 Syn. Score 0.12
Syn. Tree 0.12 Ngram L. 0.10

Table 2: Relative feature importance for Model B. Feature im-
portance is the increase in absolute error with a specific feature
group removed, averaged across cross-validation folds used for
Table 1, and normalized relative to the most informative fea-
ture. For Sentence in Passage, feature groups include corefer-
ence features.

Value
Avg. Abs. Diff 9.3
Avg. Abs. Std Dev 7.7
Pearson’s correlation 0.94*
Spearman’s correlation 0.94*

Table 3: Comparison of rankings generated with and without
passage. Asterisk * indicates p < 0.0001.

% Diff Pearson p-val. Spearman p-val.
Reranker -0.33 0.0002 -0.29 0.001
Parser -0.33 0.0002 -0.28 0.002

Table 4: Correlation between difference in rank and percentage
difference in features.

accuracy of the sentence-in-passage task, although
in one case the accuracy was reduced with corefer-
ence features.

6 Ranking Results

Using the pairwise aggregation method described
in Sec. 3.3, we ranked sentences by relative dif-
ficulty for both sentence-only and sentence-in-
passage tasks. By observing how the overall rank or-
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Sentence Sentence-In-Passage
All Gold Only All Gold Only

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
AoA Avg 0.6971 0.7151 0.7366 0.7598 0.7155 0.7356 0.6220 0.6482
AoA Std Dev 0.6366 0.6596 0.7074 0.7385 0.6779 0.7023 0.5742 0.5825
AoA Max 0.7084 0.6814 0.8036 0.7877 0.7408 0.7155 0.6215 0.6127
Parser L. -0.4942 -0.5297 -0.4605* 0.4920 -0.4172 -0.4465 -0.5099 -0.5157
Reranker L. -0.4923 -0.5280 -0.4574* -0.4751 -0.4139 -0.4450 -0.4969 -0.4879*

Table 5: Sentence-Only and Sentence-In-Passage Ranking Correlation with Individual Features. Gold indicates only gold-standard
questions were used to build ranking. All correlations have p < 0.0001 except those with an asterisk *, which have p < 0.001.

dering of sentences changes across these conditions,
we can identify differences in how workers judged
the relative difficulty of sentences with and without
context.

6.1 Rank Differences

We report differences in ranking in terms of mean
and standard deviation of the absolute difference in
rank index of each sentence across the two rank-
ings, along with Pearson’s coefficient and Spear-
man’s rank order coefficients. Comparisons between
the rankings for each task are shown in Table 3.

In comparing crowd-generated rankings for the
sentence-only and sentence-in-passage task, the re-
sults show a statistically significant aggregate dif-
ference in how the crowd ranks sentence difficulty
with and without the surrounding passage. While
the correlation between the two rankings is high,
and the average normalized change in rank posi-
tion is 7.7%, multiple sentences exhibited a large
change in ranking. For example, the sentence ‘As
a result, the police had little incentive to make con-
cessions.’ was ranked significantly easier when pre-
sented out of context than when presented in context
(rank change: -30 positions). For that example, the
surrounding passage explained the complex political
environment referred to indirectly in that sentence.

6.2 Feature Correlation with Rank Differences

To examine why sentences may be ranked as more
or less difficult, depending on the context, we exam-
ined the correlation between a sentence’s change in
rank (Sentence-Only Ranking minus the Sentence-
in-Passage ranking) and the normalized difference in
feature values between the sentence representation
and the remaining context representation. We found
that percentage change in parser and reranker like-
lihoods had the most significant correlation (-0.33)

with ranking change, as shown in Table 4.
To interpret this result, note that the parser and

reranker likelihood represent the probability the
parser and reranker models assign to the syntactic
parse produced by the sentence. In other words, they
are a measure of how likely it is that the sentence
structure occurs, based on the model’s training data.
If the difficulty of the sentence-in-passage is ranked
higher than the sentence alone, this correlates with
the target sentence having a syntactic structure with
higher likelihood than the average of the surround-
ing sentence structures. This means that if a sen-
tence that has a frequently-seen syntactic structure is
in a passage with sentences that have less common
structures, the sentence within the passage is more
likely to be judged as more difficult. The reverse is
also true: if a sentence that has a more unusual syn-
tactic structure is in a passage with sentences with
more familiar structures, the sentence without the
surrounding passage is more likely to be ranked as
more difficult.

We also examined the rank correlation of crowd-
generated rankings with rankings produced by sort-
ing sentences based on the value of individual fea-
tures. In addition to the full rankings, we con-
structed a ranking produced only by the gold stan-
dard examples, denoted Gold Only and included this
in the comparison. The gold standard questions con-
sist of examples constructed by the authors to have a
clear relative difficulty result. The rank correlations
are shown in Table 5 for both tasks.

The reasons for discrepancies in relative diffi-
culty assessment between the sentence-only and
sentence-in-passage conditions require further ex-
ploration. While the correlation between the per-
centage change in probability of the parse and the
difference in ranking is significant, it is not large.
It does indicate that despite judges being explicitly
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Crowd
Pearson Spearman

Expert label 0.85 0.84
Document-based label 0.70 0.70

Table 6: Correlation between sentence readability labels
and crowd-generated ranking, for expert (sentence-level) and
document-based labels (from document readability prediction).
All correlations have p < 0.0001.

told to only consider the sentence, the properties of
the surrounding passage may indeed influence the
perceived relative difficulty of the sentence.

6.3 Review of Data

The pairwise prediction results indicate that a large
proportion of the crowdsourced pair orderings can
be decided using vocabulary features, due to the
strong performance of the Age of Acquisition fea-
tures. To identify the relative importance of vocab-
ulary and syntax in our data, we reviewed each pair
and judged whether the sentence’s syntax or vocab-
ulary, or the combination of both, were needed to
correctly predict the more difficult sentence. For
many pairs, either syntax or vocabulary could be
used to correctly predict the more difficult sentence
since each factor indicated the same sentence was
more difficult. We found that 19% of pairs had only
a vocabulary distinction, and 65% of pairs could
be judged correctly either by vocabulary or syntax.
Therefore, 84% of pairs could be judged using vo-
cabulary, which explains the high performance of
the Age of Acquisition features.

The level of a sentence’s source document was
used as a proxy for the sentence’s grade level when
building the pairs. To build a sentence-level gold
standard for this dataset, we asked a teacher with a
Master of Education with a Reading Specialist fo-
cus and 30 years of experience in elementary and
high school reading instruction, to identify the grade
level of each sentence. This expert was asked to as-
sign either a single grade level or a range of levels to
each of the 120 sentences. From this, an expert rank-
ing was created, using the midpoint of each expert-
assigned range. The correlation between the expert
sentence ranking and the crowd ranking can be seen
in Table 6, reinforcing the finding that crowdsourced
judgments can provide an accurate ranking of diffi-
culty (De Clercq et al., 2014).

7 Conclusion

Using a rich sentence representation based on lex-
ical and syntactic features leveraged from previous
work on document-level readability, we introduced
and evaluated several models for predicting the rel-
ative reading difficulty of single sentences, with and
without surrounding context. We found that while
the best prediction performance was obtained by us-
ing all feature classes, simpler representations based
on lexical features such as Age of Acquisition norms
were effective. The accuracy achieved by the best
prediction model came within 6% of the oracle ac-
curacy for both tasks.

Many of the features identified had a high correla-
tion with the rankings produced by the crowd. This
indicates that these features can be used to build a
model of sentence difficulty. With the rankings built
from crowdsourced judgments on sentence diffi-
culty, small but significant differences were found in
how sentences are ranked with and without the sur-
rounding passages. This result suggests that prop-
erties of the surrounding passage of a sentence can
change the perceived difficulty of a sentence.

In future work, we plan to increase the number
of sentences in our data set, so that additional more
fine-grained features might be considered. For ex-
ample, weights for lexical features could be more
accurately estimated with more data. Our use of the
crowd-based labels was intended to reduce noise in
the ranking analysis, but we also intend to use the
pairwise predictions produced by the logistic model
as the input to the aggregation model, so that rank-
ings can be obtained for previously unseen sentences
in operational settings. Another goal is to obtain ab-
solute difficulty labels for sentences by calibrating
ordinal ranges based on the relative ranking. Finally,
we are interested in the contribution of context in un-
derstanding the meaning of an unknown word.
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