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Abstract

One major deficiency of most semantic repre-
sentation techniques is that they usually model
a word type as a single point in the semantic
space, hence conflating all the meanings that
the word can have. Addressing this issue by
learning distinct representations for individ-
ual meanings of words has been the subject of
several research studies in the past few years.
However, the generated sense representations
are either not linked to any sense inventory or
are unreliable for infrequent word senses. We
propose a technique that tackles these prob-
lems by de-conflating the representations of
words based on the deep knowledge that can
be derived from a semantic network. Our ap-
proach provides multiple advantages in com-
parison to the previous approaches, including
its high coverage and the ability to generate
accurate representations even for infrequent
word senses. We carry out evaluations on six
datasets across two semantic similarity tasks
and report state-of-the-art results on most of
them.

1 Introduction

Modeling the meanings of linguistic items in a
machine-interpretable form, i.e., semantic represen-
tation, is one of the oldest, yet most active, areas
of research in Natural Language Processing (NLP).
The field has recently experienced a resurgence of
interest with neural network-based models that view
the representation task as a language modeling prob-
lem and learn dense representations (usually re-
ferred to as embeddings) by efficiently processing

massive amounts of texts. However, either in its
conventional count-based form (Turney and Pantel,
2010) or the recent predictive approach, the prevail-
ing objective of representing each word type as a
single point in the semantic space has a major limita-
tion: it ignores the fact that words can have multiple
meanings and conflates all these meanings into a sin-
gle representation. This objective can have negative
impacts on accurate semantic modeling, e.g., seman-
tically unrelated words that are synonymous to dif-
ferent senses of a word are pulled towards each other
in the semantic space (Neelakantan et al., 2014).
For example, the two semantically-unrelated words
squirrel and keyboard are pulled towards each other
in the semantic space for their similarities to two dif-
ferent senses of mouse, i.e., rodent and computer in-
put device.

Recently, there has been a growing interest in ad-
dressing the meaning conflation deficiency of word
representations. A series of techniques have been
developed to associate a word to multiple points
in the semantic space by clustering its contexts
in a given text corpus and learning distinct rep-
resentations for individual clusters (Reisinger and
Mooney, 2010; Huang et al., 2012). However, these
techniques usually assume a fixed number of word
senses per word type, disregarding the fact that the
number of senses per word can range from one
(monosemy) to dozens. Neelakantan et al. (2014)
tackled this issue by allowing the number to be dy-
namically adjusted for each word during training.
However, the approach and all the other clustering-
based techniques still suffer from the fact that the
computed sense representations are not linked to
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any sense inventory, a linking which would require
large amounts of sense-annotated data (Agirre et al.,
2006). In addition, because of their dependence on
knowledge derived from a text corpus, these tech-
niques are generally unable to learn accurate repre-
sentations for word senses that are infrequent in the
underlying corpus.

Knowledge-based techniques tackle these issues
by deriving sense-specific knowledge from exter-
nal sense inventories, such as WordNet (Fellbaum,
1998), and learning representations that are linked
to the sense inventory. These approaches either use
sense definitions and employ Word Sense Disam-
biguation (WSD) to gather sense-specific contexts
(Chen et al., 2014; Iacobacci et al., 2015) or take
advantage of the properties of WordNet, such as
synonymy and direct semantic relations (Rothe and
Schütze, 2015). However, the non-optimal WSD
techniques and the shallow utilization of knowl-
edge from WordNet do not allow these techniques
to learn accurate and high-coverage semantic repre-
sentations for all senses in the inventory.

We propose a technique that de-conflates a given
word representation into its constituent sense repre-
sentations by exploiting deep knowledge from the
semantic network of WordNet. Our approach pro-
vides the following three main advantages in com-
parison to the past work: (1) our representations are
linked to the WordNet sense inventory and, accord-
ingly, the number of senses for a word is a dynamic
parameter which matches that defined by WordNet;
(2) the deep exploitation of WordNet’s semantic net-
work allows us to obtain accurate semantic repre-
sentations, even for word senses that are infrequent
in generic text corpora; and (3) our methodology in-
volves only minimal parameter tuning and can be ef-
fectively applied to any sense inventory that is view-
able as a semantic network and to any word repre-
sentation technique. We evaluate our sense repre-
sentations in two tasks: word similarity (both in-
context and in-isolation) and cross-level semantic
similarity. Experimental results show that the pro-
posed technique can provide consistently high per-
formance across six datasets, outperforming the re-
cent state of the art on most of them.

2 De-Conflated Representations

Preliminaries. Our proposed approach takes a set
of pre-trained word representations and uses the
graph structure of a semantic lexical resource in or-
der to de-conflate the representations into those of
word senses. Therefore, our approach firstly re-
quires a set of pre-trained word representations (e.g.,
word embeddings). Any model that maps a given
word to a fixed-size vector representation (i.e., vec-
tor space model) can be used by our approach. In our
experiments, we opted for a set of publicly available
word embeddings (cf. §3.1).

Secondly, we require a lexical resource whose se-
mantic relations allow us to view it as a graph G =
(V,E) where each vertex in the set of vertices V cor-
responds to a concept and edges in E denote lexico-
semantic relationships among these vertices. Each
concept c ∈ V is mapped to a set of word senses by
a mapping function µ(c) : c→ {s1, . . . , sl}. Word-
Net, the de facto community standard sense inven-
tory, is a suitable resource that satisfies these prop-
erties. WordNet can be readily represented as a se-
mantic graph in which vertices are synsets and edges
are the semantic relations that connect these synsets
(e.g., hypernymy and meronymy). The mapping
function in WordNet maps each synset to the set of
synonymous words it contains (i.e., word senses).

2.1 Overview of the approach

Our goal is to compute a semantic representation
that places a given word sense in an existing seman-
tic space of words. We achieve this by leveraging
word representations as well as the knowledge de-
rived from WordNet. The gist of our approach lies
in its computation of a list of sense biasing words for
a given word sense. To this end, we first analyze the
semantic network of WordNet and extract a list of
most representative words that can effectively pin-
point the semantics of individual synsets (§2.2). We
then leverage an effective technique which learns se-
mantic representations for individual word senses by
placing the senses in the proximity of their corre-
sponding sense biasing words (§2.3).

2.2 Determining sense biasing words

Algorithm 1 shows the procedure we use to extract
from WordNet a list of sense biasing words for a
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Algorithm 1 Get sense biasing words for synset yt
Require: Graph G = (V,E) of vertices V = {yi}mi=1

(of m synsets) and edges E (semantic relationships
between synsets)

Require: Function µ(yi) that returns for a given synset
yi the words it contains

Require: Target synset yt ∈ V for which a sense biasing
word sequence is required

Ensure: The sequence Bt of sense biasing words for
synset yt

1: Bt← ()
2: for all word w in µ(yt) do
3: Bt← Bt ∪ (w)
4: for yi ∈ V : yi 6= yt do
5: pi← PERSONALIZEDPAGERANK(yi, yt, G)
6: (y∗h)

m−1
h=1 ← SORT(V \{yt}) according to scores pi

7: for h : 1 to m− 1 do
8: for all word w in µ(y∗h) do
9: if w /∈ Bt then

10: Bt ← Bt ∪ (w)
11: return sequence Bt

given target synset yt. The algorithm receives as its
inputs the semantic graph of WordNet and the map-
ping function µ(·), and outputs an ordered list of bi-
asing words Bt for yt. The list comprises the most
semantically-related words to synset yt which can
best represent and pinpoint its meaning. We lever-
age a graph-based algorithm for the computation of
the sense biasing words.

Specifically, we use the Personalized PageRank
(Haveliwala, 2002, PPR) algorithm which has been
extensively used by several NLP applications (Yeh
et al., 2009; Niemann and Gurevych, 2011; Agirre
et al., 2014). To this end, we first represent the se-
mantic network of WordNet as a row-stochastic tran-
sition matrix M ∈ Rm×m wherem is the number of
synsets in WordNet (|V |). The cell Mij of M is set
to the inverse of the degree of i if there is a seman-
tic relationship between synsets i and j and to zero
otherwise. We compute the PPR distribution for a
target synset yt by using the power iteration method
Pt+1 = (1− σ)P0 + σMPt, where σ is the damp-
ing factor (usually set to 0.85) and P0 is a one-hot
initialization vector with the corresponding dimen-
sion of yt being set to 1.0. The weight pi in line 5
is the value of the ith dimension of the PPR vector
P computed for the synset yt. This weight can be
seen as the importance of the corresponding synset

# Sense biasing words

1 dactyl, finger, toe, thumb, pollex, body part, nail, minimus,
tarsier, webbed, extremity, appendage

2 figure, cardinal number, cardinal, integer, whole number,
numeration system, number system, system of numeration,
large integer, constituent, element, digital

Table 1: The top sense biasing words for the synsets containing

the anatomical (#1) and numerical (#2) senses of the noun digit.

of the ith dimension (i.e., yi) to yt. When applied
to a semantic network, such as the WordNet graph,
this importance can be interpreted as semantic rel-
evance. Hence, the value of pi denotes the extent
of semantic relatedness between yi and yt. We use
this notion and retrieve a list of most semantically-
related words to yt.

To achieve this, we sort the synsets {y∗ ∈ V :
y∗ 6= yt} according to their PPR values {pi}m−1i=1

(line 6). We then iterate (lines 7-10) the sorted list
(y∗) and for each synset y∗h append the list Bt with
all the words in y∗h (i.e., µ(y∗h)). However, in order to
ensure that the words in the target synset yt appear as
the most representative words in Bt, we first assign
these words to the list (line 3). Finally, the algorithm
returns the ordered list Bt of sense biasing words for
the target synset yt.

Table 1 shows a sample of top biasing words ex-
tracted for the two senses of the noun digit: the
numerical and the anatomical senses.1 We explain
in §2.3 how we use the sense biasing lists to learn
sense-specific representations. Note that the size
of the list is equal to the total number of strings
in WordNet. However, we observed that taking a
very small portion of the top-ranking elements in the
lists is enough to generate representations that per-
form very similarly to those generated when using
the full-sized lists (please see §3.1).

2.3 Learning sense representations

Let V be the set of pre-trained d-dimensional word
representations. Our objective here is to compute
a set V∗ = {v∗s1 , . . . , v∗sn} of representations for n
word senses {s1, . . . , sn} in the same d-dimensional
semantic space of words. We achieve this for each
sense si by de-conflating the representation vsi of
its corresponding lemma and biasing it towards the

1The first and third senses of the noun digit in WordNet 3.0.
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representations of the words in Bi. Specifically, we
obtain a representation v∗si for a word sense si by
solving:

argmin
v∗si

α d(v∗si , vsi) +
∑

bij∈Bi
δij d(v

∗
si , vbij ) (1)

where vsi and vbij are the respective word repre-
sentations (∈ V) of the lemma of si and the jth

biasing word in the list of biasing words for si,
i.e, Bi. The distance d(v, v′) between vectors v
and v′ is measured by squared Euclidean distance
‖v − v′‖2= ∑

k(vk − v′k)2. The first term in For-
mula 1 requires the representation of the word sense
si (i.e., v∗si) to be similar to that of its corresponding
lemma, i.e., vsi , whereas the second term encour-
ages v∗si to be in the proximity of its biasing words
in the semantic space. The above criterion is simi-
lar to the frameworks of Das and Smith (2011) and
Faruqui et al. (2015) which, though being convex, is
usually solved for efficiency reasons by an iterative
method proposed by Bengio et al. (2007). Follow-
ing these works, we obtain the below equation for
computing the representation of a word sense si:

v∗si =
αvsi +

∑
bij∈Bi δijvbij

α+
∑

j δij
. (2)

We define δij as e−λr(i,j)
|Bi| where r(i, j) denotes the

rank of the word bij in the list Bi. This is essen-
tially an exponential decay function that gives more
importance to the top-ranking biasing words for si.
The hyperparameter α denotes the extent to which
v∗si is kept close to its corresponding lemma repre-
sentation vsi . Following Faruqui et al. (2015), we
set α to 1. The only parameter to be tuned in our
experiments is λ. We discuss the tuning of this pa-
rameter in §3.1. The representation of a synset yi
can be accordingly calculated as the centroid of the
vectors of its associated word senses, i.e.,

{ vyi
‖vyi‖

: vyi =
∑

s∈µ(yi)
v̂∗s , v̂

∗
s =

v∗s
‖v∗s‖

}. (3)

As a result of this procedure, we obtain the set
V∗ of n sense representations in the same semantic
space as word representations in V . In fact, we now
have a unified semantic space which enables a direct
comparison of the two types of linguistic items. In

# Closest words

1 crappie, trout, guitar, shad, walleye, bassist, angler, catfish,
trombone, percussion, piano, drummer, saxophone, jigs, fish

2 baritone, piano, guitar, trombone, saxophone, cello, percussion,
tenor, saxophonist, clarinet, pianist, vocals, solos, harmonica

3 fish, trout, shrimp, anglers, fishing, bait, guitar, salmon,
shark, fisherman, lakes, seafood, drummer, whale, fisheries

Table 2: Ten most similar words to the word bass (#1) and two

of its senses: music (#2) and fish (#3).

Figure 1: The illustration of the word digit and two of its com-

puted senses in our unified 2-d semantic space.

§3.3 we evaluate our approach in the word to sense
similarity measurement framework.

We show in Table 2 the closest words to the word
bass and two of its senses, music and fish,2 in our
unified semantic space. We can see in row #1 a mix-
ture of both meanings when the word representation
is used whereas the closest words to the senses (rows
#2 and #3) are mostly in-domain and specific to the
corresponding sense.

To exhibit another interesting property of our
sense representation approach, we depict in Figure
1 the word digit and its numerical and anatomical
senses (from the example in Table 1) in a 2-d seman-
tic space, along with a sample set of words in their

2The first and fourth senses in WordNet 3.0, respectively
defined as “the lowest part of the musical range” and “the lean
flesh of a saltwater fish of the family Serranidae.”
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proximity.3 We can see that the word digit is placed
in the semantic space in the neighbourhood of words
from the numerical domain (lower left of the figure),
mainly due the dominance (Sanderson and Van Ri-
jsbergen, 1999) of this sense in the general-domain
corpus on which the word embeddings in our ex-
periments were trained (cf. §3.1). However, upon
de-conflation, the emerging anatomical sense of the
word is shifted towards the region in the semantic
space which is occupied by anatomical words (up-
per right of the figure). A clustering-based sense
representation technique would have failed in accu-
rately representing the infrequent anatomical mean-
ing of digit by analyzing a general domain corpus
(such as the one used here). But our sense repre-
sentation technique, thanks to its proper usage of
knowledge from a sense inventory, is effective in
unveiling and accurately modeling less frequent or
domain-specific senses of a given word.

Please note that any vector space model represen-
tation technique can be used for the pre-training of
word representations in V . Also, the list of sense
biasing words can be obtained for larger sense in-
ventories, such as FreeBase (Bollacker et al., 2008)
or BabelNet (Navigli and Ponzetto, 2012). We leave
the exploration of further ways of computing sense
biasing words to future work.

3 Experiments

We benchmarked our sense representation approach
against several recent techniques on two standard
tasks: word similarity (§3.2), for which we eval-
uate on both in-isolation and in-context similarity
datasets, and cross-level semantic similarity (§3.3).

3.1 Experimental setup

Pre-trained word representations. As our word
representations, we used the 300-d Word2vec
(Mikolov et al., 2013) word embeddings trained on
the Google News dataset4 mainly for their popular-
ity across different NLP applications. However, our
approach is equally applicable to any count-based
representation technique (Baroni and Lenci, 2010;
Turney and Pantel, 2010) or any other embedding

3We used the t-SNE algorithm (van der Maaten and Hinton,
2008) for dimensionality reduction.

4https://code.google.com/archive/p/word2vec/

approach (Pennington et al., 2014; LeCun et al.,
2015). We leave the evaluation and comparison of
various word representation techniques with differ-
ent training approaches, objectives, and dimension-
alities to future work.

Parameter tuning. Recall from §2.3 that our pro-
cedure for learning sense representations needs only
one parameter to be tuned, i.e., λ. We did not per-
form an extensive tuning on the value of this param-
eter and set its value to 1/5 after trying four differ-
ent values (1, 1/2, 1/5, and 1/10) on a small validation
dataset. We leave the more systematic tuning of the
parameter and the choice of alternative decay func-
tions (cf. §2.3) to future work.

The size of the sense biasing words lists. Also
recall from §2.2 that the extracted lists of sense bias-
ing words were originally as large as the total num-
ber of unique strings in WordNet (around 150K in
ver. 3.0). But, given that we use an exponential de-
cay function in our learning algorithm (cf. §2.3),
the impact of the low-ranking words in the list is
negligible. In fact, we observed that taking a very
small portion of the top-ranking words, i.e., the top
25, produces similarity scores that are on par with
those generated when the full lists were considered.
Therefore, we experimented with the down-sized
lists which enabled us to generate very quickly sense
representations for all word senses in WordNet.

3.2 Word similarity
Comparison systems. We compared our results
against nine other sense representation techniques:
the WordNet-based approaches of Pilehvar and Nav-
igli (2015), Chen et al. (2014), Rothe and Schütze
(2015), Jauhar et al. (2015), and Iacobacci et
al. (2015) and the clustering-based approaches of
Huang et al. (2012), Tian et al. (2014), Neelakan-
tan et al. (2014), and Liu et al. (2015) (please see
§4 for more details). We also compared against the
approach of Faruqui et al. (2015) which uses knowl-
edge derived from WordNet for improving word rep-
resentations. From the different configurations pre-
sented in (Faruqui et al., 2015) we chose the sys-
tem that uses GloVe (Pennington et al., 2014) with
all WordNet relations which is their best perform-
ing monolingual system. As for the approach of
Jauhar et al. (2015), we show the results of the
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EM+RETERO system which performs most consis-
tently across different datasets.

Benchmarks. As our word similarity benchmark,
we considered five datasets: RG-65 (Rubenstein
and Goodenough, 1965), YP-130 (Yang and Pow-
ers, 2005), MEN-3K (Bruni et al., 2014), SimLex-
999 (Hill et al., 2015, SL-999), and Stanford Con-
textual Word Similarity (Huang et al., 2012, SCWS).
The latter benchmark provides for each word a con-
text that triggers a specific meaning of it, making the
dataset very suitable for the evaluation of sense rep-
resentation. For each datasets, we list the results that
are reported by any of our comparison systems.

Similarity measurement. For the SCWS dataset,
we follow the past works (Reisinger and Mooney,
2010; Huang et al., 2012) and report the results ac-
cording to two system configurations: (1) AvgSim:
where the similarity between two words is computed
as the average of all the pairwise similarities be-
tween their senses, and (2) AvgSimC: where each
pairwise sense similarity is weighted by the rele-
vance of each sense to its corresponding context. For
all the other datasets, since words are not provided
with any context (they are in isolation), we measure
the similarity between two words as that between
their most similar senses. In all the experiments, we
use the cosine distance as our similarity measure.

3.2.1 Experimental results
Tables 4 and 3 show the results of our system, DE-

CONF, and the comparison systems on the SCWS
and the other four similarity datasets, respectively.
In both tables we also report the word vectors base-
line, whenever they are available, which is computed
by directly comparing the corresponding word rep-
resentations of the two words (∈ V). Note that the
word-based baseline does not apply to the approach
of Pilehvar and Navigli (2015) as it is purely based
on the semantic network of WordNet and does not
use any pre-trained word embeddings.

We can see from the tables that our sense rep-
resentations obtain considerable improvements over
those of words across the five datasets. This high-
lights the fact that the de-conflation of word rep-
resentations into those of their individual meanings
has been highly beneficial. On the SCWS dataset,
DECONF outperforms all the recent state-of-the-art

sense representation techniques (in their best set-
tings) which proves the effectiveness of our ap-
proach in capturing the semantics of specific mean-
ings of the words. The improvement is consistent
across both system configurations (i.e., AvgSim and
AvgSimC). Moreover, the state-of-the-art WordNet-
based approach of Rothe and Schütze (2015) uses
the same initial word vectors as DECONF does (cf.
§3.1). Hence, the improvement we obtain indicates
that our approach has made better use of the sense-
specific knowledge encoded in WordNet.

As seen in Table 3 our approach shows com-
petitive performance on the other four datasets.
The YP-130 dataset focuses on verb similarity,
whereas SimLex-999 contains verbs and adjectives
and MEN-3K has word pairs with different parts of
speech (e.g., a noun compared to a verb). The results
we obtain on these datasets exhibit the reliability of
our approach in modeling non-nominal word senses.

3.2.2 Discussion
The similarity scale of the SimLex-999 dataset is

different from our other word similarity benchmarks
in that it assigns relatively low scores to antonymous
pairs. For instance, sunset-sunrise and man-woman
in this dataset are assigned the respective similari-
ties of 2.47 and 3.33 (in a [0, 10] similarity scale)
which is in the same range as the similarity between
word pairs with slight domain relatedness, such as
head-nail (2.47), air-molecule (3.05), or succeed-try
(3.98). In fact, we observed that tweaking the simi-
larity scale of our system in a way that it diminishes
the similarity scores between antonyms can result
in a significant performance improvement on this
dataset. To this end, we performed an experiment
in which the similarity of a word pair was simply
divided by 3 whenever the two words belonged to
synsets that were linked by an antonymy relation in
WordNet.5 We observed that the performance on the
SimLex-999 dataset increased to 61.6 (from 54.2)
and 59.1 (from 51.7) according to Pearson (r× 100)
and Spearman (ρ × 100) correlation scores, respec-
tively.

5We chose 3 so as to transform a pair with high similar-
ity score (around 9.0) to one with slight semantic similarity
(around 3.0) in the [0, 10] similarity scale of SimLex-999. We
also tested for other values in [2, 6] an observed similar perfor-
mance gains.
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Dataset Approach Sense-based score Word-based score
r ρ r ρ

MEN-3K

Iacobacci et al. (2015) − 80.5 − 66.5
DECONF 78.0 78.6 72.3 73.2
Faruqui et al. (2015) − 75.9 − 73.7
Pilehvar and Navigli (2015) 61.7 66.6 − −

RG-65

DECONF 90.5 89.6 77.2 76.1
Iacobacci et al. (2015) − 87.1 − 73.2
Faruqui et al. (2015) − 84.2 − 76.7
Pilehvar and Navigli (2015) 80.2 84.3 − −

YP-130
DECONF 81.6 75.2 58.0 55.9
Pilehvar and Navigli (2015) 79.0 71.0 − −
Iacobacci et al. (2015) − 63.9 − 34.3

SimLex-999 DECONF 54.2 51.7 45.4 44.2
Pilehvar and Navigli (2015) 43.4 43.6 − −

Table 3: Pearson (r × 100) and Spearman (ρ × 100) correlation scores on four standard word similarity benchmarks. For each

benchmark, we show the results reported by any of the comparison systems along with the scores for their corresponding initial

word representations (word-based).

Approach Score
AvgSim AvgSimC

DECONF 70.8 71.5
Rothe and Schütze (2015) (best) 68.9 69.8
Neelakantan et al. (2014) (best) 67.3 69.3
Chen et al. (2014) 66.2 68.9
Liu et al. (2015) (best) − 68.1
Huang et al. (2012) 62.8 65.7
Tian et al. (2014) (best) − 65.7
Iacobacci et al. (2015) 62.4 −
Jauhar et al. (2015) − 58.7

Initial word vectors 65.1

Table 4: Spearman correlation scores (ρ × 100) on the Stan-

ford Contextual Word Similarity (SCWS) dataset. We report

the AvgSim and AvgSimC scores (cf. §3.2) for each system,

where available.

3.3 Cross-Level semantic similarity

In addition to the word similarity benchmark, we
evaluated the performance of our representations
in the cross-level semantic similarity measurement
framework. For this, we opted for the SemEval-
2014 task on Cross-Level Semantic Similarity (Ju-
rgens et al., 2014, CLSS). The word to sense simi-
larity subtask of this task, with 500 instances in its
test set, provides a suitable benchmark for the eval-
uation of sense representation techniques.

For a word sense s and a word w, we compute the
similarity score according to four different strate-

gies: the similarity of s to the most similar sense
of w (MaxSim), the average similarity of s to indi-
vidual senses of w (AvgSim), the direct similarity of
s to w when the latter is modeled as its word repre-
sentation (Sense-to-Word or S2W) or as the centroid
of its senses’ representations (Sense to aggregated
word senses or S2A). For this task, we can only com-
pare against the publicly-available sense representa-
tions of Iacobacci et al. (2015), Rothe and Schütze
(2015), Pilehvar and Navigli (2015) and Chen et al.
(2014) which are linked to the WordNet sense inven-
tory.

3.3.1 Experimental results
Table 5 shows the results on the word to sense

dataset of the SemEval-2014 CLSS task, according
to Pearson (r × 100) and Spearman (ρ × 100) cor-
relation scores and for the four strategies. As can
be seen from the low overall performance, the task
is a very challenging benchmark with many Word-
Net out-of-vocabulary or slang terms and rare us-
ages. Despite this, DECONF provides consistent im-
provement over the comparison sense representation
techniques according to both measures and for all
the strategies.

Across the four strategies, S2A proves to be the
most effective for DECONF and the representations
of Rothe and Schütze (2015). The representations of
Chen et al. (2014) perform best with the S2W strat-
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System MaxSim AvgSim S2W S2A

r ρ r ρ r ρ r ρ

DECONF∗ 36.4 37.6 36.8 38.8 34.9 35.6 37.5 39.3
Rothe and Schütze (2015)∗ 34.0 33.8 34.1 33.6 33.4 32.0 35.4 34.9
Iacobacci et al. (2015)∗ 19.1 21.5 21.3 24.2 22.7 21.7 19.5 21.1
Chen et al. (2014)∗ 17.7 18.0 17.2 16.8 27.7 26.7 17.9 18.8

DECONF 35.5 36.4 36.2 38.0 34.9 35.6 36.8 38.4
Pilehvar and Navigli (2015) 19.4 23.8 21.2 26.0 − − − −
Iacobacci et al. (2015) 19.0 21.5 20.9 23.2 22.3 20.6 19.2 20.4

Table 5: Evaluation results on the word to sense similarity test dataset of the SemEval-14 task on Cross-Level Semantic Similarity,

according to Pearson (r × 100) and Spearman (ρ × 100) correlations. We show results for four similarity computation strategies

(see §3.3). The best results per strategy are shown in bold whereas they are underlined for the best strategies per system. Systems

marked with ∗ are evaluated on a slightly smaller dataset (474 of the original 500 pairs) so as to have a fair comparison with Rothe

and Schütze (2015) and Chen et al. (2014) that use older versions of WordNet (1.7.1 and 1.7, respectively).

egy whereas those of Iacobacci et al. (2015) do not
show a consistent trend with relatively low perfor-
mance across the four strategies. Also, a comparison
of our results across the S2W and S2A strategies re-
veals that a word’s aggregated representation, i.e.,
the centroid of the representations of its senses, is
more accurate than its original word representation.

Our analysis showed that the performance of the
approaches of Rothe and Schütze (2015) and Ia-
cobacci et al. (2015) were hampered partly due to
their limited coverage. In fact, the former was un-
able to model around 35% of the synsets in WordNet
1.7.1, mainly for its shallow exploitation of knowl-
edge from WordNet, whereas the latter approach did
not cover around 15% of synsets in WordNet 3.0.
Chen et al. (2014) provide near-full coverage for
word senses in WordNet. However, the relatively
low performance of their system shows that the us-
age of glosses in WordNet and the automated dis-
ambiguation have not resulted in accurate sense rep-
resentations. Thanks to its deep exploitation of the
underlying resource, our approach provides more re-
liable representations and full coverage for all word
senses and synsets in WordNet.

The three best-performing systems in the task are
Meerkat Mafia (Kashyap et al., 2014) (r = 37.5,
ρ = 39.3), SimCompass (Banea et al., 2014) (r =
35.4, ρ = 34.9), and SemantiKLUE (Proisl et al.,
2014) (r = 17.9, ρ = 18.8). Note that these systems
are specifically designed for the cross-level similar-
ity measurement task. For instance, the best-ranking

system in the task leverages a compilation of several
dictionaries, including The American Heritage Dic-
tionary, Wiktionary and WordNet, in order to handle
slang terms and rare usages, which leads to its com-
petitive performance (Kashyap et al., 2014).

4 Related Work

Learning semantic representations for individual
senses of words has been an active area of research
for the past few years. Based on the way they view
the problem, the recent techniques can be classified
into two main branches: (1) those that, similarly to
our work, extract knowledge from external sense in-
ventories for learning sense representations; and (2)
those techniques that cluster the contexts in which a
word appears in a given text corpus and learn distinct
representations for individual clusters.

Examples for the first branch include the ap-
proaches of Chen et al. (2014), Jauhar et al. (2015)
and Rothe and Schütze (2015), all of which use
WordNet as an external resource and obtain sense
representations for this sense inventory. Chen et
al. (2014) uses the content words in the definition
of a word sense and WSD. However, the sole us-
age of glosses as sense-distinguishing contexts and
the non-optimal WSD make the approach inaccu-
rate, particularly for highly polysemous words with
similar senses and for word senses with short def-
initions. Similarly, Rothe and Schütze (2015) use
only polysemy and synonymy properties of words
in WordNet along with a small set of semantic re-
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lations. This significantly hampers the reliability of
the technique in providing high coverage (discussed
further in §3.3.1). Our approach improves over these
works by exploiting deep knowledge from the se-
mantic network of WordNet, coupled with an effec-
tive training approach. ADW (Pilehvar and Navigli,
2015) is another WordNet-based approach which ex-
ploits only the semantic network of this resource and
obtains interpretable sense representations. Other
work in this branch include SensEmbed (Iacobacci
et al., 2015) and Nasari (Camacho-Collados et al.,
2015; Camacho-Collados et al., 2016) which are
based on the BabelNet sense inventory (Navigli
and Ponzetto, 2012). The former technique first
disambiguates words in a given corpus with the
help of a knowledge-based WSD system and then
uses the generated sense-annotated corpus as train-
ing data for Word2vec. Nasari combines structural
knowledge from the semantic network of BabelNet
with corpus statistics derived from Wikipedia for
representing BabelNet synsets. However, the ap-
proach falls short of modeling non-nominal senses
as Wikipedia, due to its very encyclopedic nature,
does not cover verbs, adjectives, or adverbs.

The second branch, which is usually referred to
as multi-prototype representation, is often associ-
ated with clustering. Reisinger and Mooney (2010)
proposed one of the recent pioneering techniques
in this branch. Other prominent work in the cate-
gory include topical word embeddings (Liu et al.,
2015) which use latent topic models for assigning
topics to each word in a corpus and learn topic-
specific word representations, and the technique pro-
posed by Huang et al. (2012) which incorporates
“global document context.” Tian et al. (2014) mod-
ified the Skip-gram model in order to learn multi-
ple embeddings for each word type. Despite the fact
that these techniques do not usually take advantage
of the knowledge encoded in structured knowledge
resource, they generally suffer from two disadvan-
tages. The first limitation is that they usually make
an assumption that a given word has a fixed number
of senses, ignoring the fact that polysemy is highly
dynamic across words that can range from monose-
mous to highly ambiguous with dozens of associ-
ated meanings (McCarthy et al., 2016). Neelakan-
tan et al. (2014) tackled this issue by estimating the
number of senses for a word type during the learn-

ing process. However, all techniques in the second
branch suffer from another disadvantage that their
computed sense representations are not linked to any
sense inventory, a linking which itself would require
the existence of high coverage sense-annotated data
(Agirre et al., 2006).

Another notable line of research incorporates
knowledge from external resources, such as PPDB
(Ganitkevitch et al., 2013) and WordNet, to improve
word embeddings (Yu and Dredze, 2014; Faruqui et
al., 2015). Neither of the two techniques however,
provide representations for word senses.

5 Conclusions

We put forward a sense representation technique,
namely DECONF, that provides multiple advantages
in comparison to the recent state of the art: (1) the
number of word senses in our technique is flexi-
ble and the computed representations are linked to
word senses in WordNet; (2) DECONF is effective
in providing accurate representation of word senses,
even for those senses that do not usually appear fre-
quently in generic text corpora; and (3) our approach
is general in that it can be readily applied to any set
of word representations and any semantic network
without the need for extensive parameter tuning.
Our experimental results showed that DECONF can
outperform recent state of the art on several datasets
across two tasks. The computed representations for
word senses in WordNet 3.0 are released at https:
//pilehvar.github.io/deconf/. We in-
tend to apply our technique to the task of harmo-
nizing biomedical terms in the PheneBank project.
As future work, we plan to investigate the possibil-
ity of using larger semantic networks, such as Free-
Base and BabelNet, which would also allow us to
apply the technique to languages other than English.
We also plan to evaluate the performance of our ap-
proach with other decay functions as well as with
other initial word representations.
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Mohammad Taher Pilehvar, and Roberto Navigli.
2016. NASARI: Integrating explicit knowledge and
corpus statistics for amultilingual representation of
concepts and entities. Artificial Intelligence, 240:36
– 64.

[Chen et al.2014] Xinxiong Chen, Zhiyuan Liu, and
Maosong Sun. 2014. A unified model for word sense
representation and disambiguation. In Proceedings of
EMNLP 2014, pages 1025–1035, Doha, Qatar.

[Das and Smith2011] Dipanjan Das and Noah A. Smith.
2011. Semi-supervised frame-semantic parsing for
unknown predicates. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1435–1444, Portland, Oregon, USA.

[Faruqui et al.2015] Manaal Faruqui, Jesse Dodge, Su-
jay Kumar Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. 2015. Retrofitting word vectors to
semantic lexicons. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1606–1615, Denver, Colorado.

[Fellbaum1998] Christiane Fellbaum, editor. 1998.
WordNet: An Electronic Database. MIT Press, Cam-
bridge, MA.

[Ganitkevitch et al.2013] Juri Ganitkevitch, Benjamin
Van Durme, and Chris Callison-Burch. 2013.
PPDB: The paraphrase database. In Proceedings of
NAACL-HLT, pages 758–764, Atlanta, Georgia.

[Haveliwala2002] Taher H. Haveliwala. 2002. Topic-
sensitive PageRank. In Proceedings of the 11th Inter-
national Conference on World Wide Web, pages 517–
526, Honolulu, Hawaii, USA.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. SimLex-999: Evaluating semantic
models with (genuine) similarity estimation. Compu-
tational Linguistics, 41(4):665–695.

[Huang et al.2012] Eric H. Huang, Richard Socher,
Christopher D. Manning, and Andrew Y. Ng. 2012.
Improving word representations via global context and
multiple word prototypes. In Proceedings of ACL,
pages 873–882, Jeju Island, Korea.

[Iacobacci et al.2015] Ignacio Iacobacci, Moham-
mad Taher Pilehvar, and Roberto Navigli. 2015.
SensEmbed: Learning sense embeddings for word
and relational similarity. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 95–105, Beijing, China.

[Jauhar et al.2015] Sujay Kumar Jauhar, Chris Dyer, and
Eduard Hovy. 2015. Ontologically grounded multi-
sense representation learning for semantic vector
space models. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 683–693, Denver, Colorado.

[Jurgens et al.2014] David Jurgens, Mohammad Taher
Pilehvar, and Roberto Navigli. 2014. SemEval-2014
task 3: Cross-level semantic similarity. In Proceed-
ings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 17–26, Dublin, Ire-
land.

1689



[Kashyap et al.2014] Abhay L. Kashyap, Lushan Han,
Roberto Yus, Jennifer Sleeman, Taneeya W. Satya-
panich, Sunil R Gandhi, and Tim Finin. 2014.
Meerkat Mafia: Multilingual and Cross-Level Seman-
tic Textual Similarity systems. In Proceedings of the
8th International Workshop on Semantic Evaluation,
pages 416–423.

[LeCun et al.2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. 2015. Deep learning. Nature,
521(7553):436–444.

[Liu et al.2015] Yang Liu, Zhiyuan Liu, Tat-Seng Chua,
and Maosong Sun. 2015. Topical word embeddings.
In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pages 2418–2424.

[McCarthy et al.2016] Diana McCarthy, Marianna Apid-
ianaki, and Katrin Erk. 2016. Word sense cluster-
ing and clusterability. Computational Linguistics, in
press.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. In Workshop
at International Conference on Learning Representa-
tions, Scottsdale, Arizona.

[Navigli and Ponzetto2012] Roberto Navigli and Si-
mone Paolo Ponzetto. 2012. BabelNet: The
automatic construction, evaluation and application
of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193:217–250.

[Neelakantan et al.2014] Arvind Neelakantan, Jeevan
Shankar, Alexandre Passos, and Andrew McCallum.
2014. Efficient non-parametric estimation of multiple
embeddings per word in vector space. In Proceedings
of EMNLP 2014, pages 1059–1069, Doha, Qatar.

[Niemann and Gurevych2011] Elisabeth Niemann and
Iryna Gurevych. 2011. The people’s Web meets
linguistic knowledge: Automatic sense alignment of
Wikipedia and WordNet. In Proceedings of the Ninth
International Conference on Computational Seman-
tics, pages 205–214, Oxford, United Kingdom.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Pro-
ceedings of EMNLP 2014, pages 1532–1543, Doha,
Qatar.

[Pilehvar and Navigli2015] Mohammad Taher Pilehvar
and Roberto Navigli. 2015. From senses to texts: An
all-in-one graph-based approach for measuring seman-
tic similarity. Artificial Intelligence, 228:95–128.

[Proisl et al.2014] Thomas Proisl, Stefan Evert, Paul
Greiner, and Besim Kabashi. 2014. SemantiK-
LUE: Robust semantic similarity at multiple levels us-
ing maximum weight matching. In Proceedings of
SemEval-2014, pages 532–540, Dublin, Ireland.

[Reisinger and Mooney2010] Joseph Reisinger and Ray-
mond J. Mooney. 2010. Multi-prototype vector-space
models of word meaning. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 109–117, Los Angeles, Cali-
fornia.

[Rothe and Schütze2015] Sascha Rothe and Hinrich
Schütze. 2015. AutoExtend: Extending word em-
beddings to embeddings for synsets and lexemes.
In Proceedings of ACL, pages 1793–1803, Beijing,
China.

[Rubenstein and Goodenough1965] Herbert Rubenstein
and John B. Goodenough. 1965. Contextual cor-
relates of synonymy. Communications of the ACM,
8(10):627–633.

[Sanderson and Van Rijsbergen1999] Mark Sanderson
and C. J. Van Rijsbergen. 1999. The impact on
retrieval effectiveness of skewed frequency distri-
butions. ACM Transactions of Infmation Systems,
17(4):440–465.

[Tian et al.2014] Fei Tian, Hanjun Dai, Jiang Bian, Bin
Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu.
2014. A probabilistic model for learning multi-
prototype word embeddings. In Proceedings of COL-
ING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers, pages 151–
160, Dublin, Ireland.

[Turney and Pantel2010] Peter D. Turney and Patrick
Pantel. 2010. From frequency to meaning: Vector
space models of semantics. Journal of Artificial Intel-
ligence Research, 37(1):141–188.

[van der Maaten and Hinton2008] L.J.P van der Maaten
and G.E. Hinton. 2008. Visualizing high-dimensional
data using t-SNE. Journal of Machine Learning Re-
search, 9: 25792605.

[Yang and Powers2005] Dongqiang Yang and David
M. W. Powers. 2005. Measuring semantic similarity
in the taxonomy of WordNet. In Proceedings of the
Twenty-eighth Australasian Conference on Computer
Science, volume 38, pages 315–322, Newcastle,
Australia.

[Yeh et al.2009] Eric Yeh, Daniel Ramage, Christo-
pher D. Manning, Eneko Agirre, and Aitor Soroa.
2009. WikiWalk: Random walks on Wikipedia for se-
mantic relatedness. In Proceedings of the 2009 Work-
shop on Graph-based Methods for Natural Language
Processing, pages 41–49, Suntec, Singapore.

[Yu and Dredze2014] Mo Yu and Mark Dredze. 2014.
Improving lexical embeddings with semantic knowl-
edge. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 545–550, Baltimore,
Maryland.

1690


