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Abstract

This article tackles a new challenging task in
computational argumentation. Given a pair of
two arguments to a certain controversial topic,
we aim to directly assess qualitative properties
of the arguments in order to explain why one
argument is more convincing than the other
one. We approach this task in a fully empirical
manner by annotating 26k explanations writ-
ten in natural language. These explanations
describe convincingness of arguments in the
given argument pair, such as their strengths or
flaws. We create a new crowd-sourced cor-
pus containing 9,111 argument pairs, multi-
labeled with 17 classes, which was cleaned
and curated by employing several strict quality
measures. We propose two tasks on this data
set, namely (1) predicting the full label dis-
tribution and (2) classifying types of flaws in
less convincing arguments. Our experiments
with feature-rich SVM learners and Bidirec-
tional LSTM neural networks with convolu-
tion and attention mechanism reveal that such
a novel fine-grained analysis of Web argument
convincingness is a very challenging task. We
release the new corpus UKPConvArg2 and the
accompanying software under permissive li-
censes to the research community.

1 Introduction

People engage in argumentation in various contexts,
both online and in the real life. Existing definitions
of argumentation do not solely focus on giving rea-
sons and laying out a logical framework of premises
and conclusions, but also highlight its social pur-
pose which is to convince or to persuade (O’Keefe,

2011; van Eemeren et al., 2014; Blair, 2011). As-
sessing the quality and strength of perceived argu-
ments therefore plays an inherent role in argumen-
tative discourse. Despite strong theoretical foun-
dations and plethora of normative theories, such as
Walton’s schemes and their critical questions (Wal-
ton, 1989), an ideal model of critical discussion in
the pragma-dialectic view (Van Eemeren and Groo-
tendorst, 1987), or research into fallacies (Boudry et
al., 2015), assessing qualitative criteria of everyday
argumentation represents a challenge for argumenta-
tion scholars and practitioners (Weltzer-Ward et al.,
2009; Swanson et al., 2015; Rosenfeld and Kraus,
2015).

Addressing qualitative aspects of arguments has
recently started gaining attention in the field of com-
putational argumentation. Scoring strength of per-
suasive essays (Farra et al., 2015; Persing and Ng,
2015), exploring interaction in persuasive dialogues
on Reddit (Tan et al., 2016), or detecting convinc-
ing arguments (Habernal and Gurevych, 2016) are
among recent attempts to tackle the quality of argu-
mentation. However, these approaches are holistic
and do not necessarily explain why a given argument
is strong or convincing.

We asked the following research questions. First,
can we assess what makes an argument convincing
in a purely empirical fashion as opposite to theo-
retical normative approaches? Second, to what ex-
tent can the problem be tackled by computational
models? To address these questions, we exploit our
recently introduced UKPConvArg1 corpus (Haber-
nal and Gurevych, 2016). This data set consists of
11,650 argument pairs – two arguments with the
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Prompt: Should physical education be mandatory in
schools? Stance: Yes!

Argument 1 Argument 2
PE should be compulsory be-
cause it keeps us constantly fit
and healthy. If you really dis-
like sports, then you can quit
it when you’re an adult. But
when you’re a kid, the best
thing for you to do is study,
play and exercise. If you prefer
to be lazy and lie on the couch
all day then you are most likely
to get sick and unfit. Besides,
PE helps kids be better at team-
work.

physical education
should be manda-
tory cuhz 112,000
people have died
in the year 2011
so far and it’s
because of the
lack of physical
activity and peo-
ple are becoming
obese!!!!

A1 is more convincing than A2, because:
• “A1 is more intelligently written and makes

some good points (teamwork, for example). A2
used ‘cuhz’ and I was done reading because
that sounds stupid.”
• “A1 gives more reasons and goes into detail, A2

only has one fact”
• “A1 makes several compelling points. A2 uses

poor spelling and grammar.”

Figure 1: An annotated argument pair from the UKPConvArg

corpus with three reasons explaining the decision about con-

vincingness (ID arg54258 arg202285).

same standpoint to the given topic, annotated with
a binary relation describing which argument from
the pair is more convincing. Each pair also contains
several reasons written in natural language explain-
ing which properties of the arguments influence their
convincingness. An example of such an argument
pair is shown in Figure 1.

We use these natural language reasons as a proxy
to assess qualitative properties of the arguments in
each argument pair. Our main contributions are:
(1) We propose empirically inspired labels of qual-
ity properties of Web arguments and design a hier-
archical annotation scheme. (2) We create a new
large crowd-sourced benchmark data set containing
9,111 argument pairs multi-labeled with 17 cate-
gories which is improved by local and global fil-
tering techniques. (3) We experiment with sev-
eral computational models, both traditional and neu-

ral network-based, and evaluate their performance
quantitatively and qualitatively.

The newly created data set UKPConvArg2 is
available under CC-BY-SA license along with the
experimental software for full reproducibility at
GitHub.1

2 Related Work

The growing field of computational argumentation
has been traditionally devoted to structural tasks,
such as argument component detection and classifi-
cation (Habernal and Gurevych, 2017; Habernal and
Gurevych, 2015), argument structure parsing (Peld-
szus and Stede, 2015; Stab and Gurevych, 2014),
or argument schema classification (Lawrence and
Reed, 2015), leaving the issues of argument evalu-
ation or quality assessment as an open future work.

There are only few attempts to tackle the quali-
tative aspects of arguments, especially in the Web
discourse. Park and Cardie (2014) classified propo-
sitions in Web arguments into four classes with re-
spect to their level of verifiability. Focusing on
convincingness of Web arguments, Habernal and
Gurevych (2016) annotated 16k pairs of arguments
with a binary relation “is more convincing” and also
elicited explanation for the annotators’ decisions.

Recently, research in persuasive essay scoring
has started combining holistic approaches based on
rubrics for several dimensions typical to this genre
with explicit argument detection. Persing and Ng
(2015) manually labeled 1,000 student persuasive
essays with a single score on the 1–4 scale and
trained a regression predictor with a rich feature set
using LIBSVM. Among traditional features (such
as POS or semantic frames), an argument structure
parser by Stab and Gurevych (2014) was employed.
Farra et al. (2015) also deal with essay scoring but
rather then tackling the argument structure, they fo-
cus on methods for detecting opinion expressions.
Persuasive essays however represent a genre with a
rather strict qualitative and formal requirements (as
taught in curricula) and substantially differ from on-
line argumentation.

Argument evaluation belongs to the central re-
search topics among argumentation scholars (Toul-

1https://github.com/UKPLab/
emnlp2016-empirical-convincingness
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min, 2003; Walton et al., 2008; Van Eemeren and
Grootendorst, 1987). Yet treatment of assessing ar-
gumentation quality, persuasiveness, or convincing-
ness is traditionally based on evaluating relevance,
sufficiency or acceptability of premises (Govier,
2010; Johnson and Blair, 2006) or categorizing fal-
lacies (Hamblin, 1970; Tindale, 2007). However,
the nature of these normative approaches causes a
gap between the ‘ideal’ models and empirically en-
countered real-world arguments, such as those on
the Web (van Eemeren et al., 2014; Walton, 2012).

Regarding the methodology utilized later in this
paper, deep (recursive) neural networks have gained
extreme popularity in NLP in recent years. Long
Short-Term Memory networks (LSTM) with At-
tention mechanism have been applied on textual
entailment (Rocktäschel et al., 2016), Question-
Answering (Golub and He, 2016), or source-code
summarization (Allamanis et al., 2016).

3 Data

As our source data set, we took the publicly
available UKPConvArg1 corpus.2 It is based
on arguments originated from 16 debates from
Web debate platforms createdebate.com and
convinceme.net, each debate has two sides
(usually pro and con). Arguments from each of the
32 debate sides are connected into a set of argument
pairs, and each argument pair is annotated with a
binary relation (argument A is more/less convincing
than argument B), resulting in total into 11,650 argu-
ment pairs. Annotations performed by Habernal and
Gurevych (2016) also contain several reasons writ-
ten by crowd-workers that explain why a particular
argument is more or less convincing; see an example
in Figure 1.

As these reasons were written in an uncontrolled
setting, they naturally reflect the main properties of
argument quality in a downstream task, which is to
decide which argument from a pair is more con-
vincing. It differs from scoring arguments in iso-
lation, which is inherently harder not only due to
subjectivity in argument “strength” decision but also
because of possible annotator’s prior bias (Haber-
nal and Gurevych, 2016). Assessing an argument

2https://github.com/UKPLab/
acl2016-convincing-arguments

in context helps to emphasize its main flaws or
strengths. This approach is also known as knowl-
edge elicitation – acquiring appropriate information
from experts by asking ”why?” (Reed and Rowe,
2004).

We therefore used the reasons as a proxy for de-
veloping a scheme for labeling argument quality at-
tributes. This was done in a purely bottom-up em-
pirical manner, as opposed to using ‘standard’ eval-
uation criteria known from argumentation literature
(Johnson and Blair, 2006; Schiappa and Nordin,
2013). In particular, we split all reasons into several
reason units by simple preprocessing (splitting us-
ing Stanford CoreNLP (Manning et al., 2014), seg-
mentation into Elementary Discourse Units by RST
tools (Surdeanu et al., 2015)) and identified the ref-
erenced arguments (A1 or A2) by pattern matching
and dependency parsing. For example, each reason
from Figure 1 would be transformed into two reason
units.3 Overall, we obtained about 70k reason units
from the entire UKPConvArg1 corpus.

3.1 Annotation scheme

In order to develop a code book for assigning a la-
bel to each reason unit, we ran several pilot ex-
pert annotation studies (each with 200-300 reason
units). Having a set of ≈ 25 distinct labels, we
ran two larger studies on Amazon Mechanical Turk
(AMT), each with 500 reason units and 10 workers.
The workers were split into two groups; we then
estimated gold labels for each group using MACE
(Hovy et al., 2013) and compared both groups’ re-
sults in order to find systematic discrepancies. Fi-
nally, we ended up with a set of 19 distinct labels
(classes). As the number of classes is too big for
non-expert crowd workers, we developed a hierar-
chical annotation process guided by questions that
narrow down the final class decision. The scheme is
depicted in Figure 2.4 Workers were shown only the
reason units without seeing the original arguments.

3We picked this example for its simplicity, in reality the texts
are much more fuzzy.

4It might seem that some labels are missing, such as C8-2
and C8-3; these belong to those removed during the pilot stud-
ies.
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Figure 2: Decision tree-based annotation schema for labeling reason units using Mechanical Turk. CX-Y represent the final labels.

3.2 Annotation

We sampled 26,000 unique reason units ordered by
the original author competence provided as part of
the UKPConvArg corpus. We expected that work-
ers with higher competence tend to write better rea-
sons for their explanations. Using the previously in-
troduced scheme, 776 AMT workers annotated the
batch during two weeks; we required assignments
from 5 workers for a single item. We employed
MACE (Hovy et al., 2013) for gold label and worker
competence estimation with 95% threshold to ignore
the less confident labels. Several workers were re-
jected based on their low computed competence and
other criteria, such as too short submission times.

3.3 Data cleaning

We performed several cleaning procedures to in-
crease quality and consistency of the annotated data
(apart from initial MACE filtering already explained
above).

Local cleaning First, we removed 3,859 reason
units annotated either with C1-2 (”not an explana-
tion”) and C8-6 (”too topic-specific”, which usually
paraphrases some details from the related argument
and is not general enough). In the next step, we
removed reason units with wrong polarity. In par-
ticular, all reason units labeled with C8-* or C9-*
should refer to the more convincing argument in
the argument pair (as they describe positive prop-
erties), whereas all reasons with labels C5-*, C6-*,
and C7-* should refer to the less convincing argu-
ment. The target arguments for reason units were
known from the heuristic preprocessing (see above);
in this step 2,455 units were removed.

Global cleaning Since the argument pairs from
one debate can be projected into an argument graph
(Habernal and Gurevych, 2016), we utilized this
‘global’ context for further consistency cleaning.

Suppose we have two argument pairs, P1(A →
B) and P2(B → C) (where→ means “is more con-
vincing than”). Let P1(RB) be reason unit targeting
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B in argument pair P1 and similarly P2(RB) rea-
son unit targeting B in argument pair P2. In other
words, two reason units target the same argument in
two different argument pairs (in one of them the ar-
gument is more convincing while in the other pair
it is less convincing). There might then exist con-
tradicting combination of classes for P1(RB) and
P2(RB). For example classes C9-2 and C7-3 are
contradicting, as the same argument cannot be both
”on the topic” and ”off-topic” at the same time.

When such a conflict between two reason units
occurred, we selected the reason with a higher score
using the following formula:

wW ∗ σ

 ∑

A=G

wA − λ
∑

A 6=G

wA


 (1)

where wW is the competence of the original au-
thor of the reason unit (originated from the UKP-
ConvArg corpus), A = G are crowdsourced as-
signments for a single reason unit that match the
final predicted gold label, A 6= G are assignments
that differ from the final predicted gold label, wA

is the competence of worker for assignment A, λ is
a penalty for non-gold labels, and σ is the sigmoid
function to squeeze the score between 0 and 1.

We found 25 types of global contradictions be-
tween labels for reason units and used them for
cleaning the data; in total 3,790 reason units were
removed in this step. After all cleaning procedures,
annotations from reason units were mapped back to
argument pairs, resulting into a multi-label annota-
tion of one or both arguments from the given pair. In
total 9,111 pairs from the UKPConvArg corpus were
annotated.

For example, the final annotations of argument
pair shown in Figure 1 contain four labels – C8-1 (as
the more convincing argument “has more details, in-
formation, facts, or examples / more reasons / better
reasoning / goes deeper / is more specific”), C9-3
(as the more convincing argument “has provoking
question / makes you think”), C5-2 (as the less con-
vincing argument “has language issues / bad gram-
mar /...”), and C6-1 (as the less convincing argument
“provides not enough support / ...” ). Only four of
six reason units for this argument pair were anno-
tated because of the competence score of their au-
thors.

# of labels/pair # of pairs
1 4,584
2 2,959
3 1,162
4 330
5 68
6 8
Total 9,111

Table 1: Number of annotated labels per argument pairs.

Figure 3: Distribution of labels in the annotated argument pairs.

Consult Figure 2 for label descriptions.

Table 1 shows number of labels per argument
pairs; about a half of the argument pairs have only
one label. Figure 3 shows distribution of label in
the entire data set which is heavily skewed towards
C8-1 label. This is not surprising, as this label was
used for reason units pointing out that the more con-
vincing argument provided more reasons, details, in-
formation or better reasoning – a feature inherent to
argumentation seen as giving reasons (Freeley and
Steinberg, 2008).

3.4 Data validation

Since the qualitative attributes of arguments were
annotated indirectly by labeling their corresponding
reason units without seeing the original arguments,
we wanted to validate correctness of this approach.
We designed a validation study, in which workers
were shown the original argument pair and two sets
of labels. The first set contained the true labels as an-
notated previously, while we randomly replaced few
labels in the second set. The goal was then to decide
which set of labels better explains that argument A is
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more convincing than argument B. For example, for
the argument pair from Figure 1, one set of shown
labels would be {C8-1, C9-3, C5-2, C6-1} (the cor-
rect set) while the other ‘distracting’ set would be
{C8-1, C9-3, C5-1, C7-3} .

We randomly sampled 500 argument pairs and
collected 9 assignments per pair on AMT; we again
used MACE with 95% threshold. Accuracy of work-
ers on 235 argument pairs achieved 82%. We can
thus conclude that workers tend to prefer explana-
tions based on labels from the reason units and us-
ing the annotation process presented in this section
is reliable. Total costs of the annotations including
pilot studies, bonuses, and data validation were USD
3,300.

4 Experiments

We propose two experiments, both performed in 16-
fold cross-domain validation. In each fold, argument
pairs from 15 debates are used and the remaining
one is used for testing. In both experiments, it is as-
sumed that the more convincing argument in a pair is
known and we concatenate (using a particular delim-
iter) both arguments such that the more convincing
argument comes first.

4.1 Predicting full multi-label distribution

This experiment is a multi-label classification.
Given an argument pair annotated with several la-
bels, the goal is to predict all these labels.

We use two deep learning models. Our first
model, Bidirectional Long Short-Term Memory
(BLSTM) network contains two LSTM blocks (for-
ward and backward), each with 64 hidden units on
the output. The output is concatenated into a sin-
gle vector and pushed through sigmoid layer with
17 output units (corresponding to 17 labels). We use
cross entropy loss function in order to minimize dis-
tance of label distributions in training and test data
(Nam et al., 2014). In the input layer, we rely on
pre-trained word embeddings from Glove (Penning-
ton et al., 2014) whose weights are updated during
training the network.

The second models is BLSTM extended with
an attention mechanism (Rocktäschel et al., 2016;
Golub and He, 2016) combined with convolution
layers over the input. In particular, the input em-

BLSTM BLSTM/CNN/ATT
Debate H-loss one-E H-loss one-E
Ban plastic water bot-
tles?

0.092 0.283 0.090 0.305

Christianity or Atheism 0.105 0.212 0.105 0.218
Evolution vs. Creation 0.093 0.196 0.094 0.234
Firefox vs. Internet Ex-
plorer

0.080 0.312 0.078 0.345

Gay marriage: right or
wrong?

0.095 0.243 0.094 0.270

Should parents use
spanking?

0.082 0.312 0.083 0.344

If your spouse commit-
ted murder...

0.094 0.297 0.094 0.272

India has the potential to
lead the world

0.088 0.294 0.086 0.322

Is it better to have a lousy
father or to be fatherless?

0.086 0.367 0.085 0.381

Is porn wrong? 0.098 0.278 0.100 0.270
Is the school uniform a
good or bad idea?

0.081 0.279 0.077 0.406

Pro-choice vs. Pro-life 0.095 0.218 0.098 0.218
Should Physical Educa-
tion be mandatory?

0.095 0.273 0.095 0.277

TV is better than books 0.091 0.265 0.087 0.300
Personal pursuit or com-
mon good?

0.095 0.328 0.094 0.343

W. Farquhar ought to be
honored...

0.054 0.528 0.052 0.570

Average 0.089 0.293 0.088 0.317

Table 2: Results of multi-label classification from Experiment

1. Hamming-loss and One-Error are shown for two systems –

Bidirectional LSTM and Bidirectional LSTM with Convolution

and Attention.

bedding layer is convoluted using 4 different convo-
lution sizes (2, 3, 5, 7), each with 1,000 randomly
initialized weight vectors. Then we perform max-
over-time pooling and concatenate the output into a
single vector. This vector is used as the attention
module in BLSTM.

We evaluate the system using two widely used
metrics in multi-label classification. First, Hamming
loss is the average per-item per-class total error; the
smaller the better (Zhang and Zhou, 2007). Second,
we report One-error (Sokolova and Lapalme, 2009)
which corresponds to the error of the predicted la-
bel with highest probability; the smaller the better.
We do not report other metrics (such as Area Under
PRC-curves, MAP, or cover) as they require tuning
a threshold parameter, see a survey by Zhang and
Zhou (2014).

Results from Table 2 do not show significant dif-
ferences between the two models. Putting the one-
error numbers into human performance context can
be done only indirectly, as the data validation pre-
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sented in Section 3.4 had a different set-up. Here
we can see that the error rate of the most confi-
dent predicted label is about 30%, while human per-
formed similarly by choosing from a two different
label sets in a binary settings, so their task was in-
herently harder.

Error analysis and discussion We examined
outputs from the label distribution prediction for
BLSTM/ATT/CNN. It turns out that the output layer
leans toward predicting the dominant label C8-1,
while prediction of other labels is seldom. We sus-
pect two causes, first, the highly skewed distribu-
tion of labels (see Figure 3) and, second, insufficient
training data sizes where 13 classes have less than 1k
training examples (while Goodfellow et al. (2016)
recommend at least 5k instances per class).

Although multi-label classification may be
viewed as a set of binary classification tasks that
decides for each label independently (and thus al-
lows for employing other ‘standard’ classifiers such
as SVM), this so-called binary relevance approach
ignores dependencies between the labels. That is
why we focused directly on deep-learning methods,
as they are capable of learning and predicting a full
label distribution (Nam et al., 2014).

4.2 Predicting flaws in less convincing
arguments

In the second experiment, we focus on predict-
ing flaws in arguments using coarse-grained labels.
While this task makes several simplifications in the
labeling, it still provides meaningful insights into ar-
gument quality assessment. For this purpose, we use
only argument pairs where the less convincing argu-
ment is labeled with a single label (no multi-label
classification). Second, we merged all labels from
categories C5-* C6-* C7-* into three classes cor-
responding to their parent nodes in the annotation
decision schema from Figure 2. Table 3 shows dis-
tribution of the gold data for this task with explana-
tion of the labels. It is worth noting that predicting
flaws in the less convincing argument is still context-
dependent and requires the entire argument pair be-
cause some of the quality labels are relative to the
more convincing argument (such as “less reasoning”
or “not enough support”).

For this experiment, we modified the output layer

Label Instances Description
C5 856 Language and presentation issues
C6 1,203 Reasoning and factuality issues
C7 1,651 Off-topic, non-argument, nonsense
Total 3,710

Table 3: Gold data distribution for the second experiment. Ar-

gument pairs with a single label for the less convincing argu-

ment.

of the neural models from the previous experiment.
The non-linear output function is softmax and we
train the networks using categorical cross-entropy
loss. We also add another baseline model that em-
ploys SVM with RBF kernel5 and a rich set of lin-
guistically motivated features, similarly to (Haber-
nal and Gurevych, 2016). The feature set includes
uni- and bi-gram presence, ratio of adjective and
adverb endings that may signalize neuroticism (Cor-
ney et al., 2002), contextuality measure (Heylighen
and Dewaele, 2002), dependency tree depth, ratio
of exclamation or quotation marks, ratio of modal
verbs, counts of several named entity types, ratio
of past vs. future tense verbs, POS n-grams, pres-
ence of dependency tree production rules, seven dif-
ferent readability measures (e.g., Ari (Senter and
Smith, 1967), Coleman-Liau (Coleman and Liau,
1975), Flesch (Flesch, 1948), and others), five sen-
timent scores (from very negative to very positive)
(Socher et al., 2013), spell-checking using standard
Unix words, ratio of superlatives, and some sur-
face features such as sentence lengths, longer words
count, etc.6 It results into a sparse 60k-dimensional
feature vector space.

Results in Table 4 suggest that the SVM-RBF
baseline system performs poorly and its results are
on par with a majority class baseline (not reported in
detail). Both deep learning models significantly out-
perform the baseline, yielding Macro-F1 score about
0.35. The attention-based model performs better
than simple BLSTM in two classes (C5 and C6), but
the overall Macro-F1 score is not significantly bet-
ter.

5We used LISBVM (Chang and Lin, 2011) with the default
hyper-parameters. As Fernández-Delgado et al. (2014) show,
SVM with gaussian kernels is a reasonable best choice on aver-
age.

6Detailed explanation of the features can be found directly
in the attached source codes.
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Class C5 Class C6 Class C7
Model P R F1 P R F1 P R F1 M-F1 C.I.
SVM-RBF 0.351 0.023 0.044 0.394 0.083 0.137 0.446 0.918 0.600 0.260 0.014
BLSTM 0.265 0.600 0.368 0.376 0.229 0.285 0.479 0.301 0.370 0.341 0.015
BLSTM/ATT/CNN 0.270 0.625 0.378 0.421 0.247 0.311 0.484 0.301 0.371 0.353 0.015

Table 4: Results for experiment 2. P = precision, R = recall, M-F1 = macro F1, C.I. = confidence interval at 0.95. Both BLSTM

and BLSTM/ATT/CNN are significantly better than SVM-RBF (p < 0.05, exact Liddell’s test).

Error analysis We manually examined several
dozens of predictions where the BLSTM model
failed but the BLSTM/ATT/CNN model was correct
in order to reveal some phenomena that the system is
capable to cope with. First, the BLSTM/ATT/CNN
model started catching some purely abusive, sar-
castic, and attacking arguments. Also, the lan-
guage/grammar issues were revealed in many cases,
as well as using slang in arguments.

Examining predictions in which both systems
failed reveal some fundamental limitations of the
current purely data-driven computational approach.
While the problem of not catching off-topic argu-
ments can be probably modeled by incorporating
the debate description or some sort of debate topic
model into the attention vector, the more common
issue of non-sense arguments or fallacious argu-
ments (which seem like actual arguments on the
first view) needs much deeper understanding of real-
world knowledge, logic, and reasoning.

5 Conclusion

This paper presented a novel task in the field of com-
putational argumentation, namely empirical assess-
ment of reasons for argument convincingness. We
created a new large benchmark data set by utilizing
a new annotation scheme and several filtering strate-
gies for crowdsourced data. Then we tackled two
challenging tasks, namely multi-label classification
of argument pairs in order to reveal qualitative prop-
erties of the arguments, and predicting flaws in the
less convincing argument from the given argument
pair. We performed all evaluations in a cross-domain
scenario and experimented with feature-rich SVM
and two state-of-the-art neural network models. The
results are promising but show that the task is inher-
ently complex as it requires deep reasoning about the
presented arguments that goes beyond capabilities of
the current computational models. By releasing the

UKPConvArg2 data and code to the community, we
believe more progress can be made in this direction
in the near future.
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