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Abstract

Neural encoder-decoder models have shown
great success in many sequence generation
tasks. However, previous work has not in-
vestigated situations in which we would like
to control the length of encoder-decoder out-
puts. This capability is crucial for applica-
tions such as text summarization, in which
we have to generate concise summaries with
a desired length. In this paper, we pro-
pose methods for controlling the output se-
quence length for neural encoder-decoder
models: two decoding-based methods and two
learning-based methods.1 Results show that
our learning-based methods have the capabil-
ity to control length without degrading sum-
mary quality in a summarization task.

1 Introduction

Since its first use for machine translation (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014), the encoder-decoder ap-
proach has demonstrated great success in many
other sequence generation tasks including image
caption generation (Vinyals et al., 2015b; Xu et
al., 2015), parsing (Vinyals et al., 2015a), dialogue
response generation (Li et al., 2016a; Serban et
al., 2016) and sentence summarization (Rush et al.,
2015; Chopra et al., 2016). In particular, in this pa-
per we focus on sentence summarization, which as

∗Now at Preferred Networks.
† This work was done when the author was at the Nara In-

stitute of Science and Technology.
1Available at https://github.com/kiyukuta/lencon.

its name suggests, consists of generating shorter ver-
sions of sentences for applications such as document
summarization (Nenkova and McKeown, 2011) or
headline generation (Dorr et al., 2003). Recently,
Rush et al. (2015) automatically constructed large
training data for sentence summarization, and this
has led to the rapid development of neural sentence
summarization (NSS) or neural headline generation
(NHG) models. There are already many studies that
address this task (Nallapati et al., 2016; Ayana et al.,
2016; Ranzato et al., 2015; Lopyrev, 2015; Gulcehre
et al., 2016; Gu et al., 2016; Chopra et al., 2016).

One of the essential properties that text summa-
rization systems should have is the ability to gen-
erate a summary with the desired length. Desired
lengths of summaries strongly depends on the scene
of use, such as the granularity of information the
user wants to understand, or the monitor size of the
device the user has. The length also depends on the
amount of information contained in the given source
document. Hence, in the traditional setting of text
summarization, both the source document and the
desired length of the summary will be given as input
to a summarization system. However, methods for
controlling the output sequence length of encoder-
decoder models have not been investigated yet, de-
spite their importance in these settings.

In this paper, we propose and investigate four
methods for controlling the output sequence length
for neural encoder-decoder models. The former two
methods are decoding-based; they receive the de-
sired length during the decoding process, and the
training process is the same as standard encoder-
decoder models. The latter two methods are
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learning-based; we modify the network architecture
to receive the desired length as input.

In experiments, we show that the learning-based
methods outperform the decoding-based methods
for long (such as 50 or 75 byte) summaries. We
also find that despite this additional length-control
capability, the proposed methods remain competi-
tive to existing methods on standard settings of the
DUC2004 shared task-1.

2 Background

2.1 Related Work

Text summarization is one of the oldest fields of
study in natural language processing, and many
summarization methods have focused specifically
on sentence compression or headline generation.
Traditional approaches to this task focus on word
deletion using rule-based (Dorr et al., 2003; Zajic
et al., 2004) or statistical (Woodsend et al., 2010;
Galanis and Androutsopoulos, 2010; Filippova and
Strube, 2008; Filippova and Altun, 2013; Filip-
pova et al., 2015) methods. There are also several
studies of abstractive sentence summarization us-
ing syntactic transduction (Cohn and Lapata, 2008;
Napoles et al., 2011) or taking a phrase-based sta-
tistical machine translation approach (Banko et al.,
2000; Wubben et al., 2012; Cohn and Lapata, 2013).

Recent work has adopted techniques such as
encoder-decoder (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014) and atten-
tional (Bahdanau et al., 2015; Luong et al., 2015)
neural network models from the field of machine
translation, and tailored them to the sentence sum-
marization task. Rush et al. (2015) were the first
to pose sentence summarization as a new target task
for neural sequence-to-sequence learning. Several
studies have used this task as one of the bench-
marks of their neural sequence transduction meth-
ods (Ranzato et al., 2015; Lopyrev, 2015; Ayana
et al., 2016). Some studies address the other im-
portant phenomena frequently occurred in human-
written summaries, such as copying from the source
document (Gu et al., 2016; Gulcehre et al., 2016).
Nallapati et al. (2016) investigate a way to solve
many important problems capturing keywords, or
inputting multiple sentences.

Neural encoder-decoders can also be viewed as

statistical language models conditioned on the tar-
get sentence context. Rosenfeld et al. (2001) have
proposed whole-sentence language models that can
consider features such as sentence length. However,
as described in the introduction, to our knowledge,
explicitly controlling length of output sequences in
neural language models or encoder-decoders has not
been investigated.

Finally, there are some studies to modify the out-
put sequence according some meta information such
as the dialogue act (Wen et al., 2015), user person-
ality (Li et al., 2016b), or politeness (Sennrich et al.,
2016). However, these studies have not focused on
length, the topic of this paper.

2.2 Importance of Controlling Output Length

As we already mentioned in Section 1, the most
standard setting in text summarization is to input
both the source document and the desired length of
the summary to a summarization system. Summa-
rization systems thus must be able to generate sum-
maries of various lengths. Obviously, this property
is also essential for summarization methods based
on neural encoder-decoder models.

Since an encoder-decoder model is a completely
data-driven approach, the output sequence length
depends on the training data that the model is trained
on. For example, we use sentence-summary pairs
extracted from the Annotated English Gigaword cor-
pus as training data (Rush et al., 2015), and the
average length of human-written summary is 51.38
bytes. Figure 1 shows the statistics of the corpus.
When we train a standard encoder-decoder model
and perform the standard beam search decoding on
the corpus, the average length of its output sequence
is 38.02 byte.

However, there are other situations where we
want summaries with other lengths. For exam-
ple, DUC2004 is a shared task where the maximum
length of summaries is set to 75 bytes, and summa-
rization systems would benefit from generating sen-
tences up to this length limit.

While recent NSS models themselves cannot con-
trol their output length, Rush et al. (2015) and others
following use an ad-hoc method, in which the sys-
tem is inhibited from generating the end-of-sentence
(EOS) tag by assigning a score of−∞ to the tag and
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Figure 1: Histograms of first sentence length, headline length, and their ratio in Annotated Gigaword English Giga-
word corpus. Bracketed values in each subcaption are averages.
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Figure 2: The encoder-decoder architecture we used as a
base model in this paper.

generating a fixed number of words2, and finally the
output summaries are truncated to 75 bytes. Ideally,
the models should be able to change the output se-
quence depending on the given output length, and to
output the EOS tag at the appropriate time point in a
natural manner.

3 Network Architecture: Encoder-Decoder
with Attention

In this section, we describe the model architec-
ture used for our experiments: an encoder-decoder
consisting of bi-directional RNNs and an attention
mechanism. Figure 2 shows the architecture of the
model.

Suppose that the source sentence is represented as
a sequence of words x = (x1, x2, x3, ..., xN ). For

2According to the published code
(https://github.com/facebook/NAMAS), the default num-
ber of words is set to 15, which is too long for the DUC2004
setting. The average number of words of human summaries in
the evaluation set is 10.43.

a given source sentence, the summarizer generates
a shortened version of the input (i.e. N > M ),
as summary sentence y = (y1, y2, y3, ..., yM ). The
model estimates conditional probability p(y|x) us-
ing parameters trained on large training data consist-
ing of sentence-summary pairs. Typically, this con-
ditional probability is factorized as the product of
conditional probabilities of the next word in the se-
quence:

p(y|x) =

M∏

t=1

p(yt|y<t,x),

where y<t = (y1, y2, y3, ..., yt−1). In the following,
we describe how to compute p(yt|y<t, x).

3.1 Encoder

We use the bi-directional RNN (BiRNN) as en-
coder which has been shown effective in neural ma-
chine translation (Bahdanau et al., 2015) and speech
recognition (Schuster and Paliwal, 1997; Graves et
al., 2013).

A BiRNN processes the source sentence for
both forward and backward directions with two
separate RNNs. During the encoding process,
the BiRNN computes both forward hidden states
(
−→
h 1,
−→
h 2, ...,

−→
h N ) and backward hidden states

(
←−
h 1,
←−
h 2, ...,

←−
h N ) as follows:

−→
h t = g(

−→
h t−1, xt),

←−
h t = g(

←−
h t+1, xt).

While g can be any kind of recurrent unit, we use
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks that have memory
cells for both directions (−→c t and←−c t).
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After encoding, we set the initial hidden states s0

and memory-cell m0 of the decoder as follows:

s0 =
←−
h 1,

m0 = ←−c 1.

3.2 Decoder and Attender
Our decoder is based on an RNN with LSTM g:

st = g(st−1, xt).

We also use the attention mechanism developed
by Luong et al. (2015), which uses st to compute
contextual information dt of time step t. We first
summarize the forward and backward encoder states
by taking their sum h̄i =

−→
h i +

←−
h i, and then calcu-

late the context vector dt as the weighted sum of
these summarized vectors:

dt =
∑

i

atih̄i,

where at is the weight at the t-th step for h̄i com-
puted by a softmax operation:

ati =
exp(st · h̄i)∑
h̄′ exp(st · h̄′)

.

After context vector dt is calculated, the model
updates the distribution over the next word as fol-
lows:

s̃t = tanh(Whs[st; dt] + bhs),

p(yt|y<t, x) = softmax(Wsos̃t + bso).

Note that s̃t is also provided as input to the LSTM
with yt for the next step, which is called the input
feeding architecture (Luong et al., 2015).

3.3 Training and Decoding
The training objective of our models is to maximize
log likelihood of the sentence-summary pairs in a
given training set D:

Lt(θ) =
∑

(x,y)∈D

log p(y|x; θ),

p(y|x; θ) =
∏

t

p(yt|y<t, x).

Once models are trained, we use beam search to find
the output that maximizes the conditional probabil-
ity.

4 Controlling Length in Encoder-decoders

In this section, we propose our four methods that
can control the length of the output in the encoder-
decoder framework. In the first two methods, the
decoding process is used to control the output length
without changing the model itself. In the other two
methods, the model itself has been changed and is
trained to obtain the capability of controlling the
length. Following the evaluation dataset used in our
experiments, we use bytes as the unit of length, al-
though our models can use either words or bytes as
necessary.

4.1 fixLen: Beam Search without EOS Tags

The first method we examine is a decoding approach
similar to the one taken in many recent NSS meth-
ods that is slightly less ad-hoc. In this method, we
inhibit the decoder from generating the EOS tag by
assigning it a score of −∞. Since the model can-
not stop the decoding process by itself, we simply
stop the decoding process when the length of output
sequence reaches the desired length. More specifi-
cally, during beam search, when the length of the se-
quence generated so far exceeds the desired length,
the last word is replaced with the EOS tag and also
the score of the last word is replaced with the score
of the EOS tag (EOS replacement).

4.2 fixRng: Discarding Out-of-range
Sequences

Our second decoding method is based on discarding
out-of-range sequences, and is not inhibited from
generating the EOS tag, allowing it to decide when
to stop generation. Instead, we define the legitimate
range of the sequence by setting minimum and max-
imum lengths. Specifically, in addition to the normal
beam search procedure, we set two rules:

• If the model generates the EOS tag when the
output sequence is shorter than the minimum
length, we discard the sequence from the beam.

• If the generated sequence exceeds the maxi-
mum length, we also discard the sequence from
the beam. We then replace its last word with
the EOS tag and add this sequence to the beam
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(EOS replacement in Section 4.1).3

In other words, we keep only the sequences that
contain the EOS tag and are in the defined length
range. This method is a compromise that allows
the model some flexibility to plan the generated se-
quences, but only within a certain acceptable length
range.

It should be noted that this method needs a larger
beam size if the desired length is very different from
the average summary length in the training data, as
it will need to preserve hypotheses that have the de-
sired length.

4.3 LenEmb: Length Embedding as
Additional Input for the LSTM

Our third method is a learning-based method specif-
ically trained to control the length of the output se-
quence. Inspired by previous work that has demon-
strated that additional inputs to decoder models can
effectively control the characteristics of the output
(Wen et al., 2015; Li et al., 2016b), this model pro-
vides information about the length in the form of an
additional input to the net. Specifically, the model
uses an embedding e2(lt) ∈ RD for each potential
desired length, which is parameterized by a length
embedding matrix Wle ∈ RD×L where L is the
number of length types. In the decoding process, we
input the embedding of the remaining length lt as
additional input to the LSTM (Figure 3). lt is initial-
ized after the encoding process and updated during
the decoding process as follows:

l1 = length,

lt+1 =

{
0 (lt − byte(yt) ≤ 0)
lt − byte(yt) (otherwise),

where byte(yt) is the length of output word yt and
length is the desired length. We learn the values
of the length embedding matrix Wle during train-
ing. This method provides additional information
about the amount of length remaining in the output
sequence, allowing the decoder to “plan” its output
based on the remaining number of words it can gen-
erate.

3This is a workaround to prevent the situation in which all
sequences are discarded from a beam.

jt otitft

st

mtmt�1

st�1

e1(xt) e2(lt)

ltxt

Figure 3: LenEmb: remaining length is used as addi-
tional input for the LSTM of the decoder.
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Figure 4: LenInit: initial state of the decoder’s memory
cell m0 manages output length.

4.4 LenInit: Length-based Memory Cell
Initialization

While LenEmb inputs the remaining length lt to the
decoder at each step of the decoding process, the
LenInit method inputs the desired length once at
the initial state of the decoder. Figure 4 shows the ar-
chitecture of LenInit. Specifically, the model uses
the memory cell mt to control the output length by
initializing the states of decoder (hidden state s0 and
memory cell m0) as follows:

s0 =
←−
h 1,

m0 = bc ∗ length, (1)

where bc ∈ RH is a trainable parameter and length
is the desired length.

While the model of LenEmb is guided towards
the appropriate output length by inputting the re-
maining length at each step, this LenInit attempts
to provide the model with the ability to manage the
output length on its own using its inner state. Specif-
ically, the memory cell of LSTM networks is suit-
able for this endeavour, as it is possible for LSTMs
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Figure 5: Histograms of first sentence length, summary length, and their ratio in DUC2004.

to learn functions that, for example, subtract a fixed
amount from a particular memory cell every time
they output a word. Although other ways for man-
aging the length are also possible,4 we found this
approach to be both simple and effective.

5 Experiment

5.1 Dataset

We trained our models on a part of the Annotated
English Gigaword corpus (Napoles et al., 2012),
which Rush et al. (2015) constructed for sentence
summarization. We perform preprocessing using the
standard script for the dataset5. The dataset con-
sists of approximately 3.6 million pairs of the first
sentence from each source document and its head-
line. Figure 1 shows the length histograms of the
summaries in the training set. The vocabulary size
is 116,875 for the source documents and 67,564
for the target summaries including the beginning-of-
sentence, end-of-sentence, and unknown word tags.
For LenEmb and LenInit, we input the length of
each headline during training. Note that we do not
train multiple summarization models for each head-
line length, but a single model that is capable of con-
trolling the length of its output.

We evaluate the methods on the evaluation set
of DUC2004 task-1 (generating very short single-
document summaries). In this task, summarization
systems are required to create a very short sum-
mary for each given document. Summaries over
the length limit (75 bytes) will be truncated and
there is no bonus for creating a shorter summary.
The evaluation set consists of 500 source documents
and 4 human-written (reference) summaries for each

4For example, we can also add another memory cell for
managing the length.

5https://github.com/facebook/NAMAS

source document. Figure 5 shows the length his-
tograms of the summaries in the evaluation set. Note
that the human-written summaries are not always as
long as 75 bytes. We used three variants of ROUGE
(Lin, 2004) as evaluation metrics: ROUGE-1 (uni-
gram), ROUGE-2 (bigram), and ROUGE-L (longest
common subsequence). The two-sided permutation
test (Chinchor, 1992) was used for statistical signif-
icance testing (p ≤ 0.05).

5.2 Implementation

We use Adam (Kingma and Ba, 2015) (α=0.001,
β1=0.9, β2=0.999, eps=10−8) to optimize param-
eters with a mini-batch of size 80. Before every
10,000 updates, we first sampled 800,000 training
examples and made groups of 80 examples with
the same source sentence length, and shuffled the
10,000 groups.

We set the dimension of word embeddings to 100
and that of the hidden state to 200. For LSTMs,
we initialize the bias of the forget gate to 1.0 and
use 0.0 for the other gate biases (Józefowicz et al.,
2015). We use Chainer (Tokui et al., 2015) to im-
plement our models. For LenEmb, we set L to 300,
which is larger than the longest summary lengths in
our dataset (see Figure 1-(b) and Figure 5-(b)).

For all methods except fixRng, we found a beam
size of 10 to be sufficient, but for fixRng we used
a beam size of 30 because it more aggressively dis-
cards candidate sequences from its beams during de-
coding.

6 Result

6.1 ROUGE Evaluation

Table 1 shows the ROUGE scores of each method
with various length limits (30, 50 and 75 byte). Re-
gardless of the length limit set for the summariza-

1333



30 byte 50 byte 75 byte
model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
fixLen 14.34 3.10∗ 13.23 20.00∗ 5.98 18.26∗ 25.87∗ 7.93 23.07∗

fixRng 13.83∗ 3.08∗ 12.88 20.08∗ 5.74 18.19∗ 26.01 7.69∗ 22.77∗

LenEmb(0,L) 14.23 3.21 13.02 20.78 5.97 18.57 26.73 8.39 23.88
LenInit(0,L) 14.31 3.27 13.19 20.87 6.16 19.00 25.87 8.27 23.24
LenEmb(0,∞) 13.75 3.30 12.68 20.62 6.22 18.64 26.42 8.26 23.59
LenInit(0,∞) 13.92 3.49 12.90 20.87 6.19 19.09 25.29∗ 8.00 22.71∗

Table 1: ROUGE scores with various length limits. The scores with ∗ are significantly worse than the best score in
the column (bolded).

source five-time world champion michelle kwan withdrew from the #### us figure skating championships
on wednesday , but will petition us skating officials for the chance to compete at the #### turin
olympics .

reference injury leaves kwan ’s olympic hopes in limbo
fixLen (30) kwan withdraws from us gp

(50) kwan withdraws from us skating championships
(75) kwan pulls out of us figure skating championships for turin olympics

fixRng (30) kwan withdraws from us gp
(50) kwan withdraws from figure skating championships
(75) kwan pulls out of us figure skating championships for turin olympics bid

LenEmb (30) kwan withdraws from us skating
(50) kwan withdraws from us figure skating championships
(75) world champion kwan withdraws from #### olympic figure skating championships

LenInit (30) kwan quits us figure skating
(50) kwan withdraws from #### us figure skating worlds
(75) kwan withdraws from #### us figure skating championships for #### olympics

Table 2: Examples of the output of each method with various specified lengths.

tion methods, we use the same reference summaries.
Note that, fixLen and fixRng generate the sum-
maries with a hard constraint due to their decod-
ing process, which allows them to follow the hard
constraint on length. Hence, when we calculate the
scores of LenEmb and LenInit, we impose a hard
constraint on length to make the comparison fair
(i.e. LenEmb(0,L) and LenInit(0,L) in the table).
Specifically, we use the same beam search as that
for fixRng with minimum length of 0.

For the purpose of showing the length control
capability of LenEmb and LenInit, we show at
the bottom two lines the results of the standard
beam search without the hard constraints on the
length6. We will use the results of LenEmb(0,∞)

and LenInit(0,∞) in the discussions in Sections 6.2
and 6.3.

The results show that the learning-based meth-

6fixRng is equivalence to the standard beam search when
we set the range as (0, ∞).

ods (LenEmb and LenInit) tend to outperform
decoding-based methods (fixLen and fixRng) for
the longer summaries of 50 and 75 bytes. How-
ever, in the 30-byte setting, there is no significant
difference between these two types of methods. We
hypothesize that this is because average compres-
sion rate in the training data is 30% (Figure 1-(c))
while the 30-byte setting forces the model to gen-
erate summaries with 15.38% in average compres-
sion rate, and thus the learning-based models did not
have enough training data to learn compression at
such a steep rate.

6.2 Examples of Generated Summaries

Tables 2 and 3 show examples from the validation
set of the Annotated Gigaword Corpus. The ta-
bles show that all models, including both learning-
based methods and decoding-based methods, can of-
ten generate well-formed sentences.

We can see various paraphrases of “#### us figure

1334



source at least two people have tested positive for the bird flu virus in eastern turkey , health minister
recep akdag told a news conference wednesday .

reference two test positive for bird flu virus in turkey
fixLen (30) two infected with bird flu

(50) two infected with bird flu in eastern turkey
(75) two people tested positive for bird flu in eastern turkey says minister

fixRng (30) two infected with bird flu
(50) two more infected with bird flu in eastern turkey
(75) two people tested positive for bird flu in eastern turkey says minister

LenEmb (30) two bird flu cases in turkey
(50) two confirmed positive for bird flu in eastern turkey
(75) at least two bird flu patients test positive for bird flu in eastern turkey

LenInit (30) two cases of bird flu in turkey
(50) two people tested positive for bird flu in turkey
(75) two people tested positive for bird flu in eastern turkey health conference

Table 3: More examples of the output of each method.

championships”7 and “withdrew”. Some examples
are generated as a single noun phrase (LenEmb(30)
and LenInit(30)) which may be suitable for the
short length setting.

6.3 Length Control Capability of
Learning-based Models

Figure 6 shows histograms of output length from the
standard encoder-decoder, LenEmb, and LenInit.
While the output lengths from the standard model
disperse widely, the lengths from our learning-based
models are concentrated to the desired length. These
histograms clearly show the length controlling capa-
bility of our learning-based models.

Table 4-(a) shows the final state of the beam when
LenInit generates the sentence with a length of 30
bytes for the example with standard beam search in
Table 3. We can see all the sentences in the beam
are generated with length close to the desired length.
This shows that our method has obtained the ability
to control the output length as expected. For com-
parison, Table 4-(b) shows the final state of the beam
if we perform standard beam search in the stan-
dard encoder-decoder model (used in fixLen and
fixRng). Although each sentence is well-formed,
the lengths of them are much more varied.

6.4 Comparison with Existing Methods

Finally, we compare our methods to existing meth-
ods on standard settings of the DUC2004 shared

7Note that “#” is a normalized number and “us” is “US”
(United States).

task-1. Although the objective of this paper is not to
obtain state-of-the-art scores on this evaluation set, it
is of interest whether our length-controllable models
are competitive on this task. Table 5 shows that the
scores of our methods, which are copied from Table
1, in addition to the scores of some existing methods.
ABS (Rush et al., 2015) is the most standard model
of neural sentence summarization and is the most
similar method to our baseline setting (fixLen).
This table shows that the score of fixLen is com-
parable to those of the existing methods. The table
also shows the LenEmb and the LenInit have the
capability of controlling the length without decreas-
ing the ROUGE score.

7 Conclusion

In this paper, we presented the first examination of
the problem of controlling length in neural encoder-
decoder models, from the point of view of sum-
marization. We examined methods for controlling
length of output sequences: two decoding-based
methods (fixLen and fixRng) and two learning-
based methods (LenEmb and LenInit). The re-
sults showed that learning-based methods generally
outperform the decoding-based methods, and the
learning-based methods obtained the capability of
controlling the output length without losing ROUGE
score compared to existing summarization methods.
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logp(y|x) byte candidate summary
-4.27 31 two cases of bird flu in turkey
-4.41 28 two bird flu cases in turkey
-4.65 30 two people tested for bird flu
-5.25 30 two people tested in e. turkey
-5.27 31 two bird flu cases in e. turkey
-5.51 29 two bird flu cases in eastern
-5.55 32 two people tested in east turkey
-5.72 30 two bird flu cases in turkey :
-6.04 30 two people fail bird flu virus

(a) the beam of LenInit

logp(y|x) byte candidate summary
-5.05 57 two people tested positive for bird flu in eastern turkey
-5.13 50 two tested positive for bird flu in eastern turkey
-5.30 39 two people tested positive for bird flu
-5.49 51 two people infected with bird flu in eastern turkey
-5.52 32 two tested positive for bird flu
-5.55 44 two infected with bird flu in eastern turkey
-6.00 49 two more infected with bird flu in eastern turkey
-6.04 54 two more confirmed cases of bird flu in eastern turkey
-6.50 49 two people tested positive for bird flu in turkey

(b) the beam of the standard encoder-decoder
Table 4: Final state of the beam when the learning-based model is instructed to output a 30 byte summary for the

source document in Table 3.
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Figure 6: Histograms of output lengths generated by (a) the standard encoder-decoder , (b) LenEmb, and (c)
LenInit. For LenEmb and LenInit, the bracketed numbers in each region are the desired lengths we
set.

model R-1 R-2 R-L
fixLen 25.88 7.93 23.07
fixRng 26.02 7.69 22.78
LenEmb 26.73 8.40 23.88
LenInit 25.87 8.28 23.25
ABS(Rush et al., 2015) 26.55 7.06 22.05
ABS+(Rush et al., 2015) 28.18 8.49 23.81
RAS-Elman(Chopra et al., 2016) 28.97 8.26 24.06
RAS-LSTM(Chopra et al., 2016) 27.41 7.69 23.06

Table 5: Comparison with existing studies for
DUC2004. Note that top four rows are
reproduced from Table 1.

opportunity to use the Kurisu server of Dwango Co.,
Ltd. for our experiments.

References

Ayana, S. Shen, Z. Liu, and M. Sun. 2016. Neural Head-
line Generation with Minimum Risk Training. CoRR,
abs/1604.01904.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR15.

Michele Banko, Vibhu O. Mittal, and Michael J. Wit-
brock. 2000. Headline generation based on statistical
translation. In Proceedings of ACL00, pages 318–325.

Nancy Chinchor. 1992. The statistical significance of
the muc-4 results. In Proceedings MUC4 ’92, pages
30–50.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of the EMNLP14,
pages 1724–1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
NAACL-HLT16, pages 93–98.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
COLING08, pages 137–144.

Trevor Cohn and Mirella Lapata. 2013. An abstrac-

1336



tive approach to sentence compression. ACM TIST13,
4(3):41:1–41:35, July.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In Proceedings of the HLT-NAACL 03
Text Summarization Workshop, pages 1–8.

Katja Filippova and Yasemin Altun. 2013. Overcoming
the lack of parallel data in sentence compression. In
Proceedings of EMNLP13, pages 1481–1491.

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. In Proceedings of
INLG08, pages 25–32.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In Pro-
ceedings of EMNLP15, pages 360–368.

Dimitrios Galanis and Ion Androutsopoulos. 2010.
An extractive supervised two-stage method for sen-
tence compression. In Proceedings of NAACL-HLT10,
pages 885–893.

A. Graves, N. Jaitly, and A. r. Mohamed. 2013. Hy-
brid speech recognition with deep bidirectional lstm.
In Proceedings of IEEE Workshop on ASRU13, pages
273–278.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of ACL16, pages
1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of ACL16, pages
140–149.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.
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