Phrase-based Machine Translation is State-of-the-Art
for Automatic Grammatical Error Correction

Marcin Junczys-Dowmunt and Roman Grundkiewicz
Adam Mickiewicz University in Poznan
ul. Umultowska 87, 61-614 Poznan, Poland

{junczys, romang}Ramu.edu.pl

Abstract

In this work, we study parameter tuning to-
wards the M? metric, the standard metric for
automatic grammar error correction (GEC)
tasks. After implementing M? as a scorer
in the Moses tuning framework, we investi-
gate interactions of dense and sparse features,
different optimizers, and tuning strategies for
the CoNLL-2014 shared task. We notice er-
ratic behavior when optimizing sparse feature
weights with M? and offer partial solutions.
We find that a bare-bones phrase-based SMT
setup with task-specific parameter-tuning out-
performs all previously published results for
the CoNLL-2014 test set by a large margin
(46.37% M? over previously 41.75%, by an
SMT system with neural features) while be-
ing trained on the same, publicly available
data. Our newly introduced dense and sparse
features widen that gap, and we improve the
state-of-the-art to 49.49% M?.

1 Introduction

Statistical machine translation (SMT), especially the
phrase-based variant, is well established in the field
of automatic grammatical error correction (GEC)
and systems that are either pure SMT or incorporate
SMT as system components occupied top positions
in GEC shared tasks for different languages.

With the recent paradigm shift in machine trans-
lation towards neural translation models, neural
encoder-decoder models are expected to appear in
the field of GEC as well, and first published results
(Xie et al., 2016) already look promising. As it is
the case in classical bilingual machine translation

1546

research, these models should be compared against
strong SMT baselines. Similarly, system combina-
tions of SMT with classifier-based approaches (Ro-
zovskaya and Roth, 2016) suffer from unnecessarily
weak MT base systems which make it hard to assess
how large the contribution of the classifier pipelines
really is. In this work we provide these baselines.

During our experiments, we find that a bare-bones
phrase-based system outperforms the best published
results on the CoNLL-2014 test set by a significant
margin only due to a task-specific parameter tun-
ing when being trained on the same data as previous
systems. When we further investigate the influence
of well-known SMT-specific features and introduce
new features adapted to the problem of GEC, our fi-
nal systems outperform the best reported results by
8% M?, moving the state-of-the-art results for the
CoNLL-2014 test set from 41.75% M? to 49.49%.

The paper is organized as follows: section 2
describes previous work, the CoNLL-2014 shared
tasks on GEC and follow-up papers. Our main con-
tributions are presented in sections 3 and 4 where
we investigate the interaction of parameter tuning
towards the M? metric with task-specific dense and
sparse features. Especially tuning for sparse fea-
tures is more challenging than initially expected, but
we describe optimizer hyper-parameters that make
sparse feature tuning with M? feasible. Section 5
reports on the effects of adding a web-scale n-gram
language model to our models.

Scripts and models used in this paper are available
from https://github.com/grammatical/
baselines—emnlp2016 to facilitate repro-
ducibility of our results.

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1546-1556,
Austin, Texas, November 1-5, 2016. (©2016 Association for Computational Linguistics

50.0

| baseline (u) °

400 g e e o8- d
30.0 |
20.0 [|

10.0 |- y

S this work

Figure 1: Comparison with previous work on the
CoNLL-2014 task, trained on publicly available
data. Dashed lines mark results for our baseline sys-
tems with restricted (r) and unrestricted (u) data.

2 Previous Work

While machine translation has been used for GEC
in works as early as Brockett et al. (2006), we start
our discussion with the CoNLL-2014 shared task
(Ng et al., 2014) where for the first time an unre-
stricted set of errors had to be fully corrected. Previ-
ous work, most notably during the CoNLL shared-
task 2013 (Ng et al., 2013), concentrated only on
five selected errors types, but machine translation
approaches (Yoshimoto et al., 2013; Yuan and Fe-
lice, 2013) were used as well.

The goal of the CoNLL-2014 shared task was to
evaluate algorithms and systems for automatically
correcting grammatical errors in essays written by
second language learners of English. Grammatical
errors of 28 types were targeted. Participating teams
were given training data with manually annotated
corrections of grammatical errors and were allowed
to use additional publicly available data.

The corrected system outputs were evalu-
ated blindly using the MaxMatch (M?) metric
(Dahlmeier and Ng, 2012). Thirteen system sub-
missions took part in the shared task. Among the

1547

top-three positioned systems, two submissions —
CAMB (Felice et al., 2014) and AMU (Junczys-
Dowmunt and Grundkiewicz, 2014)! — were par-
tially or fully based on SMT. The second system,
CUUI (Rozovskaya et al., 2014), was a classifier-
based approach, another popular paradigm in GEC.

After the shared task, Susanto et al. (2014) pub-
lished work on GEC systems combinations. They
combined the output from a classification-based
system and a SMT-based system using MEMT
(Heafield and Lavie, 2010), reporting new state-of-
the-art results for the CoNLL-2014 test set.

Xie et al. (2016) presented a neural network-
based approach to GEC. Their method relies on
a character-level encoder-decoder recurrent neural
network with an attention mechanism. They use data
from the public Lang-8 corpus and combine their
model with an n-gram language model trained on
web-scale Common Crawl data.

More recent results are Chollampatt et al. (2016)
and Hoang et al. (2016) which also rely on MT
systems with new features (a feed-forward neural
translation model) and n-best list re-ranking meth-
ods. However, most of the improvement over the
CoNLL-2014 shared task of these works stems from
using the parameter tuning tools we introduced in
Junczys-Dowmunt and Grundkiewicz (2014).

In Figure 1 we give a graphical overview of the
published results for the CoNLL-2014 test set in
comparison to the results we will discuss in this
work. Positions marked with (r) use only restricted
data which corresponds to the data set used by Su-
santo et al. (2014). Positions with (u) make use
of web-scale data, this corresponds to the resources
used in Xie et al. (2016). We marked the participants
of the CoNLL-2014 shared task as unrestricted as
some participants made use of Common Crawl data
or Google n-grams. The visible plateau for results

Junczys-Dowmunt and Grundkiewicz (2014) is our own
contribution and introduced many of the concepts discussed in
this work, but seemingly to little effect during the task. Later
analysis revealed that our submission had an incorrectly filtered
language model that was missing many possible entries. Our
original system without this deficiency would have achieved re-
sults around 44% M? already in 2014. This discovery triggered
an intensive reanalysis of our shared task system with signifi-
cantly new conclusions presented in this work. We apologize
for supplying these results so late, as this seems to have halted
progress in the field for nearly two years.

M? —7
50.0 |- o =
o o ©
o
40.0 |- o N
30.0 |- .
20.0 |- .
10.0 + n
00 | | | | | | |
ROFSESEERORSES
N & FE S
. Q »
c}‘)%% Q\Q ¥ KL
Rozovskaya and Roth (2016) this work

Figure 2: Comparison with Rozovskaya and Roth
(2016) using the non-public Lang-8 data set. Here
(r) means no web-scale monolingual resources, (u)
includes Google 1T n-grams or CommonCrawl.

prior to this work seem to confirm our claims about
missing strong baselines.

Rozovskaya and Roth (2016) introduce a SMT-
classifier pipeline with state-of-the-art results. Un-
fortunately, these results are reported for a training
set that is not publicly available (data crawled from
the Lang-8 website)”. Figure 2 compares our results
for this resource to Rozovskaya and Roth (2016).
See Section 6 for details.

3 Dense feature optimization

Moses comes with tools that can tune parameter vec-
tors according to different MT tuning metrics. Prior
work used Moses with default settings: minimum
error rate training (Och, 2003) towards BLEU (Pa-
pineni et al., 2002). BLEU was never designed for
grammatical error correction; we find that directly
optimizing for M? works far better.

>We shared this resource that has been crawled by us for use
in Junczys-Dowmunt and Grundkiewicz (2014) privately with
Rozovskaya and Roth (2016), but originally were not planning
to report results for this resource in the future. We now provide a
comparison to Rozovskaya and Roth (2016), but discourage any
further use of this unofficial data due to reproducibility issues.

1548

3.1 Tuning towards M?

The M? metric (Dahlmeier and N g, 2012) is an F-
Score, based on the edits extracted from a Leven-
shtein distance matrix. For the CoNLL-2014 shared
task, the [-parameter was set to 0.5, putting two
times more weight on precision than on recall.

In Junczys-Dowmunt and Grundkiewicz (2014)
we have shown that tuning with BLEU is counter-
productive in a setting where M? is the evaluation
metric. For inherently weak systems this can result
in all correction attempts to be disabled, MERT then
learns to disallow all changes since they lower the
similarity to the reference as determined by BLEU.
Systems with better training data, can be tuned with
BLEU without suffering this “disabling” effect, but
will reach non-optimal performance. However, Su-
santo et al. (2014) tune the feature weights of their
two SMT-based systems with BLEU on the CoNLL-
2013 test set and report state-of-the-art results.

Despite tuning with M2, in Junczys-Dowmunt and
Grundkiewicz (2014) we were not able to beat sys-
tems that did not tune for the task metric. We re-
investigated these ideas with radically better results,
re-implemented the M? metric in C++ and added
it as a scorer to the Moses parameter optimization
framework. Due to this integration we can now tune
parameter weights with MERT, PRO or Batch Mira.
The inclusion of the latter two enables us to experi-
ment with sparse features.

Based on Clark et al. (2011) concerning the ef-
fects of optimizer instability, we report results aver-
aged over five tuning runs. Additionally, we com-
pute parameter weight vector centroids as suggested
by Cettolo et al. (2011). They showed that param-
eter vector centroids averaged over several tuning
runs yield similar to or better than average results
and reduce variance. We generally confirm this for
M?-based tuning.

3.2 Dense features

The standard features in SMT have been chosen to
help guiding the translation process. In a GEC set-
ting the most natural units seem to be minimal edit
operations that can be either counted or modeled in
context with varying degrees of generalization. That
way, the decoder can be informed on several levels

source phrase target phrase LD DIS Corpus Sentences Tokens
a short time . shorttermonly. 3 111 NUCLE 57.15K 1.15M
a situation into a situation 1 010 CoNLL-2013 Test Set 1.38K 29.07K
a supermarket . a supermarket . 0 000 CoNLL-2014 Test Set 131K 30.11 K
a supermarket . at a supermarket 2 110 Lang-8 223M 30.03M
able unable 1 001 Lang-8 (non-public) 372M 51.07M
Table 1: Word-based Levenshtein distance (LD) fea- Wikipedia 213.08 M 337G
ture and separated edit operations (D = deletions, I CommonCrawl (u) 59.13G 975.63G

= insertions, S = substitutions)

of abstraction how the output differs from the input.?
In this section we implement several features that try
to capture these operation in isolation and in context.

3.2.1 Stateless features

Our stateless features are computed during trans-
lation option generation before decoding, model-
ing relations between source and target phrases.
They are meant to extend the standard SMT-specific
MLE-based phrase and word translation probabili-
ties with meaningful phrase-level information about
the correction process.

Levenshtein distance. In Junczys-Dowmunt and
Grundkiewicz (2014) we use word-based Leven-
shtein distance between source and target as a trans-
lation model feature, Felice et al. (2014) indepen-
dently experiment with a character-based version.

Edit operation counts. We further refine Leven-
shtein distance feature with edit operation counts.
Based on the Levenshtein distance matrix, the num-
bers of deletions, insertions, and substitutions that
transform the source phrase into the target phrase
are computed, the sum of these counts is equal to
the original Levenshtein distance (see Table 1).

3.2.2 Stateful features

Contrary to stateless features, stateful features can
look at translation hypotheses outside their own span
and take advantage of the constructed target context.
The most typical stateful features are language mod-
els. In this section, we discuss LM-like features over
edit operations.

3We believe this is important information that currently has
not yet been mastered in neural encoder-decoder approaches.

1549

Table 2: Parallel (above line) and monolingual train-
ing data.

Operation Sequence Model. Durrani et al. (2013)
introduce Operation Sequence Models in Moses.
These models are Markov translation models that
in our setting can be interpreted as Markov edition
models. Translations between identical words are
matches, translations that have different words on
source and target sides are substitutions; insertions
and deletions are interpreted in the same way as for
SMT. Gaps, jumps, and other operations typical for
OSMs do not appear as we disabled reordering.

Word-class language model. The monolingual
Wikipedia data has been used create a 9-gram word-
class language model with 200 word-classes pro-
duced by word2vec (Mikolov et al., 2013). This fea-
tures allows to capture possible long distance depen-
dencies and semantical aspects.

3.3 Training and Test Data

The training data provided in both shared tasks
is the NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013). NUCLE consists of 1,414
essays written by Singaporean students who are non-
native speakers of English. The essays cover top-
ics, such as environmental pollution, health care, etc.
The grammatical errors in these essays have been
hand-corrected by professional English teachers and
annotated with one of the 28 predefined error type.
Another 50 essays, collected and annotated sim-
ilarly as NUCLE, were used in both CoNLL GEC
shared tasks as blind test data. The CoNLL-2014
test set has been annotated by two human annota-
tors, the CoNLL-2013 by one annotator. Many par-
ticipants of CoNLL-2014 shared task used the test
set from 2013 as development set for their systems.
As mentioned before, we report main results us-

T
= &
42.0 - - - E I j: - = i
40.0 |- 1 I 1 B I B 1
38.0 |- 8 = 8 = 8
36.0 |- . = - L - Average M? ||
o Centroid M?
| | | | | | | | | | T T
& Q> . [d) s Q> .) & Q> . Q
%é’\& BN & : \OQ% be“& %@\\Q “Q@\ ‘ \OQ% bé\% %q’\& BN 2 R on% be“&
Y DS RN & R Y DS RN
¥ L& Ty AP VT L&
A% A% A%

(a) Optimized using BLEU on the
CoNLL-2013 test set

(b) Optimized

CoNLL-2013 test set

(c) Optimized using M? on 4 folds
of error-rate-adapted NUCLE

using M? on the

Figure 3: Results on the CoNLL-2014 test set for different optimization settings (5 runs for each system)
and different feature sets, the “All dense” entry includes OSM, the word class language model, and edit
operations). The small circle marks results for averaged weights vectors and is chosen as the final result.

ing similar training data as Susanto et al. (2014). We
refer to this setting that as the “resticted-data set-
ting” (r). Parallel data for translation model train-
ing is adapted from the above mentioned NUCLE
corpus and the publicly available Lang-8 corpus
(Mizumoto et al., 2012), this corpus is distinct from
the non-public web-crawled data described in Sec-
tion 6. Uncorrected sentences serve as source data,
corrected counterparts as target data. For language
modeling, the target language sentences of both par-
allel resources are used, additionally we extract all
text from the English Wikipedia.

Phrase-based SMT makes it ease to scale up in
terms of training data, especially in the case of n-
gram language models. To demonstrate the ease of
data integration we propose an “unrestricted setting”’
(u) based on the data used in Junczys-Dowmunt and
Grundkiewicz (2014), one of the shared task submis-
sions, and later in Xie et al. (2016). We use Common
Crawl data made-available by Buck et al. (2014).

3.4 Experiments

Our system is based on the phrase-based part of the
statistical machine translation system Moses (Koehn
et al.,, 2007). Only plain text data is used for lan-
guage model and translation model training. Ex-
ternal linguistic knowledge is introduced during pa-
rameter tuning as the tuning metric relies on the

1550

error annotation present in NUCLE. The transla-
tion model is built with the standard Moses training
script, word-alignment models are produced with
MGIZA++ (Gao and Vogel, 2008), we restrict the
word alignment training to 5 iterations of Model 1
and 5 iterations of the HMM-Model. No reorder-
ing models are used, the distortion limit is set to
0, effectively prohibiting any reordering. All sys-
tems use one 5-gram language model that has been
estimated from the target side of the parallel data
available for translation model training. Another 5-
gram language model trained on Wikipedia in the
restricted setting or on Common Crawl in the unre-
stricted case.

Systems are retuned when new features of any
type are added. We first successfully reproduce re-
sults from Susanto et al. (2014) for BLEU-based
tuning on the CoNLL-2013 test set as the devel-
opment set (Fig. 3a) using similar training data.
Repeated tuning places the scores reported by Su-
santo et al. (2014) for their SMT-ML combinations
(37.90 — 39.39) within the range of possible values
for a purely Moses-based system without any spe-
cific features (35.19 — 38.38) or with just the Leven-
shtein distance features (37.46 — 40.52). Since Su-
santo et al. (2014) do not report results for multiple
tuning steps, the extend of influence of optimizer

instability on their experiments remains unclear.
Even with BLEU-based tuning, we can see signifi-
cant improvements when replacing Levenshtein dis-
tance with the finer-grained edit operations, and an-
other performance jump with additional stateful fea-
tures. The value range of the different tuning runs
for the last feature set includes the currently best-
performing system (Xie et al. (2016) with 40.56%),
but the result for the averaged centroid are inferior.

Tuning directly with M? (Fig. 3b) and averag-
ing weights across five iterations, yields between
40.66% M? for a vanilla Moses system and 42.32%
for a system with all described dense features. Re-
sults seen to be more stable. Averaging weight vec-
tors across runs to produce the final vector seems
like a fair bet. Performance with the averaged
weight vectors is either similar to or better than the
average number for five runs.

3.5 Larger development sets

No less important than choosing the correct tun-
ing metric is a good choice of the development set.
Among MT researches, there is a number of more
or less well known truths about suitable develop-
ment sets for translation-focused settings: usually
they consist of between 2000 and 3000 sentences,
they should be a good representation of the testing
data, sparse features require more sentences or more
references, etc. Until now, we followed the seem-
ingly obvious approach from Susanto et al. (2014) to
tune on the CoNLL-2013 test set. The CoNLL-2013
test set consists of 1380 sentences, which might be
barely enough for a translation-task, and it is unclear
how to quantify it in the context of grammar correc-
tion. Furthermore, calculating the error rate in this
set reveals that only 14.97% of the tokens are part of
an erroneous fragment, for the rest, input and refer-
ence data are identical. Intuitively, this seems to be
very little significant data for tuning an SMT system.

We therefore decide to take advantage of the en-
tire NUCLE data as a development set which so
far has only been used as translation model train-
ing data. NUCLE consist of more than 57,000 sen-
tences, however, the error rate is significantly lower
than in the previous development set, only 6.23%.
We adapt the error rate by greedily removing sen-
tences from NUCLE until an error rate of ca. 15%
is reached, 23381 sentences and most error annota-

1551

tions remain. We further divide the data into four
folds. Each folds serves as development set for pa-
rameter tuning, while the three remaining parts are
treated as translation model training data. The full
Lang-8 data is concatenated with is NUCLE train-
ing set, and four models are trained. Tuning is then
performed four times and the resulting four parame-
ter weight vectors are averaged into a single weight
vector across folds. We repeat this procedure again
five times which results in 20 separate tuning steps.
Results on the CoNLL-2014 test set are obtained us-
ing the full translation model with a parameter vec-
tor average across five runs. The CoNLL-2013 test
set is not being used for tuning and can serve as a
second test set.

As can be seen in Fig. 3c, this procedure sig-
nificantly improves performance, also for the bare-
bones set-up (41.63%). The lower variance between
iterations is an effect of averaging across folds.

It turns out that what was meant to be a strong
baseline, is actually among the strongest systems re-
ported for this task, outperformed only by the fur-
ther improvements over this baseline presented in
this work.

4 Sparse Features

We saw that introducing finer-grained edit opera-
tions improved performance. The natural evolution
of that idea are features that describe specific cor-
rection operations with and without context. This
can be accomplished with sparse features, but tun-
ing sparse features according to the M? metric poses
unexpected problems.

4.1 Optimizing for M? with PRO and Mira

The MERT tool included in Moses cannot handle
parameter tuning with sparse feature weights and
one of the other optimizers available in Moses has
to be used. We first experimented with both, PRO
(Hopkins and May, 2011) and Batch Mira (Cherry
and Foster, 2012), for the dense features only, and
found PRO and Batch Mira with standard settings
to either severely underperform in comparison to
MERT or to suffer from instability with regard to
different test sets (Table 3).

Experiments with Mira hyper-parameters allowed
to counter these effects. We first change the

Optimizer 2013 2014
MERT 33.50 42.85
PRO 33.68 40.34
Mira 29.19 34.13
-model-bg 31.06 43.88
-D0.001 33.86 42091

Table 3: Tuning with different optimizers with dense
features only, results are given for the CoNLL-2013
and CoNLL-2014 test set

background BLEU approximation method in Batch
Mira to use model-best hypotheses (——model-bq)
which seems to produce more satisfactory results.
Inspecting the tuning process, however, reveals
problems with this setting, too. Figure 4 documents
how instable the tuning process with Mira is across
iterations. The best result is reached after only three
iterations. In a setting with sparse features this
would result in only a small set of weighted sparse
features.

After consulting with one of the authors of Batch-
Mira, we set the background corpus decay rate to
0.001 (-D 0.001), resulting in a sentence-level
approximation of M?. Mira’s behavior seems to sta-
bilize across iterations. At this point it is not quite
clear why this is required. While PRO’s behav-
ior is more sane during tuning, results on the test
sets are subpar. It seems that no comparable hyper-
parameter settings exist for PRO.

4.2 Sparse edit operations

Our sparse edit operations are again based on the
Levenshtein distance matrix and count specific edits
that are annotated with the source and target tokens
that took part in the edit. For the following erro-
neous/corrected sentence pair

Err:
Cor:

Then a new problem comes out
Hence , a new problem surfaces

we generate sparse features that model contextless
edits (matches are omitted):

subst (Then, Hence) =1
insert (,)=1
subst (comes,
del (out) =1

and sparse features with one-sided left or right or
two-sided context:

surfaces)=1

<s>_subst (Then, Hence) =1

1552

20.0

15.0

Lo
1011121314 15

—8— Mira
—e— Mira -model-bg
—+— Mira -model-bg -D 0.001

Figure 4: Results per iteration on development set
(4-th NUCLE fold)

subst (Then, Hence) _a=1
Hence_insert (,)=1

insert (,)_a=1

problem_subst (comes, surfaces)=1
subst (comes, surfaces)_out=1
comes_del (out) =1

del (out)_.=1
<s>_subst (Then, Hence) _a=1
Hence_insert (,)_a=1
problem_subst (comes,
comes_del (out)__.=1

surfaces)_out=1

All sparse feature types are added on-top of our
best dense-features system. When using sparse fea-
tures with context, the contextless features are in-
cluded. The context annotation comes from the er-
roneous source sentence, not from the corrected tar-
get sentence. We further investigate different source
factors: elements taking part in the edit operation or
appearing in the context can either be word forms
(factor 0) or word classes (factor 1). As before for
dense features we average sparse feature weights
across folds and multiple tuning runs.

Figure 5 summarizes the results for our sparse
feature experiments. On both test sets we can
see significant improvements when including edit-
based sparse features, the performance increases
even more when source context is added. The
CoNLL-2013 test set contains annotations from only
one annotator and is strongly biased towards high

M2 T T M2 I T
| 46.0 | | ==
| | X
36.0 | | I }: 2 | k2
x3 = | = 2
| - }
I 44.0 |- I E |
34.0 | }: | }: 2
| 42.0 |- 1 3
320 I | | T
| ! ! ! ! ! : ! ! !
2 4 6 8 2 4 6 8
(a) CONLL-2014 test set (b) CONLL-2014 test set
Symbol Description
EO Edit operation on words, no context
El Edit operation on word classes, no context
EOC10 Edit operation on words with left/right context of maximum length 1 on words
EIC11 Edit operation on word classes with left/right context of maximum length 1 on word classes
EOC11 Edit operation on words with left/right context of maximum length 1 on word classes

Figure 5: Results on the CoNLL-2013 and CoNLL-2014 test set for different sparse features sets

precision which might explain the greater instability.
It appears that sparse features with context where
surface forms and word-classes are mixed allow for
the best fine-tuning.

5 Adding a web-scale language model

Until now we restricted our experiments to data used
by Susanto et al. (2014). However, systems from the
CoNLL-2014 were free to use any publicly available
data, for instance in Junczys-Dowmunt and Grund-
kiewicz (2014), we made use of an n-gram lan-
guage model trained from Common Crawl. Xie et
al. (2016) reach the best published result for the task
(before this work) by integrating a similar n-gram
language model with their neural approach.

We filter the English resources made available
by Buck et al. (2014) with cross-entropy filtering
(Moore and Lewis, 2010) using the corrected NU-
CLE corpus as seed data. We keep all sentence
with a negative cross-entropy score and compute a 5-
gram KenLM (Heafield, 2011) language model with
heavy pruning. This step produces roughly 300G
of compressed text and a manageable 21G binary
model (available for download).

Table 4 summarizes the best results reported in

1553

this paper for the CoNLL-2014 test set (column
2014) before and after adding the Common Crawl
n-gram language model. The vanilla Moses base-
line with the Common Crawl model can be seen as a
new simple baseline for unrestricted settings and is
ahead of any previously published result. The com-
bination of sparse features and web-scale monolin-
gual data marks our best result, outperforming pre-
viously published results by 8% M? using similar
training data. While our sparse features cause a re-
spectable gain when used with the smaller language
model, the web-scale language model seems to can-
cel out part of the effect.

Bryant and Ng (2015) extended the CoNLL-2014
test set with additional annotations from two to ten
annotators. We report results for this valuable re-
source (column 2014-10) as well.* According to
Bryant and Ng (2015), human annotators seem to
reach on average 72.58% M? which can be seen as
an upper-bound for the task. In this work, we made
a large step towards this upper-bound.

“See Bryant and Ng (2015) for a re-assessment of the
CoNLL-2014 systems with this extended test set.

2014 2014-10

System Prec. Recall M? Prec. Recall M?
Baseline 4897 26.03 41.63 69.29 31.35 55.78

+CCLM 5891 25.05 4637 77.17 29.38 58.23
Best dense 50.94 2621 42.85 71.21 31.70 57.00

+CCLM 59.98 28.17 48.93 79.98 3276 62.08
Best sparse 5799 25.11 45.95 76.61 29.74 58.25

+CCLM 61.27 2798 49.49 80.93 3247 62.33

Table 4: Best results in restricted setting with added unrestricted language model for original (2014) and
extended (2014-10) CoNLL test set (trained with public data only).

System Prec. Recall M?
R&R (np) 60.17 25.64 47.40
Best dense (np) 53.56 29.59 46.09
+CCLM 61.74 30.51 51.25
Best sparse (np) 58.57 27.11 47.54
+CCLM 63.52 3049 52.21

Table 5: Previous best systems trained with non-
public (np) error-corrected data for comparison with
Rozovskaya and Roth (2016) denoted as R&R.

6 More error-corrected data

As mentioned before, Rozovskaya and Roth (2016)
trained their systems on crawled data from the Lang-
8 website that has been collect by us for our submis-
sion to the CoNLL-2014 shared task. Since this data
has not been made officially available, we treat it as
non-public. This makes it difficult to put their results
in relation with previously published work, but we
can at least provide a comparison for our systems.
As our strongest MT-only systems trained on pub-
lic data already outperform the pipelined approaches
from Rozovskaya and Roth (2016), it is unsurprising
that adding more error-corrected parallel data results
in an even wider gap (Table 5). We can assume that
this gap would persist if only public data had been
used. Although these are the highest reported results
for the CoNLL-2014 shared task so far, we think of
them as unofficial results and refer to Table 4 as our
final results in this work.

7 Conclusions

Despite the fact that statistical machine translation
approaches are among the most popular methods in

automatic grammatical error correction, few papers
that report results for the CoNLL-2014 test set seem
to have exploited its full potential. An important as-
pect when training SMT systems that one needs to
tune parameters towards the task evaluation metric
seems to have been under-explored.

We have shown that a pure SMT system actu-
ally outperforms the best reported results for any
paradigm in GEC if correct parameter tuning is per-
formed. With this tuning mechanism available, task-
specific features have been explored that bring fur-
ther significant improvements, putting phrase-based
SMT ahead of other approaches by a large margin.
None of the explored features require complicated
pipelines or re-ranking mechanisms. Instead they
are a natural part of the log-linear model in phrase-
based SMT. It is therefore quite easy to reproduce
our results and the presented systems may serve as
new baselines for automatic grammatical error cor-
rection. Our systems and scripts have been made
available for better reproducibility.

Acknowledgments

The authors would like to thank Colin Cherry for
his help with Batch Mira hyper-parameters and
Kenneth Heafield for many helpful comments and
discussions. This work was partially funded by
the Polish National Science Centre (Grant No.
2014/15/N/ST6/02330) and by Facebook. The
views and conclusions contained herein are those of
the authors and should not be interpreted as neces-
sarily representing the official policies or endorse-
ments, either expressed or implied, of Facebook.

1554

References

Chris Brockett, William B. Dolan, and Michael Gamon.
2006. Correcting ESL errors using phrasal SMT tech-
niques. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 249-256, Stroudsburg, USA. Asso-
ciation for Computational Linguistics.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation of
Natural Language Processing, pages 697-707. Asso-
ciation for Computational Linguistics.

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram counts and language models from the
Common Crawl. In Proceedings of the Language
Resources and Evaluation Conference, pages 3579—
3584, Reykjavik, Iceland.

Mauro Cettolo, Nicola Bertoldi, and Marcello Federico.
2011. Methods for smoothing the optimizer instability
in SMT. In MT Summit XIII: the Thirteenth Machine
Translation Summit, pages 32-39.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427-436, Stroudsburg, USA. Association for Compu-
tational Linguistics.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, HLT °11, pages 176—
181, Stroudsburg, USA. Association for Computa-
tional Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evalu-
ation for grammatical error correction. In Proceedings
of the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 568-572, Strouds-
burg, USA. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner en-
glish: The NUS Corpus of Learner English. In Pro-

1555

ceedings of the Eighth Workshop on Innovative Use of
NLP for Building Educational Applications, pages 22—
31, Atlanta, Georgia. Association for Computational
Linguistics.

Nadir Durrani, Alexander Fraser, Helmut Schmid, Hieu
Hoang, and Philipp Koehn. 2013. Can Markov
Models Over Minimal Translation Units Help Phrase-
Based SMT? In ACL (2), pages 399—405. The Associ-
ation for Computer Linguistics.

Mariano Felice, Zheng Yuan, @istein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 15-24, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engineer-
ing, Testing, and Quality Assurance for Natural Lan-
guage Processing, pages 49-57. ACL.

Kenneth Heafield and Alon Lavie. 2010. Combin-
ing machine translation output with open source:
The Carnegie Mellon multi-engine machine transla-
tion scheme. The Prague Bulletin of Mathematical
Linguistics, 93:27-36.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
11, pages 187-197, Stroudsburg, USA. Association
for Computational Linguistics.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou Ng.
2016. Exploiting n-best hypotheses to improve an smt
approach to grammatical error correction.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
"11, pages 13521362, Stroudsburg, USA. Association
for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU system in the CoNLL-2014 shared
task: Grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning: Shared Task
(CoNLL-2014 Shared Task), pages 25-33, Baltimore,
USA. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Annual

Meeting of the Association for Computational Linguis-
tics. The Association for Computer Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomoya Mizumoto, Yuta Hayashibe, Mamoru Komachi,
Masaaki Nagata, and Yu Matsumoto. 2012. The effect
of learner corpus size in grammatical error correction
of ESL writings. In Proceedings of COLING 2012,
pages 863-872.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort ’ 10, pages 220-224, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction. In
Proceedings of the 17th Conference on Computational
Natural Language Learning: Shared Task, pages 1—
12, Sofia, Bulgaria. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, , and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task (CoNLL-2014
Shared Task), pages 1-14, Baltimore, USA. Associ-
ation for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceedings
of the 41st Annual Meeting on Association for Com-
putational Linguistics - Volume 1, ACL ’03, pages
160-167, Stroudsburg, USA. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311-318, Stroudsburg, USA.
Association for Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2016. Grammatical er-
ror correction: Machine translation and classifiers. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long Pa-
pers. The Association for Computer Linguistics.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan
Roth, and Nizar Habash. 2014. The Illinois-Columbia
system in the CoNLL-2014 shared task. In CoNLL-
2014, pages 34-42.

Hendy Raymond Susanto, Peter Phandi, and Tou Hwee
Ng. 2014. System combination for grammatical error

1556

correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 951-962. Association for Computa-
tional Linguistics.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y. Ng. 2016. Neural language
correction with character-based attention. CoRR,
abs/1603.09727.

Ippei Yoshimoto, Tomoya Kose, Kensuke Mitsuzawa,
Keisuke Sakaguchi, Tomoya Mizumoto, Yuta
Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2013. NAIST at 2013 CoNLL grammatical error
correction shared task. In Proceedings of the 17th
Conference on Computational Natural Language
Learning: Shared Task, pages 26-33, Sofia, Bulgaria.
Association for Computational Linguistics.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical machine
translation. In Proceedings of the 17th Conference on
Computational Natural Language Learning: Shared
Task, pages 52-61, Sofia, Bulgaria. Association for
Computational Linguistics.

