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Abstract

For many low-resource languages, spoken lan-
guage resources are more likely to be an-
notated with translations than with transcrip-
tions. Translated speech data is potentially
valuable for documenting endangered lan-
guages or for training speech translation sys-
tems. A first step towards making use of such
data would be to automatically align spoken
words with their translations. We present a
model that combines Dyer et al.’s reparam-
eterization of IBM Model 2 (fast_align)
and k-means clustering using Dynamic Time
Warping as a distance measure. The two com-
ponents are trained jointly using expectation-
maximization. In an extremely low-resource
scenario, our model performs significantly
better than both a neural model and a strong
baseline.

1 Introduction

For many low-resource languages, speech data is
easier to obtain than textual data. And because
speech transcription is a costly and slow process,
speech is more likely to be annotated with transla-
tions than with transcriptions. This translated speech
is a potentially valuable source of information — for
example, for documenting endangered languages or
for training speech translation systems.

In language documentation, data is usable only if
it is interpretable. To make a collection of speech
data usable for future studies of the language, some-
thing resembling interlinear glossed text (transcrip-
tion, morphological analysis, word glosses, free
translation) would be needed at minimum. New
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technologies are being developed to facilitate col-
lection of translations (Bird et al., 2014), and there
already exist recent examples of parallel speech
collection efforts focused on endangered languages
(Blachon et al., 2016; Adda et al., 2016). As for the
other annotation layers, one might hope that a first
pass could be done automatically. A first step to-
wards this goal would be to automatically align spo-
ken words with their translations, capturing informa-
tion similar to that captured by word glosses.

In machine translation, statistical models have tra-
ditionally required alignments between the source
and target languages as the first step of training.
Therefore, producing alignments between speech
and text would be a natural first step towards MT
systems operating directly on speech.

We present a model that, in order to learn such
alignments, adapts and combines two components:
Dyer et al.’s reparameterization of IBM Model 2
(Dyer et al., 2013), more commonly known as
fast_align, and k-means clustering using Dy-
namic Time Warping (Berndt and Clifford, 1994) as
a distance measure. The two components are trained
jointly using expectation-maximization.

We experiment on two language pairs. One is
Spanish-English, using the CALLHOME and Fisher
corpora. The other is Griko-Italian; Griko is an
endangered language for which we created (and
make freely available)! gold-standard translations
and word alignments (Lekakou et al., 2013). In all
cases, our model outperforms both a naive but strong
baseline and a neural model (Duong et al., 2016).

Thttps://www3.nd.edu/~aanastas/griko/griko-data.tar.gz
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2 Background

In this section, we briefly describe the existing mod-
els that the two components of our model are based
on. In the next section, we will describe how we
adapt and combine them to the present task.

2.1 IBM Model 2 and fast_align

The IBM translation models (Brown et al., 1993)
aim to model the distribution p(e | f) for an En-
glish sentence e = ¢ - - - ¢;, given a French sentence
f = fi---en. They all introduce a hidden variable
a = aj---q; that gives the position of the French
word to which each English word is aligned.

The general form of IBM Models 1, 2 and
fast_alignis

1
plealf)=pO [ | teil fu)dailil,m)
i=1

where (e | f) is the probability of translating French
word f to English word e, and d(a; = j | i,I,m) is
the probability of aligning the i-th English word with
the j-th French word.

In Model 1, ¢ is uniform; in Model 2, it is
a categorical distribution. Dyer et al. (2013) pro-
pose a reparameterization of Model 2, known as
fast_align:

.. i j
h(l,],l,m):—‘z—i‘

Do a;=0

6(611' I i, l, m) = {(1 B po)exp/lh(i,ai,l,M)

Z(i,l,m) a > 0

where the null alignment probability py and preci-
sion 4 > 0 are hyperparameters optimized by grid
search. As 1 — 0, the distribution gets closer to the
distribution of IBM Model 1, and as A gets larger,
the model prefers monotone word alignments more
strongly.

2.2 DTW and DBA

Dynamic Time Warping (DTW) (Berndt and Clif-
ford, 1994) is a dynamic programming method
for measuring distance between two temporal se-
quences of variable length, as well as computing
an alignment based on this distance. Given two se-
quences ¢, ¢’ of length m and m’ respectively, DTW
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constructs an m X m’ matrix w. The warping path can
be found by evaluating the following recurrence:

wij = d(@i, @) + minfwi_y j, wi-1 j-1, Wi j-1}

where d is a distance measure. In this paper, we nor-
malize the cost of the warping path:

Wmm'

DTW(¢,¢") = ;
m+m
which lies between zero and one.

DTW Barycenter Averaging (DBA) (Petitjean et
al., 2011) is an iterative approximate method that at-
tempts to find a centroid of a set of sequences, min-
imizing the sum of squared DTW distances.

In the original definition, given a set of sequences,
DBA chooses one sequence randomly to be a “skele-
ton.” Then, at each iteration, DBA computes the
DTW between the skeleton and every sequence in
the set, aligning each of the skeleton’s points with
points in all the sequences. The skeleton is then re-
fined using the found alignments, by updating each
frame in the skeleton to the mean of all the frames
aligned to it. In our implementation, in order to avoid
picking a skeleton that is too short or too long, we
randomly choose one of the sequences with median
length.

3 Model

We use a generative model from a source-language
speech segment consisting of feature frames ¢ =
@1 - - o to a target-language segment consisting of
words € = ej...e;. We chose to model p(e | ¢)
rather than p(¢ | e) because it makes it easier to in-
corporate DTW. The other direction is also possible,
and we plan to explore it in future work.

In addition to the target-language sentence e,
our model hypothesizes a sequence f = fi---f
of source-language clusters (intuitively, source-
language words), and spans (a;, b;) of the source sig-
nal that each target word e; is aligned to. Thus, the
clusters f = f; - - - f; and the spans a = ay,...,q; and
b = by,..., b; are the hidden variables of the model:

plel¢) = ) ple.ab.f|p).

abf

The model generates e, a, b, and f from ¢ as fol-
lows.



1. Choose [, the number of target words, with uni-
form probability. (Technically, this assumes a
maximum target sentence length, which we can
just set to be very high.)

2. For each target word positioni =1,...,[

(a) Choose a cluster f;.

(b) Choose a span of source frames (a;, b;) for
e; to be aligned to.

(c) Generate a target word e; from f;.

Accordingly, we decompose p(e, a, b, f | @) into sev-
eral submodels:

i
pe.a,b,f1¢) = pO | |u(f)
i=1

s(a;, bi | fi, §) X
o(ai, bi | i,1,1¢]) X
e | fp).

Note that submodels ¢ and s both generate spans
(corresponding to step 2b), making the model de-
ficient. We could make the model sum to one by
replacing u(fi)s(ai, bi | fi,#) with s(fi | ai, bi, ¢),
and this was in fact our original idea, but the model
as defined above works much better, as discussed in
Section 7.4. We describe both ¢ and s in detail be-
low.

Clustering model The probability over clusters,
u(f), is just a categorical distribution. The submodel
s assumes that, for each cluster f, there is a “pro-
totype” signal ¢/ (cf. Ristad and Yianilos, 1998).
Technically, the ¢/ are parameters of the model, and
will be recomputed during the M step. Then we can
define:

exp(-DTW(¢/, ¢, - - $1)%)

@bl f.$) =
rablle 31 exp(-DTW(@/, ¢, - ¢)?)

where DTW is the distance between the prototype
and the segment computed using Dynamic Time
Warping. Thus s assigns highest probability to spans
of ¢ that are most similar to the prototype ¢/ .

Distortion model The submodel 6 controls the re-
ordering of the target words relative to the source
frames. It is an adaptation of fast_align to our
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Figure 1: Sample distributions for the alignment variables a
and b form =100,/ =5, py =0, 1 = 0.5, and u = 20.

setting, where there is not a single source word po-
sition a;, but a span (a;, b;). We want the model to
prefer the middle of the word to be close to the di-
agonal, so we need the variable a to be somewhat to
the left and b to be somewhat to the right. Therefore,
we introduce an additional hyperparameter ¢ which
is intuitively the number of frames in a word. Then
we define

. i ;
ha(l, ]y l, m,u) = — 2 _ -]
m—p
i i j-pu
hb(l’.]’ l,m,l,t) = — Z v -
m—p
[ Po a; =0
oqlai | i,1,m) = .
o (1 = po) 22z a; > 0
; Po bi:O
(Sb(b'll,l,m): .

6((11‘, bl | i’ la m) = 6a(ai | i7 la m) 6b(bl | l.y la m)

where the Z,(i, [, m) are set so that all distributions
sum to one. Figure 1 shows an example visualisation
of the the resulting distributions for the two variables
of our model.

We set u differently for each word. For each i, we
set u; to be proportional to the number of characters
in e;, such that >}; u; = m.

Translation model The translation model t(e | f)
is just a categorical distribution, in principle allow-
ing a many-to-many relation between source clusters
and target words. To speed up training (with nearly
no change in accuracy, in our experiments), we re-
strict this relation so that there are k source clusters
for each target word, and a source cluster uniquely
determines its target word. Thus, #(e | f) is fixed to



either zero or one, and does not need to be reesti-
mated. In our experiments, we set k = 2, allowing
each target word to have up to two source-language
translations/pronunciations. (If a source word has
more than one target translation, they are treated as
distinct clusters with distinct prototypes.)

4 Training

We use the hard (Viterbi) version of the Expectation-
Maximization (EM) algorithm to estimate the pa-
rameters of our model, because calculating expected
counts in full EM would be prohibitively expensive,
requiring summations over all possible alignments.

Recall that the hidden variables of the model are
the alignments (a;, b;) and the source words (f;). The
parameters are the translation probabilities #(e; | f)
and the prototypes (¢/). The (hard) E step uses the
current model and prototypes to find, for each target
word, the best source segment to align it to and the
best source word. The M step reestimates the prob-
abilities #(e | f) and the prototypes ¢/. We describe
each of these steps in more detail below.

Initialization Initialization is especially important
since we are using hard EM.

To initialize the parameters, we initialize the hid-
den variables and then perform an M step. We as-
sociate each target word type e with k = 2 source
clusters, and for each occurrence of e, we randomly
assign it one of the k source clusters.

The alignment variables a;, b; are initialized to

a;,b; = argmax 6(a, b | i, 1, m).
a,b

M step The M step reestimates the probabilities
t(e | f) using relative-frequency estimation.

The prototypes ¢/ are more complicated. Theo-
retically, the M step should recompute each ¢/ so
as to maximize that part of the log-likelihood that
depends on ¢/

Ly =), >, logstaibi| f.)

% ilfimf
B exp(-DTW(¢/, ¢, - - - )%
=2 D log Z(f. 9)
$ ifi=f ’
= > > -DTW(, ¢, ¢,)* ~ log Z(f, )
b ilfimf
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where the summation over ¢ is over all source sig-
nals in the training data. This is a hard problem, but
note that the first term is just the sum-of-squares of
the DTW distance between ¢/ and all source seg-
ments that are classified as f. This is what DBA is
supposed to approximately minimize, so we simply
set ¢/ using DBA, ignoring the denominator.

E step The (hard) E step uses the current model
and prototypes to find, for each target word, the best
source segment to align it to and the best source clus-
ter.

In order to reduce the search space for a and b,
we use the unsupervised phonetic boundary detec-
tion method of Khanagha et al. (2014). This method
operates directly on the speech signal and provides
us with candidate phone boundaries, on which we
restrict the possible values for a and b, creating a
list of candidate utterance spans.

Furthermore, we use a simple silence detection
method. We pass the envelope of the signal through
a low-pass filter, and then mark as “silence” time
spans of 50ms or longer in which the magnitude is
below a threshold of 5% relative to the maximum
of the whole signal. This method is able to detect
about 80% of the total pauses, with a 90% precision
in a 50ms window around the correct silence bound-
ary. We can then remove from the candidate list the
utterance spans that include silence, on the assump-
tion that a word should not include silences. Finally,
in case one of the span’s boundaries happens to be
within a silence span, we also move it so as to not
include the silence.

Hyperparameter tuning The hyperparameters
po, A, and u are not learned. We simply set pg to
zero (disallowing unaligned target words) and set u
as described above.

For A we perform a grid search over candidate val-
ues to maximize the alignment F-score on the devel-
opment set. We obtain the best scores with 4 = 0.5.

5 Related Work

A first step towards modelling parallel speech can be
performed by modelling phone-to-word alignment,
instead of directly working on continuous speech.
For example, Stahlberg et al. (2012) extend IBM
Model 3 to align phones to words in order to build



cross-lingual pronunciation lexicons. Pialign (Neu-
big et al., 2012) aligns characters and can be ap-
plied equally well to phones. Duong et al. (2016)
use an extension of the neural attentional model of
Bahdanau et al. (2015) for aligning phones to words
and speech to words; we discuss this model below in
Section 6.2.

There exist several supervised approaches that at-
tempt to integrate speech recognition and machine
translation. However, they rely heavily on the abun-
dance of training data, pronunciation lexicons, or
language models, and therefore cannot be applied in
a low- or zero-resource setting.

A task somewhat similar to ours, which operates
at a monolingual level, is the task of zero-resource
spoken term discovery, which aims to discover re-
peated words or phrases in continuous speech. Vari-
ous approaches (Ten Bosch and Cranen, 2007; Park
and Glass, 2008; Muscariello et al., 2009; Zhang and
Glass, 2010; Jansen et al., 2010) have been tried,
in order to spot keywords, using segmental DTW to
identify repeated trajectories in the speech signal.

Kamper et al. (2016) try to discover word segmen-
tation and a pronunciation lexicon in a zero-resource
setting, combining DTW with acoustic embeddings;
their methods operate in a very low-vocabulary set-
ting. Bansal (2015) attempts to build a speech trans-
lation system in a low-resource setting, by using as
source input the simulated output of an unsupervised
term discovery system.

6 Experiments

We evaluate our method on two language pairs,
Spanish-English and Griko-Italian, against two
baseline methods, a naive baseline, and the model
of Duong et al. (2016).

6.1 Data

For each language pair, we require a sentence-
aligned parallel corpus of source-language speech
and target-language text. A subset of these sentences
should be annotated with span-to-word alignments
for use as a gold standard.

6.1.1 Spanish-English

For Spanish-English, we use the Spanish CALL-
HOME corpus (LDC96S35) and the Fisher corpus
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(LDC2010T04), which consist of telephone conver-
sations between Spanish native speakers based in the
US and their relatives abroad, together with English
translations produced by Post et al. (2013). Span-
ish is obviously not a low-resource language, but we
pretend that it is low-resource by not making use
of any Spanish ASR or resources like transcribed
speech or pronunciation lexicons.

Since there do not exist gold standard alignments
between the Spanish speech and English words, we
use the “silver” standard alignments produced by
Duong et al. (2016) for the CALLHOME corpus,
and followed the same procedure for the Fisher cor-
pus as well. In order to obtain them, they first used a
forced aligner to align the speech to its transcription,
and GIZA++ with the gdfa symmetrization heuris-
tic to align the Spanish transcription to the English
translation. They then combined the two alignments
to produce “silver” standard alignments between the
Spanish speech and the English words.

The CALLHOME dataset consists of 17532
Spanish utterances, based on the dialogue turns. We
first use a sample of 2000 sentences, out of which
we use 200 as a development set and the rest as a
test set. We also run our experiments on the whole
dataset, selecting 500 utterances for a development
set, using the rest as a test set. The Fisher dataset
consists of 143355 Spanish utterances. We use 1000
of them as a development set and the rest as a test
set.

6.1.2 Griko-Italian

We also run our model on a corpus that consists of
about 20 minutes of speech in Griko, an endangered
minority dialect of Greek spoken in south Italy,
along with text translations into Italian (Lekakou
et al., 2013).2 The corpus consists of 330 mostly
prompted utterances by nine native speakers. Al-
though the corpus is very small, we use it to show-
case the effectiveness of our method in a hard setting
with extremely low resources.

All utterances were manually annotated and tran-
scribed by a trained linguist and bilingual speaker
of both languages, who produced the Griko tran-
scriptions and Italian glosses. We created full trans-
lations into Italian and manually aligned the transla-
tions with the Griko transcriptions. We then com-

Zhttp://griko.project.uoi.gr



bined the two alignments (speech-to-transcription
and transcription-to-translation) to produce speech-
to-translation alignments. Therefore, our compar-
ison is done against an accurate “gold” standard
alignment. We split the data into a development set
of just 30 instances, and a test set of the remain-
ing 300 instances.

6.1.3 Preprocessing

In both data settings, we treat the speech data as a
sequence of 39-dimensional Perceptual Linear Pre-
diction (PLP) vectors encoding the power spectrum
of the speech signal (Hermansky, 1990), computed
at 10ms intervals. We also normalize the features at
the utterance level, shifting and scaling them to have
zero mean and unit variance.

6.2 Baselines

Our naive baseline assumes that there is no reorder-
ing between the source and target language, and
aligns each target word e; to a source span whose
length in frames is proportional to the length of ¢; in
characters. This actually performs very well on lan-
guage pairs that show minimal or no reordering, and
language pairs that have shared or related vocabular-
ies.

The other baseline that we compare against is
the neural network attentional model of Duong et
al. (2016), which extends the attentional model of
Bahdanau et al. (2015) to be used for aligning and
translating speech, and, along with several modifi-
cations, achieve good results on the phone-to-word
alignment task, and almost match the baseline per-
formance on the speech-to-word alignment task.

7 Results

To evaluate an automatic alignment between the
speech and its translation against the gold/silver
standard alignment, we compute alignment preci-
sion, recall, and F-score as usual, but on links be-
tween source-language frames and target-language
words.

7.1 Overview

Table 1 shows the precision, recall, and balanced F-
score of the three models on the Spanish-English
CALLHOME corpus (both the 2000-sentence subset
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method | precision recall F-score
o OUS 38.8 389 388
g naive | 31.9 40.8 358
S & M neural | 2338 298  26.4
3 & o ours | 384 388 386
5 naive | 31.8 40.7 357
sents
neural | 26.1 329 29.1
5 2 143k ours 333 28.7 30.8
= 2 ) naive 24.0 332 278
E % sents
= 300 ours 56.6 51.2 538
IE naive 422 522 46.7
s SeNS jeural | 24.6 300 27.0

Table 1: Our model achieves higher precision and F-score than
both the naive baseline and the neural model on all datasets.

and the full set), the Spanish-English Fisher corpus,
and the Griko-Italian corpus.

In all cases, our model outperforms both the
naive baseline and the neural attentional model. Our
model, when compared to the baselines, improves
greatly on precision, while slightly underperforming
the naive baseline on recall. In certain applications,
higher precision may be desirable: for example, in
language documentation, it’s probably better to err
on the side of precision; in phrase-based translation,
higher-precision alignments lead to more extracted
phrases.

The rest of the section provides a further anal-
ysis of the results, focusing on the extremely low-
resource Griko-Italian dataset.

7.2 Speaker robustness

Figure 2 shows the alignments produced by our
model for three utterances of the same sentence from
the Griko-Italian dataset by three different speak-
ers. Our model’s performance is roughly consistent
across these utterances. In general, the model does
not seem significantly affected by speaker-specific
variations, as shown in Table 2.

We do find, however, that the performance on
male speakers is slightly higher compared to the
female speakers. This might be because the fe-
male speakers’ utterances are, on average, longer by
about 2 words than the ones uttered by males.



IO VAT ) ool o sttt

devo comprare il pane ogni giorno
Male 1: — — : F-score
d comprare il pane osm giorno
Model: o - e 43
devo comprare il pane ogni giorno
Woman 2: - - F-score
d?XO il pane ogni giorno
Model: comprare 62.1
d comprare il pane ogni ogni giorno
Male 4: R - - F-score
d comprare il pane ogni o giorno
Model: e 70.9

Figure 2: Alignments produced for the Italian sentence devo comprare il pane ogni giorno as uttered by three different

Griko speakers.

speaker | utt len | F-score
female1 | 55 9.0 | 494
female2 | 61 8.1 | 55.0
female 3 | 41 9.6 | 51.0
female4 | 23 7.3 | 544
female 5 | 21 6.1 | 56.6
male 1 35 59595
male 2 32 6.0|619
male 3 34 6.7 | 60.2
male 4 23 64 | 64.0

Table 2: Model performance (F-score) is generally consistent
across speakers. The second column (utt) shows the number of
utterances per speaker; the third (len), their average length in

words.
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7.3 Word level analysis

We also compute F-scores for each Italian word
type. As shown in Figure 3, the longer the word’s
utterance, the easier it is for our model to correctly
align it. Longer utterances seem to catrry enough in-
formation for our DTW-based measure to function
properly. On the other hand, shorter utterances are
harder to align. The vast majority of Griko utter-
ances that have less than 20 frames and are less ac-
curately aligned correspond to monosyllabic deter-
miners (o, i,a, to, ta) or conjunctions and preposi-
tions (ka, ce, en, na, an). For such short utterances,
there could be several parts of the signal that possi-
bly match the prototype, leading the clustering com-
ponent to prefer to align to wrong spans.
Furthermore, we note that rare word types tend to
be correctly aligned. The average F-score for hapax
legomena (on the Italian side) is 63.2, with 53% of
them being aligned with an F-score higher than 70.0.

7.4 Comparison with proper model

As mentioned in Section 3, our model is deficient,
but it performs much better than the model that
sums to one (henceforth, the “proper” model): In
the Spanish-English dataset (2000 sentences sam-
ple) the proper model yields an F-score of 32.1, per-
forming worse than the naive baseline; in the Griko-



Griko: icha na aforaso to  tsomi
o
Gold: dovevo comprare il pane
and F-score
i ane
Ours: dovevo comprare il (p_, 823
i ane
Proper: dO\ieVO comprare ll p - 61.7
comprare pane

Attention: dovevo i 38.3

s

Figure 4: The deficient model performs very well, whereas
the proper and the attentional model prefer extreme alignment
spans. For example, the proper model’s alignment for the words

dovevo and pane are much too short.

0.8

average F-score

0 20

40 60 80 100
word length (frames)

120

Figure 3: There is a positive correlation between average word-

level F-score and average word utterance length (in frames).

Italian dataset, it achieves an F-score of 44.3, which
is better than the baselines, but still worse than our
model.

In order to further examine why this happens, we
performed three EM iterations on the Griko-Italian
dataset with our model (in our experience, three it-
erations are usually enough for convergence), and
then computed one more E step with both our model
and the proper model, so as to ensure that the two
models would align the dataset using the exact same
prototypes and that their outputs will be comparable.

In this case, the proper model achieved an over-
all F-score of 44.0, whereas our model achieved an
F-score of 53.6. Figures 4 and 5 show the resulting
alignments for two sentences. In both of these exam-
ples, it is clear that the proper model prefers extreme
spans: the selected spans are either much too short or
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Griko: ¢  Valeria meleta o  giornali
Gold: Valeria legge  j]  giornale
> F-score
Ours: Mlegge L giornale 67.8
legge .
il
Proper: Valeria > + giornale 752
legge giornale _ giornale
Attention: il — il Valeria —

Figure 5: One of the rare examples where the proper model
performs better than the deficient one. The hapax legomena
Valeria and giornali are not properly handled by the at-

tentional model.

(less frequently) much too long. This is further ver-
ified by examining the statistics of the alignments:
the average span selected by the proper model has
a length of about 30 + 39 frames whereas the aver-
age span of the alignments produced by our deficient
model is 37 + 24 frames. This means that the align-
ments of the deficient model are much closer to the
gold ones, whose average span is 42 + 26 frames.

We think that this is analogous to the “garbage
collection” problem in word alignment. In the IBM
word alignment models, if a source word f occurs
in only one sentence, then EM can align many tar-
get words to f and learn a very peaked distribution
t(e | f). This can happen in our model and the proper
model as well, of course, since IBM Model 2 is
embedded in them. But in the proper model, some-
thing similar can also happen with s(f | a,b): EM
can make the span (a,b) large or small, and evi-
dently making the span small allows it to learn a
very peaked distribution s(f | a, b). By contrast, our
model has s(a,b | f), which seems less susceptible
to this kind of effect.

8 Conclusion

Alignment of speech to text translations is a rela-
tively new task, one with particular relevance for
low-resource or endangered languages. The model
we propose here, which combines fast_align and
k-means clustering using DTW and DBA, outper-
forms both a very strong naive baseline and a neural
attentional model, on three tasks of various sizes.
The language pairs used here do not have very
much word reordering, and more divergent language



pairs should prove more challenging. In that case,
the naive baseline should be much less competitive.
Similarly, the fast_align-based distortion model
may become less appopriate; we plan to try incorpo-
rating IBM Model 3 or the HMM alignment model
(Vogel et al., 1996) instead. Finally, we will in-
vestigate downstream applications of our alignment
methods, in the areas of both language documenta-
tion and speech translation.
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