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Abstract

We describe a neural shift-reduce parsing
model for CCG, factored into four unidirec-
tional LSTMs and one bidirectional LSTM.
This factorization allows the linearization of
the complete parsing history, and results in
a highly accurate greedy parser that outper-
forms all previous beam-search shift-reduce
parsers for CCG. By further deriving a glob-
ally optimized model using a task-based loss,
we improve over the state of the art by up to
2.67% labeled F1.

1 Introduction

Combinatory Categorial Grammar (CCG; Steedman,
2000) parsing is challenging due to its so-called
“spurious” ambiguity that permits a large num-
ber of non-standard derivations (Vijay-Shanker and
Weir, 1993; Kuhlmann and Satta, 2014). To ad-
dress this, the de facto models resort to chart-based
CKY (Hockenmaier, 2003; Clark and Curran, 2007),
despite CCG being naturally compatible with shift-
reduce parsing (Ades and Steedman, 1982). More
recently, Zhang and Clark (2011) introduced the
first shift-reduce model for CCG, which also showed
substantial improvements over the long-established
state of the art (Clark and Curran, 2007).

The success of the shift-reduce model (Zhang and
Clark, 2011) can be tied to two main contributing
factors. First, without any feature locality restric-
tions, it is able to use a much richer feature set;
while intensive feature engineering is inevitable, it
has nevertheless delivered an effective and concep-
tually simpler alternative for both parameter estima-
tion and inference. Second, it couples beam search

with global optimization (Collins, 2002; Collins and
Roark, 2004; Zhang and Clark, 2008), which makes
it less prone to search errors than fully greedy mod-
els (Huang et al., 2012).

In this paper, we present a neural architecture for
shift-reduce CCG parsing based on long short-term
memories (LSTMs; Hochreiter and Schmidhuber,
1997). Our model is inspired by Dyer et al. (2015),
in which we explicitly linearize the complete history
of parser states in an incremental fashion by requir-
ing no feature engineering (Zhang and Clark, 2011;
Xu et al., 2014), and no atomic feature sets (Chen
and Manning, 2014). However, a key difference is
that we achieve this linearization without relying on
any additional control operations or compositional
tree structures (Socher et al., 2010; Socher et al.,
2011; Socher et al., 2013), both of which are vital
in the architecture of Dyer et al. (2015). Crucially,
unlike the sequence-to-sequence transduction model
of Vinyals et al. (2015), which primarily conditions
on the input words, our model is sensitive to all as-
pects of the parsing history, including arbitrary po-
sitions in the input.

As another contribution, we present a global
LSTM parsing model by adapting an expected F-
measure loss (Xu et al., 2016). As well as natu-
rally incorporating beam search during training, this
loss optimizes the model towards the final evaluation
metric (Goodman, 1996; Smith and Eisner, 2006;
Auli and Lopez, 2011b), allowing it to learn shift-
reduce action sequences that lead to parses with high
expected F-scores. We further show the globally op-
timized model can be leveraged with greedy infer-
ence, resulting in a deterministic parser as accurate
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Figure 1: A CCG derivation, in which each point corresponds to
the result of a shift-reduce action. In this example, composition
(B) and application (>) are re actions, and type-raising (T) is a
un action.

as its beam-search counterpart.

On standard CCGBank tests, we clearly outper-
form all previous shift-reduce CCG parsers; and by
combining the parser with an attention-based LSTM
supertagger (§4), we obtain further significant im-
provements (§5).

2 Shift-Reduce CCG Parsing

CCG is strongly lexicalized by definition. A CCG
grammar extracted from CCGBank (Hockenmaier
and Steedman, 2007) contains over 400 lexical types
and over 1,500 non-terminals (Clark and Curran,
2007), which is an order of magnitude more than
those of a typical CFG parser. This lexicalized na-
ture raises another unique challenge for parsing—
any parsing model for CCG needs to perform lexical
disambiguation. This is true even in the approach
of Fowler and Penn (2010), in which a context-
free cover grammar extracted from CCGBank is
used to parse CCG. Indeed, as noted by Auli and
Lopez (2011a), the search problem for CCG pars-
ing is equivalent to finding an optimal derivation
in the weighted intersection of a regular language
(generated by the supertagger) and a mildly context-
sensitive language (generated by the parser), which
can quickly become expensive.

The shift-reduce paradigm (Aho and Ullman,
1972; Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004) applied to cCG (Zhang and Clark,
2011) presents a more elegant solution to this prob-
lem by allowing the parser to conduct lexical as-
signment “incrementally” as a complete parse is be-
ing built by the decoder. This is not possible with
a chart-based parser, in which complete derivations
must be built first. Therefore, a shift-reduce parser
is able to consider a much larger set of categories
per word for a given input, achieving higher lexi-

cal assignment accuracy than the C&C parser (Clark
and Curran, 2007), even with the same supertagging
model (Zhang and Clark, 2011; Xu et al., 2014).

In our parser, we follow this strategy and adopt
the Zhang and Clark (2011) style shift-reduce tran-
sition system, which assumes a set of lexical cate-
gories has been assigned to each word using a su-
pertagger (Bangalore and Joshi, 1999; Clark and
Curran, 2004). Parsing then proceeds by applying
a sequence of actions to transform the input main-
tained on a queue, into partially constructed deriva-
tions, kept on a stack, until the queue and available
actions on the stack are both exhausted. At each time
step, the parser can choose to shift (sh) one of the
lexical categories of the front word onto the stack,
and remove that word from the queue; reduce (re)
the top two subtrees on the stack using a CCG rule,
replacing them with the resulting category; or take
a unary (un) action to apply a CCG type-raising or
type-changing rule to the stack-top element. For ex-
ample, the deterministic sequence of shift-reduce ac-
tions that builds the derivation in Fig.1 is: sh = NP,
un = S/(S\NP), sh = (S\NP)/NP, re =
S/NP, sh = NP and re = S, where we use = to
indicate the CCG category produced by an action.!

3 LSTM Shift-Reduce Parsing
3.1 LSTM

Recurrent neural networks (RNNs; e.g., see Elman,
1990) are factored into an input layer x; and a hid-
den state (layer) h; with recurrent connections, and
they can be represented by the following recurrence:

ht = q)9<xt7ht—1)7 (1)

where X is the current input, h;_; is the previous
hidden state and & is a set of affine transformations
parametrized by 6. Here, we use a variant of RNN
referred to as LSTMs, which augment Eq. 1 with a
cell state, ¢, s.t.

hy, ¢t = ®p(x¢, i1, €1-1). (2)
Compared with conventional RNNs, this extra fa-

cility gives LSTMs more persistent memories over

'Our parser models normal-form derivations (Eisner, 1996)
in CCGBank. However, unlike Zhang and Clark (2011), deriva-
tions are not restricted to be normal-form during inference.



longer time delays and makes them less suscepti-
ble to the vanishing gradient problem (Bengio et al.,
1994). Hence, they are better at modeling temporal
events that are arbitrarily far in a sequence.

Several extensions to the vanilla LSTM have been
proposed over time, each with a modified instan-
tiation of ®y that exerts refined control over e.g.,
whether the cell state could be reset (Gers et al.,
2000) or whether extra connections are added to the
cell state (Gers and Schmidhuber, 2000). Our in-
stantiation is as follows for all LSTMs:

it =0o(Wipxe + Wiphy 1 + Wieci_1 + by)
fi = o(Wpxy + Wephy 1 + Wyee, + by)
¢t =fOci 1+

it © tanh(Wegx: + Werhy—1 + be)
0 = 0(Worxs + Worhi 1 + Woee; + by)
h; = o; ® tanh(cy),

where o is the sigmoid activation and © is the
element-wise product.

In addition to unidirectional LSTMs that model
an input sequence Xg, X1, ...,Xnp—1 in a strict left-
to-right order, we also use bidirectional LSTMs
(BLSTMs; Graves and Schmidhuber, 2005), which
read the input from both directions with two inde-
pendent LSTMs. At each step, the forward hid-
den state h; is computed using Eq. 2 for ¢t =
(0,1,...,n — 1); and the backward hidden state h,
is computed similarly but from the reverse direction
fort = (n—1,n — 2,...,0). Together, the two
hidden states at each step ¢ capture both past and fu-
ture contexts, and the representation for each x; is
obtained as the concatenation [hy; ﬁt].

3.2 Embeddings

The neural network model employed by Chen and
Manning (2014), and followed by a number of other
parsers (Weiss et al., 2015; Zhou et al., 2015; Am-
bati et al., 2016; Andor et al., 2016; Xu et al., 2016)
allows higher-order feature conjunctions to be au-
tomatically discovered from a set of dense feature
embeddings. However, a set of atomic feature tem-
plates, which are only sensitive to contexts from the
top few elements on the stack and queue are still
needed to dictate the choice of these embeddings.
Instead, we dispense with such templates and seek

input: wg ... wWp—1
axiom: 0 : (0,€, 5, ¢)
goal: 2n — 14 p: (n,d,€,A)

t: (j,5,$wj|B,A)
t+1:(+1,6zw,,H,40)

(sh;0 < j <n)

ti(j,5‘81|507/87A)
t+1:(4,0lx, 8,AU(x)))

(re; s180 — )

l: (j75|807ﬁ7A)
t+1: (],5|IE,6,A)

(un; sp — x)

Figure 2: The shift-reduce deduction system. For the sh de-
duction, T, denotes an available lexical category for w;; for
re, (x) denotes the set of dependencies on z.

to design a model that is sensitive to both local and
non-local contexts, on both the stack and queue.
Consequently, embeddings represent atomic input
units that are added to our parser and are preserved
throughout parsing. In total we use four types of
embeddings, namely, word, CCG category, POS and
action, where each has an associated look-up table
that maps a string of that type to its embedding. The
look-up table for words is £,, € RF*I*| where k is
the embedding dimension and |w]| is the size of the
vocabulary. Similarly, we have look-up tables for
CCG categories, L. € Rl for the three types of
actions, £, € R™*3, and for POS tags, £, € R™¥IPl.

3.3 Model

Parser. Fig. 2 shows the deduction system of our
parser.”> We denote each parse item as (j, 6, 3, A),
where j is the positional index of the word at the
front of the queue, § is the stack (with its top ele-
ment sg to the right), and /3 is the queue (with its
top element w; to the left) and A is the set of CCG
dependencies realized for the input consumed so far.
Each item is also associated with a step indicator ¢,
signifying the number of actions applied to it and
the goal is reached in 2n — 1 + p steps, where p is
the total number of un actions. We also define each
action in our parser as a 4-tuple (7, ct, We,, Pu,, )
where 7; € {sh,re,un} for ¢ > 1, ¢ is the resulting
category of 7¢, and w, is the head word attached to

2We assume greedy inference unless otherwise stated.
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Figure 3: An example representation for a parse item at time
step ¢, with the 4 unidirectional LSTMs (left) and the bidirec-
tional LSTM (right). The shaded cells on the left represent
8; = [hY;h); hi; hY] (Eq. 3), and the shaded cells on the right

represent w; = [hY'; h}’v]

¢t with p,,, being its POS tag.3

LSTM model. LSTMs are designed to handle
time-series data, in a purely sequential fashion, and
we try to exploit this fact by completely linearizing
all aspects of the parsing history. Concretely, we fac-
tor the model as five LSTMs, comprising four uni-
directional ones, denoted as U, V, X and Y, and an
additional BLSTM, denoted as W (Fig. 3). Before
parsing each sentence, we feed W with the complete
input (padded with a special embedding L as the end
of sentence token); and we use w; = [h;v; fl}V] to
represent w; in subsequent steps.* We also add L to
the other 4 unidirectional LSTMs as initialization.

Given this factorization, the stack representation
for a parse item (j,0, 3, A) at step ¢, for ¢t > 1, is
obtained as

8 = [h/;hY; b by, 3)

and together with w;, [0;; w;] gives a representation
for the parse item. For the axiom item, we represent
it as [80; wo), where 6o = [hY;hY; h¥;hY].

Each time the parser applies an action
(7¢, Ct, Wey Pu, )» We update the model by adding
the embedding of 74, denoted as L,(7;), onto U,
and adding the other three embeddings of the action
4-tuple, that is, L¢(ct), Lu(we,) and L(puy,, ), onto
V, X and Y respectively.

To predict the next action, we first derive an action
hidden layer b,, by passing the parse item represen-
tation [0;; w;] through an affine transformation, s.t.

b; = f(B[d;; w;] + 1), “4)

3In case of multiple heads, we always choose the first one.
*Word and POS embeddings are concatenated at each input
position j, for 0 < j < n;and w,, = [hY};hY].

where B is a parameter matrix of the model, r is
a bias vector and f is a ReLLU non-linearity (Nair
and Hinton, 2010). Then we apply another affine
transformation (with A as the weights and s as the
bias) to by:

a; = f(Ab; +s),

and obtain the probability of the i action in a; as

exp{a}}

b
plri | = Dok eT(&tﬁt)eXp{at}

where T (0, ;) is the set of feasible actions for the
current parse item, and 7} € T (&, B¢).

3.4 Derivations and Dependency Structures

Our model naturally linearizes CCG derivations “in-
crementally” following their post-order traversals.
As such, the four unidirectional LSTMs always have
the same number of steps; and at each step, the con-
catenation of their hidden states (Eq. 3) represents a
point in a CCG derivation (i.e., an action 4-tuple).
Due to the large amount of flexibility in how de-
pendencies are realized in CCG (Hockenmaier, 2003;
Clark and Curran, 2007), and in line with most ex-
isting CCG parsing models, including dependency
models, we have chosen to model CCG derivations,
rather than dependency structures.” We also hypoth-
esize that tree structures are not necessary for the
current model, since they are already implicit in the
linearized derivations; similarly, we have found the
action embeddings to be nonessential (§5.2).

3.5 Training

As a baseline, we first train a greedy model, in
which we maximize the log-likelihood of each tar-
get action in the training data. More specifically, let
(r{,...,77 ) be the gold-standard action sequence
for a training sentence n, a cross-entropy criterion is
used to obtain the error gradients, and for each sen-
tence, training involves minimizing

long I|by) = Zlogp I|by),

where 6 is the set of all parameters in the model.

SMost cCG dependency models (e.g., see Clark and Curran
(2007) and Xu et al. (2014)) model CCG derivations with de-
pendency features.



As other greedy models (e.g., see Chen and Man-
ning (2014) and Dyer et al. (2015)), our greedy
model is locally optimized, and suffers from the
label bias problem (Andor et al., 2016). A par-
tial solution to this is to use beam search at test
time, thereby recovering higher scoring action se-
quences that would otherwise be unreachable with
fully greedy inference. In practice, this has lim-
ited effect (Table 2), and a number of more princi-
pled solutions have been recently proposed to derive
globally optimized models during training (Watan-
abe and Sumita, 2015; Weiss et al., 2015; Zhou et
al., 2015; Andor et al., 2016). Here, we extend our
greedy model into a global one by adapting the ex-
pected F-measure loss of Xu et al. (2016). To our
best knowledge, this is the first attempt to train a
globally optimized LSTM shift-reduce parser.

Let = {U,V,X,Y,W,B, A} be the weights
of the baseline greedy model,’ we initialize the
weights of the global model, which has the same ar-
chitecture as the baseline, to §, and we reoptimize 6
in multiple training epochs as follows:

1. Pick a sentence x,, from the training set, decode
it with beam search, and generate a k-best list

of output parses with the current 6, denoted as
A(zy,).”

2. For each parse y; in A(z,), compute its
sentence-level F1 using the set of dependencies
in the A field of its parse item. In addition, let
|yi| be the total number of actions that derived
y; and sg(y; ) be the softmax action score of the
4™ action, given by the LSTM model. Com-
pute the log-linear score of its action sequence

as p(y;) = S log s (y?).

3. Compute the negative expected F1 objective
(defined below) for z,, and minimize it using
stochastic gradient descent (maximizing ex-
pected F1). Repeat these three steps for the re-
maining sentences.

SWe use boldface letters to designate the weights of the cor-
responding LSTMs, and omit bias terms for brevity.

7As in Xu et al. (2016), we did not preset k, and found k =
11.06 on average with a beam size of 8 that we used for this
training.

More formally, the loss J(#), is defined as

J(0) = —XF1(0)
=— Y PWlOFLA,, AL,

yieA(In)

where F1(A,,, AY ) is the sentence level F1 of the
parse derived by y;, with respect to the gold-standard
dependency structure AS of x,,; p(y;|6) is the nor-
malized probability score of the action sequence y;,
computed as

exp{vp(y:)}
ZyGA(:pn) exp{yp(y)}’

p(yilf) =

where -y is a parameter that sharpens or flattens the
distribution (Tromble et al., 2008).% Different from
the maximum-likelihood objective, XF1 optimizes
the model on a sequence level and towards the final
evaluation metric, by taking into account all action
sequences in A(xzy,).

4 Attention-Based LSTM Supertagging

In addition to the size of the label space, supertag-
ging is difficult because CCG categories can encode
long-range dependencies and tagging decisions fre-
quently depend on non-local contexts. For example,
in He went to the zoo with a cat, a possible cate-
gory for with, (S\NP)\(S\NP)/NP, depends on
the word went further back in the sentence.
Recently a number of RNN models have been
proposed for CCG supertagging (Xu et al., 2015;
Lewis et al., 2016; Vaswani et al., 2016; Xu et al.,
2016), and such models show dramatic improve-
ments over non-recurrent models (Lewis and Steed-
man, 2014b). Although the underlying models differ
in their exact architectures, all of them make each
tagging decision using only the hidden states at the
current input position, and this imposes a potential
bottleneck in the model. To mitigate this, we gen-
eralize the attention mechanisms of Bahdanau et al.
(2015) and Luong et al. (2015), and adapt them to
supertagging, by allowing the model to explicitly
use hidden states from more than one input posi-
tions for tagging each word. Similar to Bahdanau et
al. (2015) and Luong et al. (2015), a key feature in

8We found y = 1 to be a good choice during development.



our model is a soft alignment vector that weights the
relative importance of the considered hidden states.

For an input sentence wop, w1, . . . , Wn—1, W€ CON-
sider w; = [ht;flt] (8§3.1) to be the representa-
tion of the t™ word (0 < ¢t < n, w; € R2dx1)
given by a BLSTM with a hidden state size d for
both its forward and backward layers.” Let k be
a context window size hyperparameter, we define
H, R2d><(kfl) as

H; = [WHk/zjy--th—l,WtHa e 7Wt+Lk/2J]a

which contains representations for all words in the
size k window except w;. At each position ¢, the
attention model derives a context vector ¢; € R24x1
(defined below) from H;, which is used in conjunc-
tion with wy to produce an attentional hidden layer:

x; = f(Mes; wi] +m), 5)

where f is a ReLU non-linearity, M € R9*4? is a
learned weight matrix, m is a bias term, and g is the
size of x;. Then x; is used to produce another hidden
layer (with IN as the weights and n as the bias):

z: = Nx; + n,

and the predictive distribution over categories is ob-
tained by feeding z; through a softmax activation.

In order to derive the context vector c;, we first
compute by € RE—D*1 from H, and w, using o €
R¥4d s t. the i entry in by is

bi = Q[WT[z‘];Wt],

foric [0,k—1),T =[t—|k/2],... . t—1,t+1,... t+
|k/2]]; and c; is derived as follows:

a; = softmax(by),

c; = Hyay,

where a; is the alignment vector. We also exper-
iment with two types of attention reminiscent of
the global and local models in Luong et al. (2015),
where the first attends over all input words (k = n)
and the second over a local window.

It is worth noting that two other works have con-
currently tackled supertagging with BLSTM mod-
els. In Vaswani et al. (2016), a language model

Unlike in the parsing model, POS tags are excluded.

layer is added on top of a BLSTM, which allows
embeddings of previously predicted tags to propa-
gate through and influence the pending tagging de-
cision. However, the language model layer is only
effective when both scheduled sampling for train-
ing (Bengio et al., 2015) and beam search for infer-
ence are used. We show our attention-based mod-
els can match their performance, with only standard
training and greedy decoding. Additionally, Lewis
et al. (2016) presented a BLSTM model with two
layers of stacking in each direction; and as an inter-
nal baseline, we show a non-stacking BLSTM with-
out attention can achieve the same accuracy.

5 Experiments

Dataset and baselines. We conducted all experi-
ments on CCGBank (Hockenmaier and Steedman,
2007) with the standard splits.!® We assigned POS
tags with the c&C POS tagger, and used 10-fold
jackknifing for both POS tagging and supertagging.
All parsers were evaluated using F1 over labeled
CCG dependencies.

For supertagging, the baseline models are the
RNN model of Xu et al. (2015), the bidirectional
RNN (BRNN) model of Xu et al. (2016), and
the BLSTM supertagging models in Vaswani et al.
(2016) and Lewis et al. (2016). For parsing exper-
iments, we compared with the global beam-search
shift-reduce parsers of Zhang and Clark (2011)
and Xu et al. (2014). One neural shift-reduce CCG
parser baseline is Ambati et al. (2016), which is a
beam-search shift-reduce parser based on Chen and
Manning (2014) and Weiss et al. (2015); and the oth-
ers are the RNN shift-reduce models in Xu et al.
(2016). Additionally, the chart-based C&C parser
was included by default.

Model and training parameters.!! All our
LSTM models are non-stacking with a single
layer.!> For the supertagging models, the LSTM

Training: Sections 02-21 (39,604 sentences). Develop-
ment: Section 00 (1,913 sentences). Test: Section 23 (2,407
sentences).

""'We implemented all models using the CNN toolkit:
https://github.com/clab/cnn.

2The BLSTMs have a single layer in each direction. We
experimented with 2 layers in all models during development
and found negligible improvements.



Model Dev Test
c&c 91.50 92.02
Xu et al. (2015) 93.07 93.00
Xu et al. (2016) 9349 93.52
Lewis et al. (2016) 94.1 94.3
Vaswani et al. (2016) 94.08 -
Vaswani et al. (2016) +Lm+beam | 94.24  94.50
BLSTM 94.11 94.29
BLSTM-local 94.31 94.46
BLSTM-global 9422 9442

Table 1: 1-best supertagging results on both the dev and test
sets. BLSTM is the baseline model without attention; BLSTM-
local and -global are the two attention-based models.

hidden state size is 256, and the size of the atten-
tional hidden layer (x¢, Eq. 5) is 200. All parsing
model LSTMs have a hidden state size of 128, and
the size of the action hidden layer (b, Eq. 4) is 80.

Pretrained word embeddings for all models are
100-dimensional (Turian et al., 2010), and all other
embeddings are 50-dimensional. We also pretrained
CCG lexical category and POS embeddings on the
concatenation of the training data and a Wikipedia
dump parsed with c&c.!3 All other parameters were
uniformly initialized in ++/6/(r + ¢), where  and
c are the number of rows and columns of a ma-
trix (Glorot and Bengio, 2010).

For training, we used plain non-minibatched
stochastic gradient descent with an initial learning
rate o = 0.1 and we kept iterating in epochs until
accuracy no longer increases on the dev set. For all
models, a learning rate schedule n. = 79/(1 + \e)
with A = 0.08 was used for e > 11. Gradients were
clipped whenever their norm exceeds 5. Dropout
training as suggested by Zaremba et al. (2014), with
a dropout rate of 0.3, and an £ penalty of 1 x 1072,
were applied to all models.

5.1 Supertagging Results

Table 1 summarizes 1-best supertagging results. Our
baseline BLSTM model without attention achieves
the same level of accuracy as Lewis et al. (2016)
and the baseline BLSTM model of Vaswani et al.
(2016). Compared with the latter, our hidden state
size is 50% smaller (256 vs. 512).

For training and testing the local attention model
(BLSTM-local), we used an attention window size

BWe used the gensim word2vec toolkit:
radimrehurek.com/gensim/.

https://

Supertagger (8
Beam | 0.09 0.07 0.06 0.01 0.001
1 86.49 86.52 86.56 86.26 85.80
2 86.55 86.58 86.63 86.39 86.01
8 86.61 86.64 86.67 86.40 86.07

Table 2: Tuning beam size and supertagger 3 on the dev set.

Model |LP LR LF  CAT
LSTM-w 90.13 7699 83.05 94.24
LSTM-w+c 89.37 8325 86.20 94.34
LSTM-w+c+a | 89.31 8339 8625 94.38
LSTM-w+c+a+p | 89.43 83.86 86.56 94.47

Table 3: F1 on dev for all the greedy models.

of 5 (tuned on the dev set), and it gives an improve-
ment of 0.94% over the BRNN supertagger (Xu
et al.,, 2016), achieving an accuracy on par with
the beam-search (size 12) model of Vaswani et al.
(2016) that is enhanced with a language model. De-
spite being able to consider wider contexts than the
local model, the global attention model (BLSTM-
global) did not show further gains, hence we used
BLSTM-local for all parsing experiments below.

5.2 Parsing Results

All parsers we consider use a supertagger probabil-
ity cutoff 5 to prune categories less likely than
times the probability of the best category in a dis-
tribution: for the C&C parser, it uses an adaptive
strategy to backoff to smaller 8 values if no span-
ning analysis is found given an initial 3 setting; for
all the shift-reduce parsers, fixed § values are used
without backing off. Since 5 determines the deriva-
tion space of a parser, it has a large impact on the
final parsing accuracy.

For the maximum-likelihood greedy model, we
found using a small S value (bigger ambiguity) for
training significantly improved accuracy, and we
chose 3 = 1 x 107° (5.22 categories per word with
jackknifing) via development experiments. This re-
inforces the findings in a number of other CCG
parsers (Clark and Curran, 2007; Auli and Lopez,
2011a; Lewis and Steedman, 2014a): even though a
smaller /3 increases ambiguity, it leads to more accu-
rate models at test time. On the other hand, we found
using larger 3 values at test time led to significantly
better results (Table 2). And this differs from the
beam-search models that use the same [ value for
both training and testing (Zhang and Clark, 2011;
Xu et al., 2014).
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Figure 4: Learning curves with dev F-scores for all models.
Section 00 Section 23

Model Beam | LP LR LF CAT | LP LR LF CAT
C&cC (normal-form) - 85.18 8253 83.83 9239 | 8545 8397 84.70 92.83
c&c (dependency hybrid) - 86.07 8277 84.39 9257 | 86.24 84.17 85.19 93.00
Zhang and Clark (2011) 16 87.15 8295 8500 9277 | 87.43 83.61 8548 93.12
Xu et al. (2014) 128 86.29 84.09 85.18 92.75 | 87.03 85.08 86.04 93.10
Ambati et al. (2016) 16 - - 85.69 93.02 | - - 85.57 92.86
Xu et al. (2016)-greedy 1 88.12 8138 84.61 9342 | 88.53 81.65 84.95 93.57
Xu et al. (2016)-XF1 8 88.20 8340 8573 93.56 | 88.74 84.22 86.42 93.87
LSTM-greedy 1 89.43 83.86 86.56 94.47 | 89.75 84.10 86.83 94.63
LSTM-XF1 1 89.68 85.29 8743 9441 | 89.85 8551 87.62 94.53
LSTM-XF1 8 89.54 8546 8745 94.39 | 89.81 85.81 87.76 94.57

Table 4: Parsing results on the dev (Section 00) and test (Section 23) sets with 100% coverage, with all LSTM models using the
BLSTM-local supertagging model. All experiments using auto POS. CAT (lexical category assignment accuracy). LSTM-greedy

is the full greedy parser.

The greedy model. Table 3 shows the dev set re-
sults for all greedy models, where the four types
of embeddings, that is, word (w), CCG category
(c), action (a) and POS (p), are gradually intro-
duced. The full model LSTM-w+c+a+p surpasses
all previous shift-reduce models (Table 4), achiev-
ing a dev set accuracy of 86.56%. Category em-
beddings (LSTM-w+c) yielded a large gain over us-
ing word embeddings alone (LSTM-w); action em-
beddings (LSTM-w+c+a) provided little improve-
ment, but further adding POS embeddings (LSTM-
w+c+a+p) gave noticeable recall (+0.61%) and F1
improvements (+0.36%) over LSTM-w+c. Fig. 4a
shows the learning curves, where all models con-
verged in under 30 epochs.

The XF1 model. Table 4 also shows the results for
the XF1 models (LSTM-XF1), which use all four
types of embeddings. We used a beam size of 8, and

Model Dev Test

LSTM-BRNN 85.86 86.37
LSTM-BLSTM | 86.26 86.64
LSTM-greedy 86.56 86.83

Table 5: Effect of different supertaggers on the full greedy
parser. LSTM-greedy is the same parser as in Table 4, which
uses the BLSTM-local supertagger.

a 8 value of 0.06 for both training and testing (tuned
on the dev set); and training took 12 epochs to con-
verge (Fig. 4b), with an F1 of 87.45% on the dev set.
Decoding the XF1 model with greedy inference only
slightly decreased recall and F1, and this resulted
in a highly accurate deterministic parser. On the
test set, our XF1 greedy model gives 2.67% F1 im-
provement over the greedy model in Xu et al. (2016);
and the beam-search XF1 model achieves an F1 im-
provement of 1.34% compared with the XF1 model
of Xu et al. (2016).



Model LP LR LF
Xu et al. (2015) 87.68 86.41 87.04
Lewis et al. (2016) 87.7 867 872
Lewis et al. (2016)* 88.6 87.5 88.1
Vaswani et al. (2016)* - - 88.32
Lee et al. (2016) - - 88.7
LSTM-XF1 (beam=1) | 89.85 85.51 87.62
LSTM-XF1 (beam=8) | 89.81 85.81 87.76

Table 6: Comparison of our XF1 models with chart-based
parsers on the test set. * denotes a tri-trained model and * indi-
cates a different POS tagger.

Effect of the supertagger. To isolate the parsing
model from the supertagging model, we first ex-
perimented with the BRNN supertagging model as
in Xu et al. (2016) for both training and testing
the full greedy LSTM parser. Using this supertag-
ger, we still achieved the highest F1 (85.86%) on
the dev set (LSTM-BRNN, Table 5) in compari-
son with all previous shift-reduce models; and an
improvement of 1.42% F1 over the greedy model
of Xu et al. (2016) was obtained on the test set
(Table 4). We then experimented with using the
baseline BLSTM supertagging model for parsing
(LSTM-BLSTM), and observed the attention-based
setup (LSTM-greedy) outperformed it, despite the
attention-based supertagger (BLSTM-local) did not
give better multi-tagging accuracy. We owe this
to the fact that large [ cutoff values—resulting
in almost deterministic supertagging decisions on
average—are required by the parser during infer-
ence; for instance, BLSTM-local has an average am-
biguity of 1.09 on the dev set with 5 = 0.06.'4

Comparison with chart-based models. For com-
pleteness and to put our results in perspective, we
compare our XF1 models with other CCG parsers
in the literature (Table 6): Xu et al. (2015) is the
log-linear C&C dependency hybrid model with an
RNN supertagger front-end; Lewis et al. (2016)
is an LSTM supertagger-factored parser using the
A* CCG parsing algorithm of Lewis and Steed-
man (2014a); Vaswani et al. (2016) combine a
BLSTM supertagger with a new version of the C&C
parser (Clark et al., 2015) that uses a max-violation
perceptron, which significantly improves over the

4AN [ cutoffs were tuned on the dev set; for BRNN, we
found the same f3 settings as in Xu et al. (2016) to be optimal;
for BLSTM, 8 = 4 x 1075 for training (with an ambiguity of
5.27) and 8 = 0.02 for testing (with an ambiguity of 1.17).

original C&C models; and finally, a global recursive
neural network model with A* decoding (Lee et al.,
2016). We note that all these alternative models—
with the exception of Xu et al. (2015) and Lewis et
al. (2016)—use structured training that accounts for
violations of the gold-standard, and we conjecture
further improvements for our model are possible by
incorporating such mechanisms. !

6 Conclusion

We have presented an LSTM parsing model for CCG,
with a factorization allowing the linearization of the
complete parsing history. We have shown that this
simple model is highly effective, with results out-
performing all previous shift-reduce CCG parsers.
We have also shown global optimization benefits an
LSTM shift-reduce model; and contrary to previous
findings with the averaged perceptron (Zhang and
Clark, 2008), we empirically demonstrated beam-
search inference is not necessary for our globally op-
timized model. For future work, a natural direction
is to explore integrated supertagging and parsing in
a single neural model (Zhang and Weiss, 2016).
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