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Abstract

Community-driven  Question  Answering
(CQA) systems that crowdsource experiential
information in the form of questions and
answers and have accumulated valuable
reusable knowledge. Clustering of QA
datasets from CQA systems provides a means
of organizing the content to ease tasks such
as manual curation and tagging. In this paper,
we present a clustering method that exploits
the two-part question-answer structure in QA
datasets to improve clustering quality. Our
method, MixKMeans, composes question and
answer space similarities in a way that the
space on which the match is higher is allowed
to dominate. This construction is motivated
by our observation that semantic similarity
between question-answer data (QAs) could
get localized in either space. We empirically
evaluate our method on a variety of real-world
labeled datasets. Our results indicate that
our method significantly outperforms state-
of-the-art clustering methods for the task of
clustering question-answer archives.

1 Introduction

Community-based Question Answering (CQA) sys-
tems such as Yahoo! Answers!, StackOverflow? and
Baidu Zhidao® have become dependable sources of
knowledge to solve common user problems. Unlike
factoid question answering*, CQA systems focus on

"http://answers.yahoo.com
Zhttp://www.stackoverflow.com
3http://en.wikipedia.org/en/Baidu_Knows
*e.g., http://trec.nist.gov/data/qa.html
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crowdsourcing how and why questions and their an-
swers. As is the case with any system where con-
tent is generated by web users, the generated con-
tent would be of varying quality, reliability, readabil-
ity and abstraction. Thus, manual curation of such
datasets is inevitable to weed out low quality and
duplicate content to ensure user satisfaction. A nat-
ural way to aid manual curation of such broad-based
CQA archives is to employ clustering so that seman-
tically related QAs are grouped together; this would
help organize the corpus in a way that experts en-
gaged in manual curation be assigned specific clus-
ters relating to areas of their expertise. Cluster-
ing also provides a platform to enable tagging the
QA dataset; cluster topics could be used as tags, or
other QAs in the same cluster could be tagged as
being related to a QA. The fundamental difference
between CQA archives and general text document
collections is the existence of a two-part structure
in QAs and the difference in lexical “character” be-
tween the question and answer parts. This lexical
chasm (i.e., gap) (Berger et al., 2000) between ques-
tion and answer parts has been a subject of much
study, especially, in the context of improving QA re-
trieval. In this paper, we consider using the two-part
structure in QAs for clustering CQA datasets.

Motivating Example: Table 1 lists four example
QAs from the context of a CQA system focused on
addressing myriad technical issues. These QAs have
been tagged in the table with a manually identified
root-cause to aid understanding; the root-cause is
not part of the CQA data per se. QA1 and QA2 are
seen to address related issues pertaining to routers,
whereas () A3 and () A4 are focused on the same nar-
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row issue dealing with java libraries. Since QA1
and QA2 address different problems, they may not
be expected to be part of the same cluster in fine-
grained clusterings. On the other hand, the solu-
tions suggested in QA3 and QA4 are distinct and
different legitimate solutions to the same problem
cause. Thus, from a semantics perspective, it is intu-
itive that QA3 and (Q A4 should be part of the same
cluster in any clustering of the CQA dataset to aid
actioning on them together; a human expert might
decide to merge the question parts and tag one of
the answers as an alternative answer. Let us now
examine the lexical relatedness between the pairs as
illustrated in Table 2. State-of-the-art text similar-
ity measures that quantify word overlaps are likely
to judge QA1 and QQ A2 to be having a medium sim-
ilarity when either the question-part or the answer-
part are considered. For the pair (QA3, QA4), the
question-part similarity would be judged to be high
and the answer-part similarity as low. Thus, the high
similarity between the root-causes of ) A3 and Q) A4
manifest primarily in their question-parts. Analo-
gously, we observed that some QAs involving the
same root-cause lead to high answer-part similarity
despite poor question-part similarity. This is espe-
cially true in cases involving suggestion of the same
sequence of solution steps despite the question-part
being divergent due to focusing on different symp-
toms of the same complex problem. From these ob-
servations, we posit that high similarities on either
the question-space or answer-space is indicative of
semantic relatedness. Any clustering method that
uses a sum, average or weighted sum aggregation
function to arrive at pair-wise similarities, such as
a K-Means clustering that treats the collated QA as
a single document, would intuitively be unable to
heed to such differential manifestation of semantic
similarities across the two parts.

Our Contributions: We address the problem of
harnessing the two-part structure in QA pairs to im-
prove clustering of CQA data. Based on our obser-
vations on CQA data such as those illustrated in the
example, we propose a clustering approach, MixK-
Means, that composes similarities (dissimilarities)
in the question and answer spaces using a max (min)
operator style aggregation. Through abundant em-
pirical analysis on real-world CQA data, we illus-
trate that our method outperforms the state-of-the-
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art approaches for the task of CQA clustering.

2 Related Work

To enable position our work in the context of exist-
ing literature, we now summarize prior work along
three related directions, viz., (1) processing of CQA
datasets, (2) multi-modal data clustering, and (3) K-
Means extensions.

Processing CQA Datasets: Most work on pro-
cessing CQA data has been in the realm of re-
trieval, where the task addressed is to leverage CQA
datasets to aid answering new questions. These start
with a new question and find one of (i) related ques-
tions (Zhou et al., 2015), (ii) potentially usable an-
swers (Shtok et al., 2012), or (iii) related QAs (Xue
et al., 2008). Different methods differ in the tech-
nique employed to overcome the lexical chasm, with
statistical translation models (Brown et al., 1993)
that model word-level correlations between ques-
tions and answers being the most popular tool for the
same. Usage of topic models (e.g., (Cai et al., 2011))
and combining evidence from topic and translation
models (Zhou et al., 2015) have also met with suc-
cess. The usage of deep-learning methods such as
deep belief networks (Wang et al., 2011) and auto-
encoders (Zhou et al., 2016) have also been explored
for QA retrieval. While the problem of estimat-
ing the relevance of a QA to address a new ques-
tion is related to the problem of estimating sim-
ilarities between QAs to aid clustering, the latter
problem is different in that both question and an-
swer parts are available at either side. In fact, our
problem, CQA clustering, has been largely unex-
plored among literature in CQA data processing. In
the interest of benchmarking our work against tech-
niques from the CQA processing community, we
consider the correlated latent representation learnt
by the recent auto-encoder based neural network
(AENN) method (Zhou et al., 2016) as input to
K-Means, and empirically validate our technique
against the AENN+K-Means combination (referred
to as AENN, for short) in our experimental study.
Outside the task of retrieval, there has been work on
getting QAs from experience reports (Deepak et al.,
2012) and discussion forums (P and Visweswariah,
2014). Conversational transcripts from contact cen-
tres, as outlined in (Kummamuru et al., 2009), form



# | QA Cause
Q: My internet connection is not working, my router shows the “Internet” led blinking in red. Router
QAl A: Please go to the router login page and re-login with broadband credentials; click “connect” | Authentication
and you should be on the internet. Issue
Q: My internet connection is not working, only the power led is lit in the router. Router
QA2 A: Check whether the router login page is loading. Else, the broadband cable Loose
may not be connected properly. Connection
Q: My Java app is picking up the old dojo 0.4.4 libraries though I have a newer version. Multiple
A: Search for dojo 0.4.4 in Windows, and delete off the folder, and it should Libraries in
QA3 . . .
automatically start using the newer version. Classpath
Q: My java application is not picking up the new dojo 1.11.1 libraries that I just installed. Multiple
QA4 A: Update the java classpath variable to exclude the Libraries in
path to the earlier version, and add the path to the new version. Classpath

Table 1: Example CQA Data

QA Lexical

Pair Part Similarity
QA1 | QA2 | Question | Medium
QA1 | QA2 | Answer Medium
QA3 | QA4 | Question High
QA3 | QA4 | Answer Low

Table 2: Similarity Analysis of QAs from Table 1

another rich source of QA data, but need careful seg-
mentation due to interleaving of question and an-
Swer parts.

Multi-modal Data Clustering: The problem of
clustering CQA data is an instance of the gen-
eral problem of clustering multi-modal (aka multi-
relational, multi-view or heterogeneous) data when
the question and answer parts are seen as instanti-
ations of the same root cause, but in question and
answer 'modalities’. Clustering multi-modal data
has been explored well in the context of multi-media
data clustering where each data element comes in
multi-modal form such as [image, caption] pairs or
[audio, text] pairs. The pioneering work in this
field adapted markov random fields (Bekkerman and
Jeon, 2007) to generate separate clusterings for each
modality. Later approaches are closer to our task
of generating a unified clustering across modalities;
they work by learning a unified latent space embed-
ding of the dataset, followed by usage of K-Means
clustering (MacQueen and others, 1967). Eigen-
decomposition (Petkos et al., 2012), spectral meth-
ods (Blaschko and Lampert, 2008) and canonical
correlation analysis (Jin et al., 2015) have been ex-
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ploited for learning the latent space prior to the clus-
tering step. A recent work (Meng et al., 2014)
proposes a single-pass leader-clustering® style for-
mulation called GHF-ART to progressively assign
data objects to clusters. Unlike most other methods
that assume that vector representations are obtained
from general multimedia data, the authors of GHF-
ART lay out how text data be pre-processed for us-
age in GHF-ART, making it an appropriate method
for usage in our setting. Accordingly, we will use
GHF-ART as a baseline method for our experimen-
tal study.

K-Means Extensions: The method that we propose
in this paper, MixKMeans, draws generous inspira-
tion from the classical K-Means clustering formula-
tion (MacQueen and others, 1967). There have been
numerous extensions to the basic K-Means formula-
tion over the last many decades; many such exten-
sions have been covered in focused surveys (Stein-
ley, 2006; Jain, 2010). Of particular interest in
our scenario are those relating to usage of varying
(dis)similarity measures. (Patel and Mehta, 2012)
discuss the usage of various popular distance mea-
sures within the K-Means framework. The point-
symmetry distance, where the distance between an
object and the cluster prototype is determined using
other objects’ information, has been explored (Su
and Chou, 2001) for usage within K-Means for face
recognition applications. Another work (Visalak-
shi and Suguna, 2009) suggests the computation of
the aggregate distance as a fraction of the distance

5 https://cran.r-project.org/web/packages/leaderCluster/index.html



along the closest attribute to that along the farthest
attribute. Despite the plethora of work around ex-
tending K-Means to work with a variety of methods
to aggregate distances across attributes, we have not
come across previous work composing distances at
the level of attribute sets (or modalities) like we will
do in this work.

3 Problem Definition

Let D = {(qi,a1),...,(qn,an)} be a dataset of
QAs from a CQA archive where each answer a; was
posted in response to the corresponding question g;.
The CQA clustering problem is the task of parti-
tioning D into k clusters C = {C1,...,Cy} where
Ui C; =Dand V(i,5),i # j = C; N C;j = ¢ (dis-
jointedness) hold such that similar QAs are grouped
into the same cluster and dissimilar QAs are as-
signed to different clusters. The key aspect that dif-
ferentiates the CQA clustering problem from gen-
eral clustering of relational data is the opportunity to
leverage the specifics of the CQA data, such as the
two-part structure, to model the similarity measure
that would drive the clustering.

Evaluation: The quality of a clustering method may
be quantified by assessing how well the clustering
it produces, i.e., C, reflects the semantic similari-
ties between QAs in D. Given a QA (¢;,a;) € D,
the other QAs that share the same cluster may be
thought of as the result set, i.e., the set of related
QAs according to C. In a labeled dataset such as
CQADupStack (Hoogeveen et al., 2015) where re-
lated QA pairs have been manually identified for
each (¢;, a;), the quality of the results set may be as-
sessed by contrasting against the labeled set using a
standard metric such as F-score®. These QA-specific
F-scores are then aggregated across the QAs in D to
arrive at a single quality measure for the clustering.
We will use such aggregated dataset-level F-scores
as our primary evaluation measure. It may be noted
that the related labellings may not be “clustering-
friendly”’; for example, there may not exist any k-
clustering with no related labels going across clus-
ters. Additionally, we observed that not all related
QAs were labeled to be related in the CQADupStack
dataset. The dataset owners confirm the problem of
missing labelings in a very recent study (Hoogeveen

Shttps://en.wikipedia.org/wiki/F1_score
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et al., 2016). It is conceivable that only a few po-
tential results were manually inspected to inject la-
bellings. Thus, while the relative trends on F-score
offer insights, the absolute F-scores may only be
treated as a loose lower bounds.

4 MixKMeans: Our Method

We now describe the key details of our proposed
technique, MixKMeans. The name is motivated by
the flexibility that is built into the method to mix
(dis)similarities across question and answer spaces
in a formulation that derives inspiration from the
classical K-Means algorithm (MacQueen and oth-
ers, 1967). Throughout this formulation, we repre-
sent question and answer parts of QAs by their re-
spective tf-idf vectors. We start with our objective
function and move on to the iterative optimization.

4.1 Objective Function

Guided by our observation from Section 1 that the
space in which a pair of QAs are more similar should
hold sway in determining their overall match, we
outline a penalty function for a clustering C:

O* =3 cec Z(q,a)EC min{wq d(q,C.p.q), w, d(a, C.,u.a)}
ey
where C.p = (C.p,q,C.u.a) is a prototypi-
cal QA vector for cluster C' and the parameter
pair [wg, w,| control the relative weighting between
question and answer parts. d(.,.) is a dissimilar-
ity function modeled as a simple sum of squares
of element-wise differences between vector entries,
ie. d(z,y) = 35;(ali] — y[i])*.

Intuitively, O* sums up the distance between each
QA in D and the prototypical QA vector of the clus-
ter to which it is assigned to, making it a penalty
function. Since we use dissimilarities that are in-
versely related to similarities, the men function cap-
tures the idea that the aggregate (dis)similarity be es-
timated according to the measure in the best match-
ing space. For optimization convenience, we replace
the min construction by a differentiable approxima-
tion to get a modified objective function:



0= <<wqd(q, C-M)) +
CeC (q,a)eC

(wad@,au.@y)i

where x is a reasonably high negative value or
& — —oo. This is used since (a® + b*)/* approxi-
mates min{a, b} for high negative values of x. It is
worth noting that the opposite effect (i.e., max ap-
proximation) is achieved when x — oo for usage
in scenarios where a max combination is desirable.
The remainder of the steps are applicable for posi-
tive values of z too.

2

4.2 Optimization Approach

There are two sets of variables in Equation 2, viz.,
cluster assignments of QAs in D and the cluster pro-
totypes (C'.us). We optimize for each set of variables
alternatively, much like in the EM-steps used in the
classical K-Means algorithm.

4.2.1 Estimating Cluster Memberships

The cluster membership estimation directly falls
out from the objective function and the current es-
timates of cluster prototypes since O (Equation 2)
involves an instance-specific term for each QA. We
will simply assign each QA to the cluster such that
the respective instance-specific term is minimized:

Cluster((g,a)) = arg min ’
ceC

<d$+A((q, a), C-u))
(3)

d)4 (-, ) is a short-hand for composite distance,
composed of two terms (which we will denote as
dg(.,.) and d% (., .) respectively):

A a((g,0), C.p®) = (wy x d(g, C.pu°.q)) " +
(wa x d(a, C.Mo.a))x 4)

4.2.2 Estimating Cluster Prototypes

We now estimate the cluster prototype in element-
wise fashion. Consider a particular element in the
C'.uu.q vector, C.p.q[i]; computing the partial deriva-
tive and simplifying:
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11—z
x

QC?/?q[i] = Z(q,a)EC |: -2 <d6+A<(q7 a’)a Cﬂ))

0574 (g, ), C.p) wy (ali] c.u.qm)}

&)

Equating the first derivative to zero and solving
for C.pu.q[i] gets us to the following form:

C.u.qli] =

1—z
E 7 d¥ ,a ,C‘,U,O
(q,a)ecq[] |:< Q+4((q ) )>

T—=z
K%H“‘W’GW) d%‘l((q,awm]
(6)
where C.4° is used to indicate the estimate of C. 1

from the previous iteration. The corresponding esti-
mation for C.p.ai] is:

g ((¢,0),0.p° )}

>

(g,0)€C

C.p.ali]

1—x

alil [(dm((q,a),am) deH((q,a),c.m)}

>

(g,0)€C

>

(g,a)€C

|:<d%+A((qva)7C'No)> dzl((%a),c.uo)]
(N

Equations 6 and 7 form the cluster prototype esti-
mation steps of our method. It may be noted that for
the choice of parameters (z = 1, wy = w,), either
equations reduce it to the usual centroid estimation
process for K-Means (since the terms within [. . .] re-
duce to 1.0), as intuitively expected. Thus, the mod-
ified formulation generalizes K-Means by allowing
to weigh each element differently, the weight being
modeled as a product two components:

e First component involves dg), 4(.,.) and is a
function of the composite distance of (¢, a) to
the cluster prototype.

e Second component involves one of dg_l(., )
or d%!(.,.) and is a function of the respective
space (Q or A) to which the specific vector ele-
ment belongs.



Alg. 1 MixKMeans

Input. Dataset D, number of clusters &
Hyper-parameters: x, wy, W,

Output. Clustering C

. Initialize C.us using data points from D

2: while not yet converged do

3:  V(q,a) € D, assign cluster using Eq. 3
4. VYC €C, estimate C.pusing Eq. 6 & 7
5: end while

6: Return current clustering assignments as C

4.3 MixKMeans: The Algorithm

Having outlined the various steps, we are now ready
to present the overall Mix K Means algorithm in
Algorithm 1. As the pseudo-code indicates, the clus-
ter assignment and prototype estimation steps are
run in a loop until the clustering converges. Addi-
tionally, we terminate after a threshold number of it-
erations even if the clustering does not converge by
then; we set the threshold to 10.

Initialization: In the initialization step, we ini-
tialize the first cluster prototype using a random QA
from D. Each of the next cluster prototypes are ini-
tialized using the QA that has the highest sum of
distances to all pre-chosen cluster prototypes, dis-
tance computed using (dg), 4 (-, ))Y*. This is in-
spired by previous work on spreading out the clus-
ter centroids (Arthur and Vassilvitskii, 2007) in K-
Means initialization.

Hyperparameters: The algorithm has three
hyper-parameters, viz., the exponentiation parame-
ter z and the weight parameters w, and w,. As
outlined in Sec. 4.1, x should be a negative value;
we observed that any value beyond —3.0 does not
make any significant differences to the final cluster-
ing (while higher absolute values for the exponent
pose an underflow risk) and thus use x = —3.0 con-
sistently. For the weights, we set w, = 0.2 and
wg = 0.8. Due to the min-formulation in the ob-
jective function, a lower weight increases the in-
fluence of the respective space. Thus, we let our
composed similarities be influenced more by the
question-space similarities as in previous work (Xue
et al., 2008).
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4.4 Generalizing MixKMeans

Since the question and answer spaces are neatly seg-
regated into different terms in the parameter up-
date equations, MixKMeans is easily generalizable
to work with more than two spaces. Consider the
set of spacestobe M = {..., M, ...} and that each
object, X € D be represented by an | M| tuple; now,
the modified update equations are as follows:

8=

Cluster(X) = argmin

ceC MeMm

®)

C.u.Mli] =
11—z

<dzz M(X,c.m)> iy (X,C.p®)
MeM

(d“c S M (X,C.u°)>
MeEM
©)

where the somewhat awkward notation

d* 5~ 1 (-».) denotes the direct generalization
MeM
of df), 4(.,.) to cover all spaces in M.

A simple modeling extension to use the general-
ized MixKMeans in the CQA setting is to consider
the question title and question description as two
separate spaces instead of using a single question
space, increasing the total number of spaces to three;
such a split of the question-part was used in (Qiu et
al., 2013). In certain cases, one might want to use
spaces that are of questionable quality due to rea-
sons such as sparsity (e.g., set of tags associated with
a question) and reliability (e.g., comments attached
to a QA that could be noisy). The best way to lever-
age such spaces would be to include it in M for the
modeling, but use a high weight for wjs; due to the
min-style construction in the objective function, that
setting will ensure that that space is called into play
only when (a) signals from other spaces are not very
strong, and (b) the signal from the space in question
is very strong.

S X.MJi]
XeC

1—x
x

>

XeC

d“;ﬁ(x,cm]

5 Experimental Evaluation

5.1 Datasets, Baselines and Setup

Datasets: We use the recently released data col-



lection, CQADupStack (Hoogeveen et al., 2015),
for our experimental evaluation. Unlike most other
datasets, this has each QA labeled with a set of
related QAs, as alluded to in Section 3; this makes
automated evaluation feasible in lieu of a laborious
user study. We use the android, gis, stats and
physics datasets from the CQADupStack collection,
with our choice of datasets motivated by dataset
size. These datasets comprise 2193, 3726, 4004 and
5044 QAs respectively.

Baselines: We use two baselines from literature
in our study, (i) AENN (Zhou et al., 2016), (ii)
GHF-ART (Meng et al., 2014). AENN, as alluded
to in Section 2, refers to the K-Means clustering in
the latent space learnt by correlated auto-encoders
across the Q-A subspaces. AENN requires triplets
of the form [question, answer, other answer] in
the training phase; we populate the other answer
part by the answer to a related question from the
dataset (it may be noted that this is advantageous to
AENN since it gets to ‘see’ some related labelings
in the training, whereas other methods can’t). GHF-
ART is the state-of-the-art multi-modal clustering
approach that is targeted towards scenarios that
involve a text modality. Unlike typical clustering
algorithms that can generate a pre-specified (k)
number of clusters, the number of clusters in the
GHF-ART output is controlled by a vigilance
parameter, p. Lower values of p result in smaller
number of clusters and vice versa. A third intuitive
baseline is the degenerate x = 1 instantiation of
MixKMeans, which we will denote as X1. We are
interested in evaluating the improvement achieved
by MixKMeans over the best possible instantiation
of X1; towards that, for every setting denoted by
the combination [dataset, k], we do a search over
possible positive values of w, and w, within the
locus of the line wy + w, = 1. It may be noted that
this search space includes simple QA clustering us-
ing K-Means, being the case where w, = w, = 0.5.
We collect the best result of X1 from across the
grid-search for each setting. This approach, which
we will denote as X1*, while impractical in real
scenarios due to usage of labeled data, gives an
empirical upper bound of the accuracy of X 1.

Experimental Setup: We use a latent space di-
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Figure 4: Physics: F-Score (Y-Axis) vs. k

mensionality of 2000 for AENN since we observed
an accuracy peak around that value, and set GHF-
ART parameters to their recommended values from
the paper. For MixKMeans, we use tf-idf represen-
tation and set (zr = —3.0,w; = 0.2,w, = 0.8)
as discussed earlier (Section 4.3). We use the F-
score’ measure to experimentally compare the ap-

proaches. The F-score is computed using the related

https://en.wikipedia.org/wiki/F1_score
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Figure 5: MixKMeans: F-Score (Y-Axis) vs. wq at k = 600

labellings in the CQADupStack data, in a manner as
described in Section 3. As pointed out therein, due
to the sparse labellings, the F-score may only be re-
garded as a loose lower bound of their real values on
a fully-labeled dataset.

5.2 Comparative Analysis

The results of the comparative analysis benchmark-
ing our approach MixKMeans (MKM) against base-
lines X1*, AENN and GHF-ART for the various
datasets appear in Fig 1 (Android), Fig 2 (GIS),
Fig 3 (Stats) and Fig 4 (Physics). Each of the trend-
lines plot the F-Score against varying number of
clusters in the output (k) in the range {100, 1000}.
Since the number of clusters cannot be pre-specified
for GHF-ART directly, we varied its p parameter to
generate varying number of clusters to generate a
trend-line that can be compared against MixKMeans,
AENN and X1* directly. It may be noted that F-
score is generally seen to increase when the cluster-
ing is more fine-grained (i.e., high k); this is an arti-
fact of the sparse labeling that causes large clusters
to have very low precision, causing precision and re-
call to diverge at low k, thus reducing the F-score.
In most cases, MixKMeans is seen to outperform the
other methods by scoring significantly higher in the
F-Score, illustrating the superiority of our method.
A notable exception appears in the higher values of
k in the android dataset where GHF-ART quickly
catches up and surpasses the others; however, it may
be noted that £ ~ 1000 is an extremely fine-grained
clustering for the android dataset with 2193 QAs,
and is thus not a very useful setting in practice. On
the average, MixKMeans achieves an F-score im-
provement of between 30 — 100% over the other
methods.
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5.3 MixKMeans Parameter Analysis

We now analyze the F-score trends of MixKMeans
against varying values of the weight parameters.
Since the relative weighting between w, and w, is
what matters (simply scaling them both up by the
same multiplier does not make any difference due
to the construction of the objective), we set wq
(1.0 — wgy) and do the analysis for varying values
of wy keeping k = 600. As may be observed from
the results in Figure 5, MixKMeans was seen to peak
around wy = 0.2-0.5 while degrading gracefully to-
wards higher values of w,. The android dataset, per-
haps due to its relatively small size, records a dif-
ferent behavior as compared to the other trend-lines.
Similar trends were observed for other values of &,
indicating MixKMeans is not highly sensitive to the
parameter and degrades gracefully outside the peak.

6 Conclusions and Future Work

We considered the problem of clustering question-
answer archives from CQA systems. Clustering, we
observed, helps in organizing CQA archival data for
purposes such as manual curation and tagging. We
motivated, by way of examples, as to why simi-
larities along question and answer spaces be better
composed using methods other than simple sum or
average type aggregation. In particular, we noted
that there are potentially different ways to answer
questions pertaining to the same root-cause, miti-
gating the manifestation of the inherent root-cause
similarity in the answer-space. Analogously, a so-
phisticated root-cause could be narrated differently
by different people in the question part, while elicit-
ing very similar answers. In short, we observe that
legitimate reasons cause manifestation of semantic
similarity between QAs to be localized on to one
of the spaces. Accordingly, we propose a cluster-
ing method for QA archives, MixKMeans, that can
heed to high similarities in either spaces to drive the
clustering. MixKMeans works by iteratively opti-
mizing the two sets of parameters, cluster assign-
ments and cluster prototype learning, in an approach
inspired by the classical K-Means algorithm. We
empirically benchmark our method against current
methods on multiple real-world datasets. Our exper-
imental study illustrates that our method is able to
significantly outperform other methods, establishing



MixKMeans as the preferred method for the task of
clustering CQA datasets.

Future Work: As discussed in Section 4.4,
MixKMeans is eminently generalizable to beyond
two spaces. Considering the usage of other kinds of
data (e.g., tags, comments) as additional “spaces” to
extend the CQA clustering problem is an interesting
direction for future work. The applicability of MixK-
Means and it’s max variant (i.e., with x > 0) for
other kinds of multi-modal clustering problems from
domains such as multimedia processing is worth ex-
ploring. The extension of the formulation to include
a weight learning step may be appropriate for sce-
narios where prior information on the relative im-
portance of the different spaces is not available. It is
easy to observe that MixKMeans is prone to local op-
tima issues; this makes devising better initialization
strategies another potential direction. Yet another di-
rection of interest is to make MixKMeans clusters
interpretable, potentially by augmenting each clus-
ter with word-level rules as used in earlier work on
partitional document clustering (Balachandran et al.,
2012).

References

David Arthur and Sergei Vassilvitskii. 2007. k-means++:
The advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 1027-1035. Society for Indus-
trial and Applied Mathematics.

Vipin Balachandran, Deepak P, and Deepak Khemani.
2012. Interpretable and reconfigurable clustering
of document datasets by deriving word-based rules.
Knowl. Inf. Syst., 32(3):475-503.

Ron Bekkerman and Jiwoon Jeon. 2007. Multi-modal
clustering for multimedia collections. In Computer Vi-
sion and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1-8. IEEE.

Adam Berger, Rich Caruana, David Cohn, Dayne Freitag,
and Vibhu Mittal. 2000. Bridging the lexical chasm:
statistical approaches to answer-finding. In Proceed-
ings of the 23rd annual international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 192-199. ACM.

Matthew B Blaschko and Christoph H Lampert. 2008.
Correlational spectral clustering. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1-8. IEEE.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathematics

1584

of statistical machine translation: Parameter estima-
tion. Computational linguistics, 19(2):263-311.

Li Cai, Guangyou Zhou, Kang Liu, and Jun Zhao. 2011.
Learning the latent topics for question retrieval in com-
munity qa. In IJCNLP, volume 11, pages 273-281.

P. Deepak, Karthik Visweswariah, Nirmalie Wiratunga,
and Sadiq Sani. 2012. Two-part segmentation of text
documents. In 21st ACM International Conference on
Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012,
pages 793-802.

Doris Hoogeveen, Karin M Verspoor, and Timothy Bald-
win. 2015. Cqadupstack: A benchmark data set for
community question-answering research. In Proceed-
ings of the 20th Australasian Document Computing
Symposium, page 3. ACM.

Doris Hoogeveen, Karin M Verspoor, and Timothy Bald-
win. 2016. Cqadupstack: Gold or silver?

Anil K Jain. 2010. Data clustering: 50 years beyond
k-means. Pattern recognition letters, 31(8):651-666.
Cheng Jin, Wenhui Mao, Ruiqi Zhang, Yuejie Zhang, and
Xiangyang Xue. 2015. Cross-modal image cluster-
ing via canonical correlation analysis. In Tiventy-Ninth

AAAI Conference on Artificial Intelligence.

Krishna Kummamuru, Deepak Padmanabhan, Shourya
Roy, and L Venkata Subramaniam. 2009. Unsuper-
vised segmentation of conversational transcripts. Sta-
tistical Analysis and Data Mining, 2(4):231-245.

James MacQueen et al. 1967. Some methods for classi-
fication and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages
281-297. Oakland, CA, USA.

Lei Meng, Ah-Hwee Tan, and Dong Xu. 2014. Semi-
supervised heterogeneous fusion for multimedia data
co-clustering.  Knowledge and Data Engineering,
IEEE Transactions on, 26(9):2293-2306.

Deepak P and Karthik Visweswariah. 2014. Unsuper-
vised solution post identification from discussion fo-
rums. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, Volume
1: Long Papers, pages 155-164.

Vaishali R. Patel and Rupa G. Mehta, 2012. Proceed-
ings of the International Conference on Soft Comput-
ing for Problem Solving (SocProS 2011) December
20-22, 2011: Volume 2, chapter Data Clustering: In-
tegrating Different Distance Measures with Modified
k-Means Algorithm, pages 691-700. Springer India,
India.

Georgios Petkos, Symeon Papadopoulos, and Yiannis
Kompatsiaris. 2012. Social event detection using mul-
timodal clustering and integrating supervisory signals.



In Proceedings of the 2nd ACM International Confer-
ence on Multimedia Retrieval, page 23. ACM.

Xipeng Qiu, Le Tian, and Xuanjing Huang. 2013. Latent
semantic tensor indexing for community-based ques-
tion answering. In ACL (2), pages 434-439.

Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan
Szpektor. 2012. Learning from the past: answering
new questions with past answers. In Proceedings of
the 21st international conference on World Wide Web,
pages 759-768. ACM.

Douglas. Steinley. 2006. K-means clustering: A half-
century synthesis. British Journal of Mathematical
and Statistical Psychology, 59(1):1-34.

Mu-Chun Su and Chien-Hsing Chou. 2001. A modified
version of the k-means algorithm with a distance based
on cluster symmetry. [EEE Transactions on Pattern
Analysis & Machine Intelligence, (6):674—680.

N Karthikeyani Visalakshi and J Suguna. 2009. K-means
clustering using max-min distance measure. In Fuzzy
Information Processing Society, 2009. NAFIPS 2009.
Annual Meeting of the North American, pages 1-6.
IEEE.

Baoxun Wang, Bingquan Liu, Xiaolong Wang, Chengjie
Sun, and Deyuan Zhang. 2011. Deep learning ap-
proaches to semantic relevance modeling for chinese
question-answer pairs. ACM Transactions on Asian
Language Information Processing (TALIP), 10(4):21.

Xiaobing Xue, Jiwoon Jeon, and W Bruce Croft. 2008.
Retrieval models for question and answer archives. In
Proceedings of the 31st annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 475-482. ACM.

Tom Chao Zhou, Michael Rung-Tsong Lyu, Irwin King,
and Jie Lou. 2015. Learning to suggest questions in
social media. Knowledge and Information Systems,
43(2):389-416.

Guangyou Zhou, Yin Zhou, Tingting He, and Wensheng
Wu. 2016. Learning semantic representation with
neural networks for community question answering re-
trieval. Knowledge-Based Systems, 93:75-83.

1585



