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Abstract

Sequence-to-Sequence (seq2seq) modeling
has rapidly become an important general-
purpose NLP tool that has proven effective for
many text-generation and sequence-labeling
tasks. Seq2seq builds on deep neural language
modeling and inherits its remarkable accuracy
in estimating local, next-word distributions. In
this work, we introduce a model and beam-
search training scheme, based on the work
of Daumé III and Marcu (2005), that extends
seq2seq to learn global sequence scores. This
structured approach avoids classical biases as-
sociated with local training and unifies the
training loss with the test-time usage, while
preserving the proven model architecture of
seq2seq and its efficient training approach. We
show that our system outperforms a highly-
optimized attention-based seq2seq system and
other baselines on three different sequence to
sequence tasks: word ordering, parsing, and
machine translation.

1 Introduction

Sequence-to-Sequence learning with deep neural
networks (herein, seq2seq) (Sutskever et al., 2011;
Sutskever et al., 2014) has rapidly become a very
useful and surprisingly general-purpose tool for nat-
ural language processing. In addition to demon-
strating impressive results for machine translation
(Bahdanau et al., 2015), roughly the same model
and training have also proven to be useful for sen-
tence compression (Filippova et al., 2015), parsing
(Vinyals et al., 2015), and dialogue systems (Ser-
ban et al., 2016), and they additionally underlie other

text generation applications, such as image or video
captioning (Venugopalan et al., 2015; Xu et al.,
2015).

The dominant approach to training a seq2seq sys-
tem is as a conditional language model, with training
maximizing the likelihood of each successive tar-
get word conditioned on the input sequence and the
gold history of target words. Thus, training uses a
strictly word-level loss, usually cross-entropy over
the target vocabulary. This approach has proven to
be very effective and efficient for training neural lan-
guage models, and seq2seq models similarly obtain
impressive perplexities for word-generation tasks.

Notably, however, seq2seq models are not used as
conditional language models at test-time; they must
instead generate fully-formed word sequences. In
practice, generation is accomplished by searching
over output sequences greedily or with beam search.
In this context, Ranzato et al. (2016) note that the
combination of the training and generation scheme
just described leads to at least two major issues:

1. Exposure Bias: the model is never exposed to
its own errors during training, and so the in-
ferred histories at test-time do not resemble the
gold training histories.

2. Loss-Evaluation Mismatch: training uses a
word-level loss, while at test-time we target
improving sequence-level evaluation metrics,
such as BLEU (Papineni et al., 2002).

We might additionally add the concern of label
bias (Lafferty et al., 2001) to the list, since word-
probabilities at each time-step are locally normal-
ized, guaranteeing that successors of incorrect his-
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tories receive the same mass as do the successors of
the true history.

In this work we develop a non-probabilistic vari-
ant of the seq2seq model that can assign a score
to any possible target sequence, and we propose
a training procedure, inspired by the learning as
search optimization (LaSO) framework of Daumé
III and Marcu (2005), that defines a loss function
in terms of errors made during beam search. Fur-
thermore, we provide an efficient algorithm to back-
propagate through the beam-search procedure dur-
ing seq2seq training.

This approach offers a possible solution to each
of the three aforementioned issues, while largely
maintaining the model architecture and training ef-
ficiency of standard seq2seq learning. Moreover,
by scoring sequences rather than words, our ap-
proach also allows for enforcing hard-constraints on
sequence generation at training time. To test out the
effectiveness of the proposed approach, we develop
a general-purpose seq2seq system with beam search
optimization. We run experiments on three very dif-
ferent problems: word ordering, syntactic parsing,
and machine translation, and compare to a highly-
tuned seq2seq system with attention (Luong et al.,
2015). The version with beam search optimization
shows significant improvements on all three tasks,
and particular improvements on tasks that require
difficult search.

2 Related Work

The issues of exposure bias and label bias have re-
ceived much attention from authors in the structured
prediction community, and we briefly review some
of this work here. One prominent approach to com-
bating exposure bias is that of SEARN (Daumé III
et al., 2009), a meta-training algorithm that learns a
search policy in the form of a cost-sensitive classifier
trained on examples generated from an interpolation
of an oracle policy and the model’s current (learned)
policy. Thus, SEARN explicitly targets the mis-
match between oracular training and non-oracular
(often greedy) test-time inference by training on the
output of the model’s own policy. DAgger (Ross
et al., 2011) is a similar approach, which differs in
terms of how training examples are generated and
aggregated, and there have additionally been impor-

tant refinements to this style of training over the past
several years (Chang et al., 2015). When it comes
to training RNNs, SEARN/DAgger has been applied
under the name “scheduled sampling” (Bengio et al.,
2015), which involves training an RNN to generate
the t+ 1’st token in a target sequence after consum-
ing either the true t’th token, or, with probability that
increases throughout training, the predicted t’th to-
ken.

Though technically possible, it is uncom-
mon to use beam search when training with
SEARN/DAgger. The early-update (Collins and
Roark, 2004) and LaSO (Daumé III and Marcu,
2005) training strategies, however, explicitly ac-
count for beam search, and describe strategies for
updating parameters when the gold structure be-
comes unreachable during search. Early update and
LaSO differ primarily in that the former discards a
training example after the first search error, whereas
LaSO resumes searching after an error from a state
that includes the gold partial structure. In the con-
text of feed-forward neural network training, early
update training has been recently explored in a feed-
forward setting by Zhou et al. (2015) and Andor
et al. (2016). Our work differs in that we adopt
a LaSO-like paradigm (with some minor modifica-
tions), and apply it to the training of seq2seq RNNs
(rather than feed-forward networks). We also note
that Watanabe and Sumita (2015) apply maximum-
violation training (Huang et al., 2012), which is sim-
ilar to early-update, to a parsing model with recur-
rent components, and that Yazdani and Henderson
(2015) use beam-search in training a discriminative,
locally normalized dependency parser with recurrent
components.

Recently authors have also proposed alleviating
exposure bias using techniques from reinforcement
learning. Ranzato et al. (2016) follow this ap-
proach to train RNN decoders in a seq2seq model,
and they obtain consistent improvements in perfor-
mance, even over models trained with scheduled
sampling. As Daumé III and Marcu (2005) note,
LaSO is similar to reinforcement learning, except
it does not require “exploration” in the same way.
Such exploration may be unnecessary in supervised
text-generation, since we typically know the gold
partial sequences at each time-step. Shen et al.
(2016) use minimum risk training (approximated by
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sampling) to address the issues of exposure bias and
loss-evaluation mismatch for seq2seq MT, and show
impressive performance gains.

Whereas exposure bias results from training in
a certain way, label bias results from properties of
the model itself. In particular, label bias is likely
to affect structured models that make sub-structure
predictions using locally-normalized scores. Be-
cause the neural and non-neural literature on this
point has recently been reviewed by Andor et al.
(2016), we simply note here that RNN models are
typically locally normalized, and we are unaware of
any specifically seq2seq work with RNNs that does
not use locally-normalized scores. The model we
introduce here, however, is not locally normalized,
and so should not suffer from label bias. We also
note that there are some (non-seq2seq) exceptions
to the trend of locally normalized RNNs, such as
the work of Sak et al. (2014) and Voigtlaender et al.
(2015), who train LSTMs in the context of HMMs
for speech recognition using sequence-level objec-
tives; their work does not consider search, however.

3 Background and Notation

In the simplest seq2seq scenario, we are given a col-
lection of source-target sequence pairs and tasked
with learning to generate target sequences from
source sequences. For instance, we might view ma-
chine translation in this way, where in particular we
attempt to generate English sentences from (corre-
sponding) French sentences. Seq2seq models are
part of the broader class of “encoder-decoder” mod-
els (Cho et al., 2014), which first use an encoding
model to transform a source object into an encoded
representation x. Many different sequential (and
non-sequential) encoders have proven to be effec-
tive for different source domains. In this work we
are agnostic to the form of the encoding model, and
simply assume an abstract source representation x.

Once the input sequence is encoded, seq2seq
models generate a target sequence using a decoder.
The decoder is tasked with generating a target se-
quence of words from a target vocabulary V . In
particular, words are generated sequentially by con-
ditioning on the input representation x and on the
previously generated words or history. We use the
notation w1:T to refer to an arbitrary word sequence

of length T , and the notation y1:T to refer to the gold
(i.e., correct) target word sequence for an input x.

Most seq2seq systems utilize a recurrent neural
network (RNN) for the decoder model. Formally,
a recurrent neural network is a parameterized non-
linear function RNN that recursively maps a se-
quence of vectors to a sequence of hidden states. Let
m1, . . . ,mT be a sequence of T vectors, and let h0

be some initial state vector. Applying an RNN to
any such sequence yields hidden states ht at each
time-step t, as follows:

ht ← RNN(mt,ht−1;θ),

where θ is the set of model parameters, which are
shared over time. In this work, the vectors mt

will always correspond to the embeddings of a tar-
get word sequence w1:T , and so we will also write
ht ← RNN(wt,ht−1;θ), with wt standing in for
its embedding.

RNN decoders are typically trained to act as con-
ditional language models. That is, one attempts to
model the probability of the t’th target word con-
ditioned on x and the target history by stipulating
that p(wt|w1:t−1,x) = g(wt,ht−1,x), for some pa-
rameterized function g typically computed with an
affine layer followed by a softmax. In computing
these probabilities, the state ht−1 represents the tar-
get history, and h0 is typically set to be some func-
tion of x. The complete model (including encoder)
is trained, analogously to a neural language model,
to minimize the cross-entropy loss at each time-step
while conditioning on the gold history in the train-
ing data. That is, the model is trained to minimize
− ln

∏T
t=1 p(yt|y1:t−1,x).

Once the decoder is trained, discrete se-
quence generation can be performed by approx-
imately maximizing the probability of the tar-
get sequence under the conditional distribution,
ŷ1:T = argbeamw1:T

∏T
t=1 p(wt|w1:t−1,x), where

we use the notation argbeam to emphasize that the
decoding process requires heuristic search, since the
RNN model is non-Markovian. In practice, a simple
beam search procedure that explores K prospective
histories at each time-step has proven to be an effec-
tive decoding approach. However, as noted above,
decoding in this manner after conditional language-
model style training potentially suffers from the is-
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sues of exposure bias and label bias, which moti-
vates the work of this paper.

4 Beam Search Optimization

We begin by making one small change to the
seq2seq modeling framework. Instead of predicting
the probability of the next word, we instead learn
to produce (non-probabilistic) scores for ranking se-
quences. Define the score of a sequence consisting
of history w1:t−1 followed by a single word wt as
f(wt,ht−1,x), where f is a parameterized function
examining the current hidden-state of the relevant
RNN at time t− 1 as well as the input representa-
tion x. In experiments, our f will have an identi-
cal form to g but without the final softmax transfor-
mation (which transforms unnormalized scores into
probabilities), thereby allowing the model to avoid
issues associated with the label bias problem.

More importantly, we also modify how this model
is trained. Ideally we would train by comparing
the gold sequence to the highest-scoring complete
sequence. However, because finding the argmax
sequence according to this model is intractable,
we propose to adopt a LaSO-like (Daumé III and
Marcu, 2005) scheme to train, which we will re-
fer to as beam search optimization (BSO). In par-
ticular, we define a loss that penalizes the gold se-
quence falling off the beam during training.1 The
proposed training approach is a simple way to ex-
pose the model to incorrect histories and to match
the training procedure to test generation. Further-
more we show that it can be implemented efficiently
without changing the asymptotic run-time of train-
ing, beyond a factor of the beam size K.

4.1 Search-Based Loss
We now formalize this notion of a search-based loss
for RNN training. Assume we have a set St of K
candidate sequences of length t. We can calculate a
score for each sequence in St using a scoring func-
tion f parameterized with an RNN, as above, and we
define the sequence ŷ

(K)
1:t ∈St to be the K’th ranked

1Using a non-probabilistic model further allows us to incur
no loss (and thus require no update to parameters) when the gold
sequence is on the beam; this contrasts with models based on a
CRF loss, such as those of Andor et al. (2016) and Zhou et al.
(2015), though in training those models are simply not updated
when the gold sequence remains on the beam.

sequence in St according to f . That is, assuming
distinct scores,

|{ŷ(k)1:t ∈St | f(ŷ
(k)
t , ĥ

(k)

t−1) > f(ŷ
(K)
t , ĥ

(K)

t−1)}| = K − 1,

where ŷ(k)t is the t’th token in ŷ
(k)
1:t , ĥ

(k)

t−1 is the RNN
state corresponding to its t− 1’st step, and where we
have omitted the x argument to f for brevity.

We now define a loss function that gives loss each
time the score of the gold prefix y1:t does not exceed
that of ŷ(K)

1:t by a margin:

L(f) =

T∑

t=1

∆(ŷ
(K)
1:t )

[
1− f(yt,ht−1) + f(ŷ

(K)
t , ĥ

(K)

t−1)
]
.

Above, the ∆(ŷ
(K)
1:t ) term denotes a mistake-specific

cost-function, which allows us to scale the loss de-
pending on the severity of erroneously predicting
ŷ
(K)
1:t ; it is assumed to return 0 when the margin re-

quirement is satisfied, and a positive number other-
wise. It is this term that allows us to use sequence-
rather than word-level costs in training (addressing
the 2nd issue in the introduction). For instance,
when training a seq2seq model for machine trans-
lation, it may be desirable to have ∆(ŷ

(K)
1:t ) be in-

versely related to the partial sentence-level BLEU
score of ŷ(K)

1:t with y1:t; we experiment along these
lines in Section 5.3.

Finally, because we want the full gold sequence to
be at the top of the beam at the end of search, when
t=T we modify the loss to require the score of y1:T
to exceed the score of the highest ranked incorrect
prediction by a margin.

We can optimize the loss L using a two-step pro-
cess: (1) in a forward pass, we compute candidate
sets St and record margin violations (sequences with
non-zero loss); (2) in a backward pass, we back-
propagate the errors through the seq2seq RNNs. Un-
like standard seq2seq training, the first-step requires
running search (in our case beam search) to find
margin violations. The second step can be done
by adapting back-propagation through time (BPTT).
We next discuss the details of this process.

4.2 Forward: Find Violations
In order to minimize this loss, we need to specify a
procedure for constructing candidate sequences ŷ(k)1:t
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at each time step t so that we find margin viola-
tions. We follow LaSO (rather than early-update 2;
see Section 2) and build candidates in a recursive
manner. If there was no margin violation at t−1,
then St is constructed using a standard beam search
update. If there was a margin violation, St is con-
structed as the K best sequences assuming the gold
history y1:t−1 through time-step t−1.

Formally, assume the function succ maps a se-
quence w1:t−1 ∈Vt−1 to the set of all valid se-
quences of length t that can be formed by appending
to it a valid word w∈V . In the simplest, uncon-
strained case, we will have

succ(w1:t−1) = {w1:t−1, w | w ∈ V}.

As an important aside, note that for some prob-
lems it may be preferable to define a succ func-
tion which imposes hard constraints on successor
sequences. For instance, if we would like to use
seq2seq models for parsing (by emitting a con-
stituency or dependency structure encoded into a se-
quence in some way), we will have hard constraints
on the sequences the model can output, namely, that
they represent valid parses. While hard constraints
such as these would be difficult to add to standard
seq2seq at training time, in our framework they can
naturally be added to the succ function, allowing us
to train with hard constraints; we experiment along
these lines in Section 5.3, where we refer to a model
trained with constrained beam search as ConBSO.

Having defined an appropriate succ function, we
specify the candidate set as:

St = topK

{
succ(y1:t−1) violation at t−1
⋃K

k=1 succ(ŷ
(k)
1:t−1) otherwise,

where we have a margin violation at t−1 iff

f(yt−1,ht−2) < f(ŷ
(K)
t−1 , ĥ

(K)

t−2) + 1, and where
topK considers the scores given by f . This search
procedure is illustrated in the top portion of Figure 1.

In the forward pass of our training algorithm,
shown as the first part of Algorithm 1, we run this
version of beam search and collect all sequences and
their hidden states that lead to losses.

2We found that training with early-update rather than (de-
layed) LaSO did not work well, even after pre-training. Given
the success of early-update in many NLP tasks this was some-
what surprising. We leave this question to future work.

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home today

Figure 1: Top: possible ŷ
(k)
1:t formed in training with a

beam of size K = 3 and with gold sequence y1:6 = “a
red dog runs quickly today”. The gold sequence is high-
lighted in yellow, and the predicted prefixes involved in
margin violations (at t= 4 and t= 6) are in gray. Note
that time-step T = 6 uses a different loss criterion. Bot-
tom: prefixes that actually participate in the loss, ar-
ranged to illustrate the back-propagation process.

4.3 Backward: Merge Sequences
Once we have collected margin violations we can
run backpropagation to compute parameter updates.
Assume a margin violation occurs at time-step t be-
tween the predicted history ŷ

(K)
1:t and the gold his-

tory y1:t. As in standard seq2seq training we must
back-propagate this error through the gold history;
however, unlike seq2seq we also have a gradient for
the wrongly predicted history.

Recall that to back-propagate errors through an
RNN we run a recursive backward procedure —
denoted below by BRNN — at each time-step t,
which accumulates the gradients of next-step and fu-
ture losses with respect to ht. We have:

∇htL ← BRNN(∇htLt+1,∇ht+1L),

where Lt+1 is the loss at step t+ 1, deriving, for
instance, from the score f(yt+1,ht). Running this
BRNN procedure from t=T − 1 to t= 0 is known
as back-propagation through time (BPTT).

In determining the total computational cost of
back-propagation here, first note that in the worst
case there is one violation at each time-step, which
leads to T independent, incorrect sequences. Since
we need to call BRNN O(T ) times for each se-
quence, a naive strategy of running BPTT for each
incorrect sequence would lead to an O(T 2) back-
ward pass, rather than the O(T ) time required for
the standard seq2seq approach.

Fortunately, our combination of search-strategy
and loss make it possible to efficiently share
BRNN operations. This shared structure comes
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naturally from the LaSO update, which resets the
beam in a convenient way.

We informally illustrate the process in Figure 1.
The top of the diagram shows a possible sequence
of ŷ(k)1:t formed during search with a beam of size 3
for the target sequence y = “a red dog runs quickly
today.” When the gold sequence falls off the beam
at t= 4, search resumes with S5 = succ(y1:4), and
so all subsequent predicted sequences have y1:4 as a
prefix and are thus functions of h4. Moreover, be-
cause our loss function only involves the scores of
the gold prefix and the violating prefix, we end up
with the relatively simple computation tree shown
at the bottom of Figure 1. It is evident that we can
backpropagate in a single pass, accumulating gradi-
ents from sequences that diverge from the gold at the
time-step that precedes their divergence. The second
half of Algorithm 1 shows this explicitly for a single
sequence, though it is straightforward to extend the
algorithm to operate in batch.3

5 Data and Methods

We run experiments on three different tasks, com-
paring our approach to the seq2seq baseline, and to
other relevant baselines.

5.1 Model

While the method we describe applies to seq2seq
RNNs in general, for all experiments we use the
global attention model of Luong et al. (2015)
— which consists of an LSTM (Hochreiter and
Schmidhuber, 1997) encoder and an LSTM decoder
with a global attention model — as both the base-
line seq2seq model (i.e., as the model that computes
the g in Section 3) and as the model that computes
our sequence-scores f(wt,ht−1,x). As in Luong
et al. (2015), we also use “input feeding,” which
involves feeding the attention distribution from the
previous time-step into the decoder at the current
step. This model architecture has been found to
be highly performant for neural machine translation
and other seq2seq tasks.

3We also note that because we do not update the parameters
until after the T ’th search step, our training procedure differs
slightly from LaSO (which is online), and in this aspect is essen-
tially equivalent to the “delayed LaSO update” of Björkelund
and Kuhn (2014).

Algorithm 1 Seq2seq Beam-Search Optimization
1: procedure BSO(x,Ktr, succ)
2: /*FORWARD*/
3: Init empty storage ŷ1:T and ĥ1:T ; init S1

4: r ← 0; violations← {0}
5: for t = 1, . . . , T do
6: K =Ktr if t 6=T else argmax

k:ŷ
(k)
1:t 6=y1:t

f(ŷ
(k)
t , ĥ

(k)

t−1)

7: if f(yt,ht−1) < f(ŷ
(K)
t , ĥ

(K)

t−1) + 1 then

8: ĥr:t−1 ← ĥ
(K)

r:t−1

9: ŷr+1:t ← ŷ
(K)
r+1:t

10: Add t to violations
11: r ← t
12: St+1 ← topK(succ(y1:t))
13: else
14: St+1 ← topK(

⋃K
k=1 succ(ŷ

(k)
1:t ))

15: /*BACKWARD*/
16: grad hT ← 0; grad ĥT ← 0
17: for t = T − 1, . . . , 1 do
18: grad ht←BRNN(∇htLt+1, grad ht+1)

19: grad ĥt←BRNN(∇ĥt
Lt+1, grad ĥt+1)

20: if t− 1 ∈ violations then
21: grad ht ← grad ht + grad ĥt

22: grad ĥt ← 0

To distinguish the models we refer to our system
as BSO (beam search optimization) and to the base-
line as seq2seq. When we apply constrained training
(as discussed in Section 4.2), we refer to the model
as ConBSO. In providing results we also distinguish
between the beam size Ktr with which the model
is trained, and the beam size Kte which is used at
test-time. In general, if we plan on evaluating with a
beam of size Kte it makes sense to train with a beam
of size Ktr = Kte + 1, since our objective requires
the gold sequence to be scored higher than the last
sequence on the beam.

5.2 Methodology

Here we detail additional techniques we found nec-
essary to ensure the model learned effectively. First,
we found that the model failed to learn when trained
from a random initialization.4 We therefore found
it necessary to pre-train the model using a standard,
word-level cross-entropy loss as described in Sec-

4This may be because there is relatively little signal in the
sparse, sequence-level gradient, but this point requires further
investigation.
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tion 3. The necessity of pre-training in this instance
is consistent with the findings of other authors who
train non-local neural models (Kingsbury, 2009; Sak
et al., 2014; Andor et al., 2016; Ranzato et al.,
2016).5

Similarly, it is clear that the smaller the beam used
in training is, the less room the model has to make
erroneous predictions without running afoul of the
margin loss. Accordingly, we also found it use-
ful to use a “curriculum beam” strategy in training,
whereby the size of the beam is increased gradually
during training. In particular, given a desired train-
ing beam size Ktr, we began training with a beam
of size 2, and increased it by 1 every 2 epochs until
reaching Ktr.

Finally, it has been established that dropout (Sri-
vastava et al., 2014) regularization improves the per-
formance of LSTMs (Pham et al., 2014; Zaremba
et al., 2014), and in our experiments we run beam
search under dropout.6

For all experiments, we trained both seq2seq and
BSO models with mini-batch Adagrad (Duchi et al.,
2011) (using batches of size 64), and we renormal-
ized all gradients so they did not exceed 5 before
updating parameters. We did not extensively tune
learning-rates, but we found initial rates of 0.02
for the encoder and decoder LSTMs, and a rate of
0.1 or 0.2 for the final linear layer (i.e., the layer
tasked with making word-predictions at each time-
step) to work well across all the tasks we consid-
ered. Code implementing the experiments described
below can be found at https://github.com/
harvardnlp/BSO.7

5.3 Tasks and Results

Our experiments are primarily intended to evaluate
the effectiveness of beam search optimization over
standard seq2seq training. As such, we run exper-
iments with the same model across three very dif-

5Andor et al. (2016) found, however, that pre-training only
increased convergence-speed, but was not necessary for obtain-
ing good results.

6However, it is important to ensure that the same mask ap-
plied at each time-step of the forward search is also applied at
the corresponding step of the backward pass. We accomplish
this by pre-computing masks for each time-step, and sharing
them between the partial sequence LSTMs.

7Our code is based on Yoon Kim’s seq2seq code, https:
//github.com/harvardnlp/seq2seq-attn.

ferent problems: word ordering, dependency pars-
ing, and machine translation. While we do not in-
clude all the features and extensions necessary to
reach state-of-the-art performance, even the baseline
seq2seq model is generally quite performant.

Word Ordering The task of correctly ordering the
words in a shuffled sentence has recently gained
some attention as a way to test the (syntactic) capa-
bilities of text-generation systems (Zhang and Clark,
2011; Zhang and Clark, 2015; Liu et al., 2015;
Schmaltz et al., 2016). We cast this task as seq2seq
problem by viewing a shuffled sentence as a source
sentence, and the correctly ordered sentence as the
target. While word ordering is a somewhat synthetic
task, it has two interesting properties for our pur-
poses. First, it is a task which plausibly requires
search (due to the exponentially many possible or-
derings), and, second, there is a clear hard constraint
on output sequences, namely, that they be a permu-
tation of the source sequence. For both the baseline
and BSO models we enforce this constraint at test-
time. However, we also experiment with constrain-
ing the BSO model during training, as described in
Section 4.2, by defining the succ function to only al-
low successor sequences containing un-used words
in the source sentence.

For experiments, we use the same PTB dataset
(with the standard training, development, and test
splits) and evaluation procedure as in Zhang and
Clark (2015) and later work, with performance re-
ported in terms of BLEU score with the correctly or-
dered sentences. For all word-ordering experiments
we use 2-layer encoder and decoder LSTMs, each
with 256 hidden units, and dropout with a rate of 0.2
between LSTM layers. We use simple 0/1 costs in
defining the ∆ function.

We show our test-set results in Table 1. We see
that on this task there is a large improvement at each
beam size from switching to BSO, and a further im-
provement from using the constrained model.

Inspired by a similar analysis in Daumé III and
Marcu (2005), we further examine the relationship
between Ktr and Kte when training with ConBSO
in Table 2. We see that larger Ktr hurt greedy in-
ference, but that results continue to improve, at least
initially, when using a Kte that is (somewhat) bigger
than Ktr − 1.
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Word Ordering (BLEU)
Kte = 1 Kte = 5 Kte = 10

seq2seq 25.2 29.8 31.0
BSO 28.0 33.2 34.3
ConBSO 28.6 34.3 34.5

LSTM-LM 15.4 - 26.8

Table 1: Word ordering. BLEU Scores of seq2seq, BSO,
constrained BSO, and a vanilla LSTM language model
(from Schmaltz et al, 2016). All experiments above have
Ktr = 6.

Word Ordering Beam Size (BLEU)
Kte = 1 Kte = 5 Kte = 10

Ktr = 2 30.59 31.23 30.26
Ktr = 6 28.20 34.22 34.67
Ktr = 11 26.88 34.42 34.88

seq2seq 26.11 30.20 31.04

Table 2: Beam-size experiments on word ordering devel-
opment set. All numbers reflect training with constraints
(ConBSO).

Dependency Parsing We next apply our model
to dependency parsing, which also has hard con-
straints and plausibly benefits from search. We
treat dependency parsing with arc-standard transi-
tions as a seq2seq task by attempting to map from
a source sentence to a target sequence of source
sentence words interleaved with the arc-standard,
reduce-actions in its parse. For example, we attempt
to map the source sentence

But it was the Quotron problems that ...

to the target sequence

But it was @L SBJ @L DEP the Quotron
problems @L NMOD @L NMOD that ...

We use the standard Penn Treebank dataset splits
with Stanford dependency labels, and the standard
UAS/LAS evaluation metric (excluding punctua-
tion) following Chen and Manning (2014). All
models thus see only the words in the source and,
when decoding, the actions it has emitted so far;
no other features are used. We use 2-layer encoder
and decoder LSTMs with 300 hidden units per layer

Dependency Parsing (UAS/LAS)
Kte = 1 Kte = 5 Kte = 10

seq2seq 87.33/82.26 88.53/84.16 88.66/84.33
BSO 86.91/82.11 91.00/87.18 91.17/87.41
ConBSO 85.11/79.32 91.25/86.92 91.57/87.26

Andor 93.17/91.18 - -

Table 3: Dependency parsing. UAS/LAS of seq2seq,
BSO, ConBSO and baselines on PTB test set. Andor is
the current state-of-the-art model for this data set (Andor
et al. 2016), and we note that with a beam of size 32 they
obtain 94.41/92.55. All experiments above have Ktr = 6.

and dropout with a rate of 0.3 between LSTM lay-
ers. We replace singleton words in the training set
with an UNK token, normalize digits to a single
symbol, and initialize word embeddings for both
source and target words from the publicly available
word2vec (Mikolov et al., 2013) embeddings. We
use simple 0/1 costs in defining the ∆ function.

As in the word-ordering case, we also experiment
with modifying the succ function in order to train
under hard constraints, namely, that the emitted tar-
get sequence be a valid parse. In particular, we con-
strain the output at each time-step to obey the stack
constraint, and we ensure words in the source are
emitted in order.

We show results on the test-set in Table 3. BSO
and ConBSO both show significant improvements
over seq2seq, with ConBSO improving most on
UAS, and BSO improving most on LAS. We achieve
a reasonable final score of 91.57 UAS, which lags
behind the state-of-the-art, but is promising for a
general-purpose, word-only model.

Translation We finally evaluate our model on a
small machine translation dataset, which allows us
to experiment with a cost function that is not 0/1,
and to consider other baselines that attempt to mit-
igate exposure bias in the seq2seq setting. We use
the dataset from the work of Ranzato et al. (2016),
which uses data from the German-to-English por-
tion of the IWSLT 2014 machine translation eval-
uation campaign (Cettolo et al., 2014). The data
comes from translated TED talks, and the dataset
contains roughly 153K training sentences, 7K devel-
opment sentences, and 7K test sentences. We use the
same preprocessing and dataset splits as Ranzato et
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Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

seq2seq 22.53 24.03 23.87
BSO, SB-∆ 23.83 26.36 25.48

XENT 17.74 20.10 20.28
DAD 20.12 22.25 22.40
MIXER 20.73 21.81 21.83

Table 4: Machine translation experiments on test set; re-
sults below middle line are from MIXER model of Ran-
zato et al. (2016). SB-∆ indicates sentence BLEU costs
are used in defining ∆. XENT is similar to our seq2seq
model but with a convolutional encoder and simpler at-
tention. DAD trains seq2seq with scheduled sampling
(Bengio et al., 2015). BSO, SB-∆ experiments above
have Ktr = 6.

al. (2016), and like them we also use a single-layer
LSTM decoder with 256 units. We also use dropout
with a rate of 0.2 between each LSTM layer. We em-
phasize, however, that while our decoder LSTM is of
the same size as that of Ranzato et al. (2016), our re-
sults are not directly comparable, because we use an
LSTM encoder (rather than a convolutional encoder
as they do), a slightly different attention mechanism,
and input feeding (Luong et al., 2015).

For our main MT results, we set ∆(ŷ
(k)
1:t ) to

1−SB(ŷ
(K)
r+1:t, yr+1:t), where r is the last margin

violation and SB denotes smoothed, sentence-level
BLEU (Chen and Cherry, 2014). This setting of ∆
should act to penalize erroneous predictions with a
relatively low sentence-level BLEU score more than
those with a relatively high sentence-level BLEU
score. In Table 4 we show our final results and those
from Ranzato et al. (2016).8 While we start with an
improved baseline, we see similarly large increases
in accuracy as those obtained by DAD and MIXER,
in particular when Kte > 1.

We further investigate the utility of these
sequence-level costs in Table 5, which compares us-
ing sentence-level BLEU costs in defining ∆ with
using 0/1 costs. We see that the more sophisti-
cated sequence-level costs have a moderate effect on
BLEU score.

8Some results from personal communication.

Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

0/1-∆ 25.73 28.21 27.43
SB-∆ 25.99 28.45 27.58

Table 5: BLEU scores obtained on the machine trans-
lation development data when training with ∆(ŷ

(k)
1:t ) = 1

(top) and ∆(ŷ
(k)
1:t ) = 1−SB(ŷ

(K)
r+1:t, yr+1:t) (bottom), and

Ktr = 6.

Timing Given Algorithm 1, we would expect
training time to increase linearly with the size of
the beam. On the above MT task, our highly tuned
seq2seq baseline processes an average of 13,038 to-
kens/second (including both source and target to-
kens) on a GTX 970 GPU. For beams of size Ktr

= 2, 3, 4, 5, and 6, our implementation processes
on average 1,985, 1,768, 1,709, 1,521, and 1,458 to-
kens/second, respectively. Thus, we appear to pay
an initial constant factor of ≈ 3.3 due to the more
complicated forward and backward passes, and then
training scales with the size of the beam. Because
we batch beam predictions on a GPU, however, we
find that in practice training time scales sub-linearly
with the beam-size.

6 Conclusion

We have introduced a variant of seq2seq and an as-
sociated beam search training scheme, which ad-
dresses exposure bias as well as label bias, and
moreover allows for both training with sequence-
level cost functions as well as with hard constraints.
Future work will examine scaling this approach to
much larger datasets.
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