
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1617–1628,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Theme-Rewriting Approach for Generating Algebra Word Problems

Rik Koncel-Kedziorski
Ioannis Konstas

Luke Zettlemoyer
Hannaneh Hajishirzi

University of Washington
kedzior@uw.edu, {ikonstas, lsz, hannaneh}@cs.washington.edu

Abstract

Texts present coherent stories that have a par-
ticular theme or overall setting, for example
science fiction or western. In this paper, we
present a text generation method called rewrit-
ing that edits existing human-authored narra-
tives to change their theme without changing
the underlying story. We apply the approach
to math word problems, where it might help
students stay more engaged by quickly trans-
forming all of their homework assignments
to the theme of their favorite movie with-
out changing the math concepts that are be-
ing taught. Our rewriting method uses a two-
stage decoding process, which proposes new
words from the target theme and scores the re-
sulting stories according to a number of fac-
tors defining aspects of syntactic, semantic,
and thematic coherence. Experiments demon-
strate that the final stories typically represent
the new theme well while still testing the orig-
inal math concepts, outperforming a number
of baselines. We also release a new dataset of
human-authored rewrites of math word prob-
lems in several themes.

1 Introduction

Storytelling is the complex activity of expressing a
plot, its events and participants in words meaning-
ful to an audience. Automatic storytelling systems
can be used for customized sport commentaries, en-
riching video games with personalized or dynamic
plot-lines (Barros and Musse, 2007), or providing
customized learning materials which meet each indi-
vidual student’s needs and interests (Bartlett, 2004).
In this paper, we focus on generating narrative-style

Jim walked 0.2 of a mile from school to David’s
house and 0.7 of a mile from David’s house to his
own house. How many miles did Jim walk in all?
Star Wars
Uncle Owen walked 0.2 of a mile from hangar to Luke
Skywalker’s room and 0.7 of a mile from Luke Sky-
walker’s room to his own room. How many miles did
Uncle Owen walk in all?
Cartoon
Finn squished 0.2 of a mile from cupboard to
Melissa’s dock and 0.7 of a mile from Melissa’s dock
to his own dock. How many miles did Finn squish in
all?
Western
Duane strolled 0.2 of a mile from barn to Madeline’s
camp and 0.7 of a mile from Madeline’s camp to his
own camp. How many miles did Duane stroll in all?

Figure 1: An example story and rewrites in 3 themes.

math word problems (Figure 1) and demonstrate that
it is possible to design an algorithm that can auto-
matically change the overall theme of a text without
changing its underlying story, for example to create
more engaging homework that is in the theme of a
student’s favorite movie.

A math word problem is a coherent story that
provides the student with good clues to the cor-
rect mathematical operations between the numerical
quantities described therein. However, the particular
theme of a problem, whether it be about collecting
apples or traveling distances through space, can vary
significantly so long as the correlation between the
story and underlying equation is maintained. Stu-
dents’ success at solving a word problem is tied
to their interest in the problem’s theme (Renninger
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et al., 2002), and personalizing word problems in-
creases student understanding, engagement, and per-
formance in the problem solving process (Hart,
1996; Davis-Dorsey et al., 1991).

Motivated by this need for thematically diverse,
highly coherent stories, we address the problem
of story rewriting, or transforming human-authored
stories into novel, coherent stories in a new theme.
Rather than synthesizing first a story plot (McIntyre
and Lapata, 2009; McIntyre and Lapata, 2010) or
script (Chambers and Jurafsky, 2009; Pichotta and
Mooney, 2016; Granroth-Wilding and Clark, 2016)
from scratch, we instead begin from an existing
story and iteratively edit it towards a thematically
novel but –most crucially– semantically compatible
story. This approach allows us to reuse much, but
not all, of the syntactic and semantic structure of the
original text, resulting in the creation of more coher-
ent and solvable math word problems.

We define a theme to be a collection of refer-
ence texts, such as a movie script or series of books.
Given a theme, the rewrite algorithm constructs new
texts by substituting thematically appropriate words
and phrases, as measured with automatic metrics
over the theme text collection, for parts of the orig-
inal texts. This process optimizes for a number of
metrics of overall text quality, including syntactic,
semantics, and discourse scores. It uses no hand
crafted templates and requires no theme-specific
tuning data, making it easy to apply for new themes
in practice. Tables 4–6 show example stories gener-
ated from the rewrite system.

To evaluate performance, we collected a corpus
of 450 rewrites of math word problems in Star Wars
and Children’s Cartoon themes via crowdsourcing.1

Experiments with automated metrics and human
evaluations demonstrate that the approach described
here outperforms a number of baselines and can pro-
duce solvable problems in multiple different themes,
even with no in-domain tuning.

2 Related Work

Our approach is related to the previous work in story
generation (e.g., McIntyre and Lapata (2010)) and
sentence rewriting (e.g., text simplification (Xu et

1Data and code available at https://gitlab.cs.
washington.edu/kedzior/Rewriter/.

al., 2016)), as reviewed in this section. It has three
major differences from all these approaches: First,
we focus on multi-sentence stories where preserving
the coherence, discourse relations, and solvability is
essential. Previous work mainly focuses on rewrit-
ing single sentences. Second, we build a theme
from a text corpus and show how the stories can be
adapted to new themes. Third, our method leverages
the human-authored story to capture the semantic
skeleton and the plot of the current story, rather than
synthesizing the story plot. To our knowledge, we
are the first to introduce a text rewriting formulation
for story generation.

Story generation has been of long interest to AI
researchers (Meehan, 1976; Lebowitz, 1987; Turner,
1993; Liu and Singh, 2002; Mostafazadeh et al.,
2016). Recent methods in story generation first syn-
thesize candidate plots for a story and then compile
those plots into text. Li et al. (2013) use crowd-
sourcing to build plot graphs. McIntyre and Lap-
ata (2009; 2010) address story generation through
the automatic deduction and reassembly of scripts
(Schank and Abelson, 1977), or structured represen-
tations of events and their participants, and causal
relationships involved. Leveraging the automatic
script learning methods of Chambers and Jurafsky
(2009), McIntyre and Lapata (2010) learn candidate
entity-centered plot graphs, or possible events in-
volving the entity and an ordering between these
events, with the use of a genetic algorithm. Then
plots are compiled into stories through the use of
a rule-based text surface realizer (Lavoie and Ram-
bow, 1997) and reranked using a language model.

Polozov et al. (2015) automatically generate math
word problems tailored to a student’s interest us-
ing Answer Set Programming to satisfy a collec-
tion of pedagogical and narrative requirements. This
method naturally produces highly coherent, person-
alized story problems that meet pedagogical require-
ments, at the expense of building the thematic on-
tologies and discourse constraints by hand.2

Additionally, there is related work in text simpli-
fication (Wubben et al., 2012; Kauchak, 2013; Zhu
et al., 2010; Vanderwende et al., 2007; Woodsend
and Lapata, 2011b; Hwang et al., 2015), sentence

2According to Polozov et al. (2015) building small thematic
ontologies of types, relations, and discourse tropes (100-200 en-
tries) for each of only 3 literary settings took 1-2 person months.
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compression (Filippova and Strube, 2008; Rush et
al., 2015), and paraphrasing (Ganitkevitch et al.,
2013; Chen and Dolan, 2011; Ganitkevitch et al.,
2011). All these tasks are focused on rewriting sen-
tences under a predefined set of constraints, such as
simplicity. Different rule-based and data-driven ap-
proaches are introduced by Petersen and Ostendorf
(2007), Vickrey and Koller (2008), and Siddharthan
(2004). Most data-driven approaches take advantage
of machine translation techniques, use source-target
sentence pairs, and learn rewrite operations (Yatskar
et al., 2010; Woodsend and Lapata, 2011a), or use
additional external paraphrasing resources (Xu et al.,
2016).

Finally, this work is related to those on auto-
matically solving math word problems. Specific
topics include number word problems (Shi et al.,
2015), logic puzzle problems (Mitra and Baral,
2015), arithmetic word problems (Hosseini et al.,
2014; Roy and Roth, 2015), algebra word prob-
lems (Kushman et al., 2014; Zhou et al., 2015;
Koncel-Kedziorski et al., 2015a; Roy et al., 2016),
and geometry word problems (Seo et al., 2015; Seo
et al., 2014). Several datasets of word problems are
available (Koncel-Kedziorski et al., 2016; Huang et
al., 2016), though none address the need for thematic
text.

3 Problem Formulation

Our system takes as input a story s and a theme t,
and outputs the best rewrite s∗ from generated can-
didates S.

A theme t is defined as a textual corpus that de-
scribes a topic or a domain. This is an intentionally
broad definition that allows a variety of textual re-
sources to serve as themes. For example, the collec-
tion of all Science Fiction stories from the Project
Gutenberg can be a theme, or the script of a single
movie, or a sampling of fan fiction from the Inter-
net. This flexibility adds to the utility of our work,
as varying amounts of thematic text may be avail-
able.

The generated candidate s∗ is the most themati-
cally fit problem that is syntactically and semanti-
cally coherent given the original problem s and the
new theme t. We represent a story in terms of the
words it contains, so that s = {w1, w2, . . . wn} and

Sam had 2 dogs. Each had 3 puppies. 

Syntactic relations

Candidates (s’)

Semantic relations

Luke Skywalker had 2 ships. Each had 3 droids. 

Original (s)

Syn(s’|s)

SemPair(s’|s)Th(s’|t)

SemLex(s’|s)

Figure 2: An overview of our method for scoring a candi-
date story s′ given a human-authored story s and a theme
t. Syn(s′|s): compatibility of syntactic relations (purple
arrows), Sempair(s

′|s): coherence of semantic relations
(blue arrows), SemLex(s

′|s): semantic mapping of indi-
vidual words, and Th(s′|s, t): thematicity.

|s| = n. The new story s′ is defined as:

s′ =
{
f(w1), f(w2), . . . f(wn)

}

where the function f(w) : Vo → VKt ∪∅, rewrites a
word from the vocabulary of the original problem Vo
to either a word, a trivial noun compound of length
K (e.g., multi-word named entity) from the vocab-
ulary of the the thematic vocabulary Vt, or reduces
to the empty symbol, i.e., omits the input word en-
tirely; hence the length of s′ can differ from that of
the original problem.

Formally, our goal is to select the candidate
s′ ∈ S by maximizing a scoring functionR over the-
matic, syntactic and semantic constraints, subject to
a set of parameters θ:

s∗ = argmax
s′∈S
R(s′|s, t; θ) (1)

In order to find the best story s∗, our problem
reduces to generating candidate stories s′ from the
space of possible rewrites of the human-authored
story s in a new theme t (Section 5). Since there
are exponentially many rewrites, we follow a two-
stage decoding approach: first we identify only the
content words wi in the input problem, and provide
for each a list of the top-k most salient thematic can-
didate words and trivial noun compounds. We then
search the space by progressively introducing more
rewrites in the beam, and scoring them according to
R (Section 4). Figure 2 shows the overview of the
scoring function for a candidate sentence s′.
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4 Scoring Stories

The scoring functionR decomposes into three com-
ponents, capturing aspects of syntactic compatibil-
ity, semantic coherence, and thematicity:

R(s′|s, t; θ) =α× Sem(s′|s)
+ β × Syn(s′|s) (2)

+ γ × Th(s′|s, t)

The syntactic (Syn) and semantic (Sem) coherence
components measure the coherence of the words in
the new story s′, as well as their compatibility to the
syntactic and semantic relations in the original story
s. On the other hand, thematicity (Th) scores the
relevance and importance of words in the new story
with respect to theme t.

We describe each of these components and the de-
coding process in the following sections.

4.1 Thematicity
Recall that a theme t is defined as a collection
of documents that share a common topic, such as
books in the science fiction genre, or scripts of hor-
ror movies. We define thematicity of a word w′ as
the measure of salience, or how discriminative that
word is to a given theme.3 For example, robot and
spaceship are expected to be highly thematic with
respect to Star Wars. In our setting we extend this
definition to a candidate problem s′ given s and t as:

Th(s′|s, t) =
|s|∑

i

Sal(w′i, t) (3)

where w′i is a word from the candidate problem, and
Sal is its salience score with respect to the theme.
In the context of this work we argue that the the-
matic adaptation of the content words, i.e., nouns,
verbs, named entities, and adjectives, plays the most
important role in forming a new thematic problem.
Therefore, we define their salience (except named
entities) based on their tf-idf score over the theme t,
and set it to zero for function words. Since named
entities have relatively low frequencies in the theme
corpus we set their salience to 1− 1

c(w′
i)

, where c(w′i)

3We will be interchangeably referring to w′ as either the
word or the head of the multi-word noun compound that
rewrites the equivalent word w in the original problem.

is the number of times w′i occurs in the theme. In
the example story in Figure 2 the thematicity score
is derived as Sal(Luke Skywalker) + Sal(ships) +
Sal(droids).

4.2 Syntactic compatibility
This work offers a new method for syntactic and
discourse coherence based on preserving human-
authored syntactic structure in generated text (hence
our use of the term rewriting). The syntactic con-
structs in a document play a distinctive role in main-
taining cohesion across sentences. We consider the
human-authored syntax of the original story s as
gold standard, and use it to score a candidate prob-
lem s′ by considering how well the syntactic rela-
tions of s apply to s′.

Formally, given a dependency triple (wi, wj , l)
from a parse of a sentence in s, we compute the
likelihood for the corresponding triple (w′i, w

′
j , l) for

w′i, w
′
j in s′. We define the syntactic score for all

sentences in s′ as:

Syn(s′|s) =
∑

i,j,l|(wi,wj ,l)∈Dep(s)

LDep(w
′
i, w
′
j , l) (4)

where Dep(s) are the dependency parse trees for all
sentences in s; LDep is a 3-gram language model
over dependency triples which gives the likelihood
of an arc label l being used between a pair of words
(w′i, w

′
j). For example in Figure 2, the syntactic

compatibility score includes dependency likelihoods
of LDep(ship, 2, num), LDep(had, ship, dobj).

Therefore, the Syn function prefers stories s′ that
(a) have similar dependency structure to the origi-
nal story s and (b) make use of a common syntactic
configuration.

4.3 Semantic Coherence
The semantic coherence component expresses how
well a candidate s′ rewrites individual words and
realizes the semantic relationships that exist in the
human-authored story s. Ideally, we would like to
preserve enough of the semantics of s in order to
produce a coherent story s′, yet we are populating s′

with words taken from an unrelated theme. There-
fore, we model the semantics of a story s′ in terms
of the lexical semantics contributed by individual
words as well as semantic relationships that exist be-
tween its elements. Note that the relationships can
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cross the sentence boundaries, promoting discourse
coherence.

We decompose semantic relations in a story into
a set of local, lexical relationships between pairs of
words. Specifically, we consider semantic relations
for noun-noun and verb-verb pairs as provided by
WordNet (Miller, 1995). Since some relations are
not directly outlined in these resources (e.g., the se-
lectional preferences of nouns with regard to their
adjectival modifiers), we also consider the word-
embedding similarity between words. For example
in Figure 2 the semantic relationships are denoted
with blue arrows between pairs of content words in
the story (e.g., {Sam, dogs}, {dogs, puppies}, etc).

More formally, we define the semantic coherence
of s′ with respect to s as:

Sem(s′|s) =
|s′|∑

i

SemLex(wi, w
′
i) (5)

+
∑

i,j∈CW

SemPair({wi, wj}, {w′i, w′j})

where CW is the set of pairs of indices of content
words (nouns, verbs, adjectives, and named entities)
from s. We focus on the content words of the orig-
inal problem, as they carry most of the semantic in-
formation. SemLex and SemPair functions are se-
mantic adaptation scores for individual words and
semantic relations respectively, described below.

Semantic Compatibility between words (SemLex)
is defined as:

SemLex(wi, w
′
i) = cos(wi, w

′
i) +Resnik(wi, w

′
i)

(6)

where cos(wi, w
′
i) denotes the cosine similarity be-

tween the vector space embeddings of two words wi

andw′i
4, andResnik(wi, w

′
i) expresses the informa-

tion content of the lowest subsumer of {wi, w
′
i} in

WordNet. For example in Figure 2, the semantic
compatibility score incorporates lexical similarities
SemLex(dog, ship), etc.

Compatibility score between semantic relations
(SemPair) is defined by adding two components:
PairSim and Analogy that compute how seman-
tic relations between pairs of words are preserved in

4For the ease of notation, we represent the embedding of the
words with wi as well.

the new story:

PairSim =cos(wi, wj) ∗ cos(w′i, w′j) (7)

Analogy =cos(w′i + wj − wi, w
′
j) (8)

PairSim preserves the similarity between pairs of
words {wi, wj} in s and the corresponding pair
{w′i, w′j} in the new story s′. Intuitively, ifwi andwj

are semantically close to each other, we would like
the corresponding words to be close in the new story
as well. For example in Figure 2, ‘dog’ and ‘puppy’
are similar in the original story, we expect the cor-
responding words ‘ship’ and ‘droid’ to be similar in
the new story. The Analogy function, inspired by
Mikolov et al. (2013), computes the analogy of w′j
fromw′i given the relationship that holds betweenwi

and wj in the vector space. For example in Figure 2,
the relation between ‘Sam’ and ‘dog’ is similar to
the relation between ‘Luke Skywalker’ and ‘ship’.

5 Decoding

Our decoding process begins by first identifying
the content words wi (nouns, verbs, adjectives and
named entities) in the original problem s that will be
considered as initial points for rewriting. For each
of these lexical classes we extract the top-k most
thematic words and trivial noun compounds from
the theme t. For example, in Figure 2, candidate
nouns are: ‘ships’, ‘robots’, ‘droids’, etc., and for
verbs: ‘blast’, ‘soar’, ‘command’, etc. Recall that
the space of candidate rewrites is large, prohibiting
an exhaustive enumeration. We therefore do approx-
imate search with a beam by considering simultane-
ously all possible paths that start at the different ini-
tial points. At each step the decoder considers an
additional rewrite from the list of candidates, adds it
to the existing hypothesis path, and scores it accord-
ing to functionR (Equation 2).

All the counterpart scores are locally optimal,
as they factor over each new word w′i or pair of
{w′i, w′j}, where w′j is a rewrite already existing in
the hypothesis path. At any given step we may re-
combine hypotheses that share the same prefix hy-
pothesis path, and keep the top scoring one. The
process terminates when there are no more rewrites
left. We also experimented decoding with a variety
of orderings of the text in the original problem s,
including left-to-right, and head-first following the
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dependency tree of each sentence and then concate-
nating these linearizations; we observed that consid-
ering multiple paths achieves the best performance.

6 Data Collection

For the set of human-authored stories {s}, we use a
corpus of math word problems described in Koncel-
Kedziorski et al. (2016). We select a subset of
150 problems targeting 5th and 6th grade levels, all
of which involve a single equation in one variable.
These problems have 2.7 sentences and 29.4 words
on average, 12.6 of which are considered content
words by our system. In order to tune and evaluate
our model, we collect a corpus of human-authored
rewrites produced by workers from Amazon Me-
chanical Turk based on two themes: Star Wars, and
Adventure Time (a children’s cartoon).

We experimented with different ways of helping
to define the theme for the workers, including of-
fering automatically generated word clouds or en-
forcing that a response includes one of several key-
words. In practice, we have found that using specific
cultural elements as themes (such as famous movie
or cartoon franchises) attracts workers who already
have a strong knowledge of the theme, resulting in
higher quality work.

To help explain the rewriting process, we show
workers three examples of thematic rewrites with
varying degrees of correlation to the original prob-
lems. We then show workers a random problem
from the original set {s} and a corresponding equa-
tion for that problem. We instruct the workers to
“rewrite” the problem according to the theme, en-
suring that their rewritten problem can be solved by
the provided equation. The final dataset collection
comprises of 450 human-authored rewrites. We col-
lect 3 rewrites for 100 of the original problems for
the Star Wars theme (based on the popular Star Wars
sequel movies), and 3 rewrites for the rest of the 50
original problems, for the Children Cartoons Theme
(CARTOON), based on the Adventure Time TV show.
We keep 150 examples from the Star Wars theme for
development (STARdev), and the rest 150 for testing
(STARtest).

We collected the STARdev and CARTOON data
based on workers with the “master” designation
and at least 95% approval rating. Then we pro-

ceeded collecting STARtest by a subset of the authors
of STARdev who self-identify as theme experts and
whose quality of work is manually confirmed.

7 Experiments

7.1 Setup

Implementation Details We pre-process the
themes using the Stanford CoreNLP tools (Man-
ning et al., 2014) for tokenization, Named Entity
Recognition (Finkel et al., 2005), and dependency
parsing (Chen and Manning, 2014). For calculating
salience scores, we use the ScriptBase dataset of
movie scripts (Gorinski and Lapata, 2015). The
Star Wars theme is constructed from the available
script, roughly 7300 words. The Cartoon theme is
constructed from fan-authored scripts of the first 10
episodes of the show (Springfield, 2016) totaling
1370 words. Since our thematic options are taken
from arbitrary text, we use the lists of offensive
terms published by The Racial Slur database
(Database, 2016) and FrontGate Media (Media,
2016) to filter out offensive content. To prohibit
overgeneration, we forbid the transformation of stop
words or math-specific words (Survivors, 2013;
Koncel-Kedziorski et al., 2015b).

For syntactic compatibility score Syn (Equa-
tion 4) we use the English Fiction subset of the
Google Syntactic N-grams corpus (Goldberg and
Orwant, 2013) and train a 3-gram language model
using KenLM (Heafield, 2011). For SemLex,
PairSim and Analogy (Equations 6-8) we use
the pretrained word embeddings of Levy and Gold-
berg (2014). These embeddings are trained using
dependency contexts rather than windows of ad-
jacent words, allowing them to capture functional
word similarity. Finally, we tune the parameters
of our model (Equation 2) on the development set
STARdev and pick those values5 that maximize ME-
TEOR score (Denkowski and Lavie, 2014) against 3
human references.

Evaluation We compare two ablated configura-
tions of our method against our full model (FULL):
-SYN that only uses semantic and thematicity com-
ponents and does not incorporate the syntactic com-
patibility score, -SEM replaces the semantic coher-

5We set α = 0.1, β = 0.1 and γ = 1
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Model STARdev STARtest CARTOON

FULL 31.82 29.16 32.08
-SEM 28.72 25.55 27.55
-SYN 31.92 29.14 32.04

Table 1: METEOR results for different configu-
ration of our model on STARdev , STARtest and
CARTOON datasets.

ence score with the simpler cos(wi, w
′
i), effectively

rewriting only single words, and not pairs. We re-
frained from ablating the thematicity score as it is
the core part of our model that drives the rewriting
process into a new theme.

We evaluate our method using an automatic met-
ric, and via eliciting human judgments on Ama-
zon Mechanical Turk. For automatic evaluation, we
compute the METEOR score, comparing the out-
put of each model for a given problem and theme
to the 3 human rewrites we collected, on STARdev,
STARtest and CARTOON. METEOR is a recall-
oriented metric, widely used in the MT community;
the additional stemming, synonym and paraphrase
matching modules make it more applicable for our
use, given the nature of our rewriting task.6

For human evaluation, we conduct pairwise com-
parison tests, pairing FULL against a human rewrite
(HUMAN), FULL against -SYN, and FULL against
-SEM. Participants were given a short description
of the theme, and the output of each system. For
each test we asked 40 subjects to select which prob-
lem they preferred over 5 pairs of outputs; we ob-
tained a total of 200 (5x40) responses for STARtest

and CARTOON.
In order to better understand the strengths and

weaknesses of the generated stories, we conducted a
more detailed human evaluation. 8 participants were
presented with the output of the three automatic sys-
tems, human rewrites (HUMAN), and a theme. The
participants were asked to rate the stories across
three dimensions: coherence (how coherent is the
text of the problem?), solvability (can elementary
school students solve it?), and thematicity (how well
does the problem express them?) on a scale from
1 to 5. We collected ratings over 16 outputs from

6The average METEOR score comparing 1 annotator
against the other 2 is 0.26, indicating that there are diverse cor-
rect strategies for solving the rewriting problem.

Model STARtest CARTOON

FULL 65.0 57.9
-SYN 35.0 42.1
FULL 68.8 69.4
-SEM 31.2 30.6
FULL 17.9 10.0
HUMAN 82.1 90.0

Table 2: Human evaluation results on pairwise compar-
isons between FULL and -SYN, and FULL and HUMAN,
on STARtest and CARTOON datasets.

Model Thematicity Coherence Solvability
HUMAN 3.7 3.175 4.025
FULL 3.7 3.025 3.9
-SYN 3.375 3.075 3.825
-SEM 3.325 2.65 3.7

Table 3: Human evaluation results for FULL, -SYN,
-SEMand HUMAN on thematicity, coherence and solv-
ability on STARtest.

STARtest, resulting in 128 responses.

7.2 Results

Table 1 reports METEOR; we notice that removing
the semantic coherence scores in -SEM hurts the per-
formance compared to FULL; this confirms our claim
that semantic compatibility is crucial for building
coherent stories. On the other hand, -SYN performs
similarly to FULL. Closer inspection of the -SYN sys-
tem’s output reveals a greater diversity in thematic
elements as a result of the relaxed syntactic compat-
ibility constraints. Hence it is more likely to have
greater overlap with any of the reference rewrites,
resulting in higher METEOR scores.

However, a pairwise comparison between
FULL and -SYN (Table 2) reveals that human sub-
jects consistently prefer the output of FULL instead
of -SYN both for STARtest and CARTOON. Table 2
also reports that HUMAN outperforms the output
of the FULL model, and a pairwise comparison of
FULL and -SEM which yields a result in line with the
METEOR scores.

Table 3 shows the results of the detailed com-
parison of Thematicity, Coherence, and Solvability.
This table clearly shows the strong contribution of
the semantic component of our system. The specific
contribution of the syntactic component is to pro-
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Star Wars
s1. Wendy bought 4 new chairs and 4 new tables for
her house. If she spent 6 minutes on each piece fur-
niture putting it together, how may minutes did it take
her to finish?
s′1. Leia bought 4 new ships and 4 new guns for
her room. If she spent 6 minutes on each wasteland
weapon putting it together, how many minutes did it
take her to terminate?
s2. My car gets 20 miles per gallon of gas. How many
miles can I drive on 5 gallons of gas?
s′2. My cruiser gets 20 miles per gallon of light. How
many miles can I drive on 5 gallons of light?
s3.Tyler had 15 dogs. Each dog had 5 puppies. How
many puppies does Tyler now have?
s′3. Biggs had 15 creatures. Each creature had 5 crea-
tures. How many creatures does Biggs now have?

Table 4: Examples of the original stories si and rewritten
math word problems s′i in Star War theme.

duce overall more solvable and thematically satisfy-
ing problems, although it can slightly affect coher-
ence especially when automatic parses fail. Finally,
the overall high ratings for human-authored stories
across all three dimensions, confirm the high quality
of the crowd-sourced stories.

7.3 Qualitative Examples

Table 4–6 shows some problems generated by our
method. Recall that since our system needs no an-
notated thematic training data, we can easily gen-
erate from any theme where thematic text is avail-
able. To demonstrate this fact, we include gener-
ated examples in a Western theme from novels from
the Project Gutenberg corpus. Many of the results
of our system are very legible, with only minor
agreement errors. Coherent, thematic semantic re-
lations are evident in problems such as s′1, where
ships, guns, and weapons combine to effect the Star
Wars theme; this is also evident in s′5, where people
with western sounding names like Kurt and Made-
line trade in cigarettes, an old-fashioned pre-cursor
to e-cigarettes.

In some cases, semantic inconsistencies result in
weird sounding problems, such as in s′6 where the
main character receives “wheat of grub”. But be-
cause of the syntactic compatibility component, our
model scores this candidate higher because of the

Cartoon
s7. Dave was helping the cafeteria workers pick up
lunch trays, but he could only carry 9 trays at a time.
If he had to pick up 17 trays from one table and 55
trays from another, how many trips will he make?
s′7. Finn was helping the cupboard men pick up candy
bottles, but he could only carry 9 bottles at a time.
If he had to pick up 17 bottles from one ring and 55
bottles from another, how many swords will he make?
s8. If books came from all the 4 continents that Bryan
had been into and he collected 122 books per conti-
nent, how many books does he have from all 4 conti-
nents combined?
s′8. If dances came from all the 4 mountains that Finn
had been into and he collected 122 dances per moun-
tain, how many dances does he have from all 4 moun-
tains combined?
s9. A bucket contains 3 gallons of water. If Derek
adds 6.8 gallons more, how many gallons will there
be in all?
s′9. A bottle makes 3 gallons of serum. If Finn adds
6.8 gallons more, how many gallons will there be in
all?

Table 5: Examples of the original stories si and rewritten
math word problems s′i in Cartoon theme.

connection between “wheat” and “graze”.
Semantic incoherence is less of a problem in the

cartoon theme, where absurd interactions between
characters are expected. However, a difficulty for
our system is demonstrated in s′7, where the physical
entity “swords” is substituted for the nominalization
of an event “trips”. Improvements to the semantic
coherence component could resolve such issues.

Table 7 shows some instances where the rewrite
algorithm produces unusable results. An example
of under-generation is s′10. Here, too many words
are left untouched, resulting in both ungrammatical-
ity and semantic incoherence. In s′11, we witness
some limitations of using word vectors. The rare
word “Ferris” is not close to anything in the Star
Wars theme, and is thus mapped almost arbitrarily
to “int” (movie script shorthand for an interior shot).
Better treatment of noun compounds and the use of
phrase vectors would reduce such errors.

8 Conclusion

We formalized the problem of story rewriting as au-
tomatically changing the theme of a text without
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Western
s4. Christians father and the senior ranger gathered
firewood as they walked towards the lake in the park
...
s′4. Christian ’s partner and the lone sheriff harvested
barley as they strolled towards the hip in the orchard
...
s5. Sally had 27 cards. Dan gave her 41 new cards.
Sally bought 20 cards. How many cards does Sally
have now?
s′5. Madeline had 27 cigarettes. Kurt gave her 41 new
cigarettes. Madeline bought 20 cigarettes. How many
cigarettes does madeline have now?
s6. For Halloween Megan received 11 pieces of candy
from neighbors and 5 pieces from her older sister. If
she only ate 8 pieces a day, how long would the candy
last her?
s′6. For Halloween Madeline received 11 wheat of
grub from proprietors and 5 wheat from her nameless
partner. If she only grazed 8 wheat a day, how long
would the grub last her?

Table 6: Examples of the original stories si and rewritten
math word problems s′i in Western theme.

altering the underlying story and developed an ap-
proach for rewriting algebra word problems where
the rewriting model optimized for a number of mea-
sures of overall text coherence. Experiments on a
newly gathered dataset demonstrated our model can
produce themed texts that are usually solvable.

Future work could improve the thematicity and
solvability components by incorporating domain-
specific and commonsense knowledge, leveraging
information extraction. Additionally, neural net-
work architectures (e.g., LSTMs, seq2seq) can be
trained to rewrite coherently with less reliance on
brittle syntactic parses. Additionally, we plan to
study rewriting in other domains such as children’s
short stories and extend the model to generate math
word problems directly from equations. Finally, we
intend to incorporate the generated problems in ed-
ucational technology and tutoring systems.
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Poor Rewrites
s10. It rained 0.9 inches on Monday. On Tuesday, it
rained 0.7 inches less than on Monday. How much did
it rain on Tuesday?
s′10. It blasted 0.9 inches on Monday. On Tuesday, it
blasted 0.7 inches less than on Monday. How much
did it light on Tuesday?
s11. The Ferris wheel in Paradise Park has 14 seats.
Each seat can hold 6 people. How many people can
ride the Ferris wheel at the same time?
s′11. The int grab in chewbacca mesa has 14 areas.
Each area can hold 6 troops. How many troops can
ride the int grab at the same time?

Table 7: Examples of the original stories si and poorer
rewrites s′i in the Star Wars theme.
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